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Abstract. In this paper, we investigate the numerical identifications of physical parameters
in parabolic initial-boundary value problems. The identifying problem is first formulated as a
constrained minimization one using the output least squares approach with theH 1-regularization
or BV -regularization. Then a simple finite element method is used to approximate the
constrained minimization problem and the convergence of the approximation is shown for both
regularizations. The discrete constrained problem can be reduced to a sequence of unconstrained
minimization problems. Numerical experiments are presented to show the efficiency of the
proposed method, even for identifying highly discontinuous and oscillating parameters.

1. Introduction

In this paper, we consider a finite element approach, combined with the output least squares
method, for identifying the parameterq(x) in the following parabolic problem

∂u

∂t
− ∇ · (q(x)∇u) = f (x, t) in � × (0, T ) (1.1)

with the initial condition

u(x, 0) = u0(x) in � (1.2)

and the Dirichlet boundary condition

u(x, t) = 0 on ∂� × (0, T ). (1.3)

In practical applications, we are often given the terminal status observation

u(x, T ) = z(x)

(possibly through the interpolation of the point observation values) and asked to recover
the physical parameterq(x). We shall carry out the recovery process in such a way that
the solutionu (e.g. the absolute temperature) matches its terminal status observation dataz

optimally in the energy norm or theL2-norm. The physical domain� can be any bounded
domain inRd (d > 1), with a piecewise smooth boundaryŴ, andf ∈ H−1(�) is a given
source term. The problem outlines the heat conduction of some material occupying the
domain�. We refer to the works by Bank and Kunisch [1] and Englet al [7] for a more
applied background of the problem. Also, there are many existing analytical and numerical
methods for solving the inverse problem, see [1, 2, 5, 7–10, 14, 16] and the references therein.
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The major novelty of the paper is to investigate the finite element method for solving the
nonlinear minimization problem which is formulated using the output least squares method
with H 1-regularization orBV -regularization, and to show the finite element convergence
for both regularizations. We then reduce the nonlinear constrained minimization to a
sequence of unconstrained minimizations. Finally, the Armijo algorithm is suggested
for solving the unconstrained finite element minimization problems. The numerical
experiments are presented to indicate the stable and global convergence of the proposed
numerical algorithms and their effectiveness for the identification of highly discontinuous
and oscillating parameters.

Later, we will need the following space of functions with bounded variation

BV (�) = {q ∈ L1(�); ‖q‖BV (�) < ∞}
where‖q‖BV (�) = ‖q‖L1(�) +

∫

�
|Dq|. The notation

∫

�
|Dq| is not for an integral but for

a quantity defined by
∫

�

|Dq| = sup

{ ∫

�

q div g dx; g ∈ (C1
0(�))d and |g(x)| 6 1 in �

}

.

We now consider the parameter identifying problem as the following constrained
minimizing process

minimize J (q) =
1

2

∫

�

q(x)|∇(v(q; T ) − z)|2 dx + γN(q) (1.4)

subject to q ∈ K and v ≡ v(q; t) ∈ H 1
0 (�) satisfying v(x, 0) = u0(x) in � (1.5)

∫

�

vtφ dx +
∫

�

q(x)∇v · ∇φ dx =
∫

�

f (x, t)φ dx ∀φ ∈ H 1
0 (�) (1.6)

for a.e. t ∈ (0, T ). Note that the system (1.5) and (1.6) is the variational formulation
associated with the parabolic problem (1.1)–(1.3). Subsequently, we may denote the solution
of this variational problem asv(q; t) or v(q) or v(q)(x, t), or simply v in the case where
there is no confusion. The functionz ∈ H 1

0 (�) appearing in (1.4) is the measured data, and
N(q) is a regularization term with a weight coefficientγ > 0. Throughout the paper,N(q)

is taken to be

N(q) =
∫

�

|∇q|2 dx or N(q) =
∫

�

|Dq| (1.7)

namely the semi-norm inH 1(�) or the semi-norm in theBV -space. The constrained set
K above is a subset ofH 1(�) or BV (�) defined by

K = {q ∈ L1(�); |||q||| < ∞ andα1 6 q(x) 6 α2 a.e. in�}.
Here the norm|||q||| = ‖q‖H 1(�) or |||q||| = ‖q‖BV (�) corresponds to the forms ofN(q), α1

andα2 are two positive constants.
Note that the evaluation of the cost functionalJ (q) requires the availability of the

terminal status value of the solutionv(q; t) to the system (1.5) and (1.6) att = T , this
assumes the regularityv ∈ C(0, T ; H 1

0 (�)). This may not be true in many real applications,
for example, with a discontinuous coefficientq(x) or source termf (x, t).

To cover general cases, we will reformulate the problem (1.4)–(1.6) in a weaker and
more practical sense in section 2. The remaining sections of the paper are arranged as
follows: in section 3 we will discuss the discretization of the minimization problem of
section 2 by using a simple finite element method, then reduce the constrained finite element
problem to a sequence of unconstrained minimizations. Finally, in section 4 we will derive
the Armijo algorithm for solving discrete unconstrained minimizations and present some
numerical experiments in section 5.
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2. An averaging-terminal status formulation and existence of its solutions

Throughout our analysis, we will make the following assumptions on the given source term
and initial data for the parabolic problem (1.1)–(1.3)

f ∈ L2(QT ) and u0 ∈ H 1(�) (2.1)

whereQT = � × (0, T ). Assuming (2.1), we know from standard parabolic theory that for
eachq ∈ K there exists a unique solutionv(q; t) to the parabolic problem or equivalently
to the variational problem (1.5) and (1.6) and that it has the following regularities

v(q) ∈ L2(0, T ; H 1
0 (�)) v(q) ∈ H 1(0, T ; L2(�)) v(q) ∈ C(0, T ; L2(�)).

Instead of the system (1.4)–(1.6), we will use the following weaker and more practical
formulation

minimize J (q) =
1

2

∫ T

T −σ

∫

�

q(x)|∇(v(q; t) − z)|2 dx dt + γN(q) (2.2)

subject to q ∈ K and v ≡ v(q; t) ∈ H 1
0 (�) satisfying v(x, 0) = u0(x) in � (2.3)

∫

�

vtφ dx +
∫

�

q(x)∇v · ∇φ dx =
∫

�

f (x, t)φ dx ∀φ ∈ H 1
0 (�) (2.4)

for a.e. t ∈ (0, T ). In the above,σ is a small constant number. In our numerical
implementation, we often takeσ to be one or two discrete time-step sizes.

In our later analysis, we will make no difference between the semi-norm‖∇ ·‖L2(�) and
the full-norm‖ · ‖H 1(�) in H 1

0 (�) as they are equivalent by Poincaré’s inequality.
We are now going to show the existence of minimizers to the problem (2.2)–(2.4). To

do so, we need the following lemma.

Lemma 2.1. For any sequence{qn} in K which converges to someq ∈ K in L1(�) as
n → ∞, we have

lim
n→∞

∫ T

T −σ

∫

�

qn(x)|∇(v(qn) − z)|2 dx dt =
∫ T

T −σ

∫

�

q(x)|∇(v(q) − z)|2 dx dt.

Proof. First, taking anyq(x) ∈ K and φ = v(q; t) in (2.4) and then integrating with
respect tot , we derive that

‖v(q; t)‖2
L2(�)

+ α1

∫ t

0

∫

�

|∇v(q; t)|2 dx dt 6 ‖u0‖2
L2(�)

+
1

α1
‖f ‖2

L2(0,T ;H−1(�))
(2.5)

for any t ∈ (0, T ]. This implies the sequence{v(qn)} is bounded in the space
L2(0, T ; H 1

0 (�)); hence we may extract a subsequence, still denoted by{v(qn)}, such that

v(qn) → v∗ weakly in L2(0, T ; H 1
0 (�)). (2.6)

We next show thatv∗ = v(q). To do this we multiply both sides of the equation
∫

�

v(qn)tφ dx +
∫

�

qn(x)∇v(qn) · ∇φ dx =
∫

�

f φ dx ∀φ ∈ H 1
0 (�) (2.7)

by a functionη(t) ∈ C1[0, T ] with η(T ) = 0. Then by integrating with respect tot , we get

−
∫

�

u0η(0)φ dx +
∫ T

0

∫

�

η(t)f φ dx dt

= −
∫ T

0

∫

�

v(qn)φηt (t) dx dt +
∫ T

0

∫

�

η(t)q(x)∇v(qn) · ∇φ dx dt

+
∫ T

0

∫

�

η(t)(qn(x) − q(x))∇φ · ∇v(qn) dx dt. (2.8)
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The last term in (2.8) converges to zero by (2.5) forv(qn) and the Lebesgue dominant
convergence theorem. Thus, lettingn → ∞ in (2.8) and using (2.6), we obtain

−
∫

�

u0η(0)φ dx +
∫ T

0

∫

�

η(t)f φ dx dt

= −
∫ T

0

∫

�

v∗φηt (t) dx dt +
∫ T

0

∫

�

η(t)q(x)∇v∗ · ∇φ dx dt (2.9)

which is valid for anyη(t) ∈ C1[0, T ] with η(T ) = 0. Hence, we have
∫

�

v∗
t φ dx +

∫

�

q(x)∇v∗ · ∇φ dx =
∫

�

f φ dx ∀φ ∈ H 1
0 (�)

andv∗(0) = u0. Therefore,v∗ = v(q) by the definition ofv(q).
Finally, we are ready to prove the desired result of the lemma. We rewrite (2.7) in the

form
∫

�

(v(qn) − z)tφ dx +
∫

�

qn(x)∇(v(qn) − z) · ∇φ dx =
∫

�

f φ dx −
∫

�

qn(x)∇z · ∇φ dx

and then takeφ = v(qn) − z giving

1

2

d

dt
‖v(qn) − z‖2

L2(�)
+

∫

�

qn(x)|∇(v(qn) − z)|2 dx

=
∫

�

f (v(qn) − z) dx −
∫

�

qn(x)∇z · ∇(v(qn) − z) dx. (2.10)

Similar relations hold forv(q), namely

1

2

d

dt
‖v(q) − z‖2

L2(�)
+

∫

�

q(x)|∇(v(q) − z)|2 dx

=
∫

�

f (v(q) − z) dx −
∫

�

q(x)∇z · ∇(v(q) − z) dx. (2.11)

Subtracting (2.11) from (2.10) and after some simple manipulations we derive
{ ∫

�

qn(x)|∇(v(qn) − z)|2 dx −
∫

�

q(x)|∇(v(q) − z)|2 dx

}

+
1

2

d

dt
‖v(qn) − v(q)‖2

L2(�)

=
∫

�

q(x)∇v(q) · ∇(v(qn) − v(q)) dx +
∫

�

(qn(x) − q(x))|∇z|2 dx

+
∫

�

{qn(x)∇v(qn) − q(x)∇v(q)} · ∇(v(q) − 2z) dx ≡: R1
n (2.12)

where we have used equation (2.4) for bothv(qn) andv(q).
Then by rewriting the first term on the left-hand side of (2.12), we have

1

2

d

dt
‖v(qn) − v(q)‖2

L2(�)
+

∫

�

qn(x)|∇(v(qn) − v(q))|2 dx

= R1
n +

{ ∫

�

(q(x) − qn(x))|∇(v(q) − z)|2 dx

−2
∫

�

qn∇(v(qn) − v(q)) · ∇(v(q) − z) dx

}

≡: R1
n + R2

n

and integrating over the interval(0, t) for any t 6 T , we get

1

2
‖v(qn; t) − v(q; t)‖2

L2(�)
6

∫ T

0
|R1

n + R2
n| dt.
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By the weak convergence ofv(qn) and the assumed convergence onqn, it is easy to show
∫ T

0
|R1

n + R2
n| dt → 0 asn → ∞.

Therefore, we have proved

max
t∈[0,T ]

‖v(qn; t) − v(q; t)‖L2(�) → 0 asn → ∞. (2.13)

Now the desired convergence of the lemma follows immediately by integrating (2.12) over
[T − σ, T ] and using (2.13). �

Using lemma 2.1, one can prove (cf [12, 13]):

Theorem 2.1. There exists at least a minimizer to the optimization problem (2.2)–(2.4).

Remark 2.1. All the results of the paper are easily generalized to theL2-norm case in the
cost functionalJ (q), i.e. its first term is replaced by

1

2

∫ T

T −σ

∫

�

|v(q; t) − z|2 dx dt.

3. Finite element method and its convergence

We now propose a finite element method for solving the continuous minimization problem
(2.2)–(2.4). We first triangulate the polyhedral domain� with a regular triangulationT h

of simplicial elements, namely intervals in one dimension, triangles in two dimensions and
tetrahedra in three dimensions (cf Ciarlet [6]). Then we define the finite element spaceVh to
be the continuous and piecewise linear space over the triangulationT h, andV̊h a subspace
of Vh with all functions vanishing on the boundary∂�. Let {xi}Ni=1 be the set of all the
nodal points of the triangulationT h, then the constrained subsetK is approximated by

Kh = {vh ∈ Vh; α1 6 vh(xi) 6 α2 for i = 1, 2, . . . , N}.
To fully discretize the parabolic system (2.3) and (2.4), we also need the time

discretization. To do so, we divide the time interval(0, T ) into M equally-spaced
subintervals by using nodal points

0 = t0 < t1 < · · · < tM = T

with tn = nτ , τ = T/M. For a continuous mappingu : [0, T ] → L2(�), we define
un = u(·, nτ) for 0 6 n 6 M. For a given sequence{un}Mn=0 ⊂ L2(�) we define the
difference quotient and the averaging function

∂τu
n =

un − un−1

τ
ūn =

1

τ

∫ tn

tn−1
u(t) dt.

With the above notations, we can formulate the finite element problem corresponding
to (2.2)–(2.4) as follows

minimize JM
h (qh) =

τ

2

M
∑

n=M−n0

∫

�

qh(x)|∇(vn
h − z)|2 dx + γNh(qh) (3.1)

subject to qh ∈ Kh and vn
h ≡ vn

h(qh) ∈ V̊h satisfying v0
h = Qhu0(x) in � (3.2)

∫

�

∂τv
n
hφh dx +

∫

�

qh(x)∇vn
h · ∇φh dx =

∫

�

f̄ nφh dx ∀φh ∈ V̊h (3.3)
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for n = 1, 2, . . . , M. The integern0 > 0 and the parameterσ are assumed to satisfy
σ = (n0 + 1)τ for simplicity. The termNh(qh) is the discrete regularization defined by

Nh(qh) =
∫

�

|∇qh|2 dx or Nh(qh) =
∫

�

√

|∇qh|2 + δ(h) dx (3.4)

corresponding to the continuous forms ofN(q). Hereδ(h) is any positive function satisfying
limh→0 δ(h) = δ(0) = 0, and its role is to smooth the non-differentiable function| · |. The
operatorQh used in (3.2) is theL2-projection fromL2(�) onto V̊h, which is defined by

∫

�

Qhvφ dx =
∫

�

vφ dx ∀v ∈ L2(�), φ ∈ V̊h. (3.5)

The operatorQh can be replaced by some other computationally less expensive operators
with similar approximation properties to theL2-projection (cf Chanet al [3, 4]) including
the finite element interpolant (if the initial valueu0 is continuous). This does not affect any
of our later convergence results.

Let Ih: C(�̄) → Vh be the standard nodal value interpolant associated withVh. Then
for any p > d = dim(�), we have (cf Ciarlet [6] and Xu [17])

lim
h→0

‖v − Ihv‖W 1,p(�) = 0 ∀v ∈ W 1,p(�) (3.6)

lim
h→0

‖v − Qhv‖H 1
0 (�) = 0 ∀v ∈ H 1

0 (�) (3.7)

and for anyv ∈ H 1
0 (�) we have

‖Qhv‖L2(�) 6 C‖v‖L2(�) ‖∇Qhv‖L2(�) 6 C‖∇v‖L2(�). (3.8)

Concerning the existence of the minimizers to the finite element problem (3.1)–(3.3),
we can show (cf [9, 12]):

Theorem 3.1. There exists at least a minimizer to the finite element problem (3.1)–(3.3).

In our later convergence analysis of the finite element approximation, we will need the
following two lemmas.

Lemma 3.1. Let vn
h(qh) be the solutions of the finite element system (3.2) and (3.3)

corresponding toqh ∈ Kh, then we have the following stability estimates

max
16n6M

‖vn
h(qh)‖2

L2(�)
+ τ

M
∑

n=1

‖∇vn
h(qh)‖2

L2(�)
6 C(‖u0‖2

L2(�)
+ ‖f ‖2

L2(QT )
) (3.9)

max
16n6M

‖∇vn
h(qh)‖2

L2(�)
+ τ

M
∑

n=1

‖∂τv
n
h(qh)‖2

L2(�)
6 C(‖∇u0‖2

L2(�)
+ ‖f ‖2

L2(QT )
) (3.10)

with C independent ofqh, h andτ .

Lemma 3.2. For any sequence{qh} in Kh and someq ∈ K, if qh converges toq in L1(�)

ash tends to0, then

M
∑

n=M−n0

τ

∫

�

qh(x)|∇(vn
h(qh) − z)|2 dx →

∫ T

T −σ

∫

�

q(x)|∇(v(q) − z)|2 dx dt

asτ, h → 0.
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Proof. We shall use the notationvn
h andv to denotevn

h(qh) andv(q), respectively, and

vn = v(q; tn) = v(q; nτ) for 0 6 n 6 M

v̄n = v̄n(q) =
1

τ

∫ tn

tn−1
v(q; t) dt for 1 6 n 6 M v̄0 = v̄0(q) = u0.

Taking φ = τ−1φh in (2.4), then integrating over [tn−1, tn] and subtracting it from (3.3)
yields
∫

�

∂τ (v
n
h − vn)φh dx +

1

τ

∫ tn

tn−1

∫

�

qh∇(vn
h − v) · ∇φh dx dt

=
1

τ

∫ tn

tn−1

∫

�

(q − qh)∇v · ∇φh dx dt.

Letting ηn
h = vn

h − Qhv̄
n, and takingφh = τηn

h in the above equation gives

1

2
‖ηn

h‖
2
L2(�)

−
1

2
‖ηn−1

h ‖2
L2(�)

+ α1τ‖∇ηn
h‖

2
L2(�)

6 τ

∫

�

∂τ (v
n − Qhv̄

n)ηn
h dx +

∫ tn

tn−1

∫

�

(q − qh)∇v · ∇ηn
h dx dt

+
∫ tn

tn−1

∫

�

qh∇(v − Qhv̄
n) · ∇ηn

h dx dt

≡ : (I)1 + (I)2 + (I)3. (3.11)

Summing the above equation overn = 1, 2, . . . , k 6 M, we obtain

1

2
‖ηk

h‖
2
L2(�)

−
1

2
‖η0

h‖
2
L2(�)

+ α1τ

k
∑

n=1

‖∇ηn
h‖

2
L2(�)

6

k
∑

n=1

(I)1 +
k

∑

n=1

(I)2 +
k

∑

n=1

(I)3. (3.12)

We next estimate (I)1, (I)2 and (I)3. First for (I)1, from the definition ofQh and the following
formula, which holds for any sequences{an} and{bn}

k
∑

n=1

(an − an−1)bn = akbk − a0b0 −
k

∑

n=1

an−1(bn − bn−1) (3.13)

we have
k

∑

n=1

(I)1 =
∫

�

(vk − v̄k)ηk
h dx − τ

k
∑

n=1

∫

�

(vn−1 − v̄n−1)∂τη
n
h dx

6
√

τ

{ ∫ tk

tk−1
‖vt‖2

L2(�)
dt

}1/2

‖ηk
h‖L2(�)

+τ

{ ∫ T

0
‖vt‖2

L2(�)
dt

}1/2{

τ

k
∑

n=1

‖∂τη
n
h‖

2
L2(�)

}1/2

6 C
√

τ

where we have used the stability estimates (3.9) and (3.10) and the property ofQh.
The estimate of (I)2 can be carried out easily using Young’s inequality

k
∑

n=1

(I)2 6
α1

2
τ

k
∑

n=1

‖∇ηn
h‖

2
L2(�)

+
α2

α1

∫ T

0

∫

�

|q − qh||∇v|2 dx dt.

Finally, we can decompose (I)3 into

(I)3 =
∫ tn

tn−1

∫

�

qh∇(v − Qhv) · ∇ηn
h dx dt +

∫ tn

tn−1

∫

�

qh∇Qh(v − v̄n) · ∇ηn
h dx dt
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and then by applying Young’s inequality and the property ofQh, this yields

k
∑

n=1

(I)3 6
α1

4
τ

k
∑

n=1

‖∇ηn
h‖

2
L2(�)

+ 2
α2

α1

∫ T

0

∫

�

qh|∇(v − Qhv)|2 dx dt

+2
α2

2

α1

∫

�

k
∑

n=1

∫ tn

tn−1
|∇(v − v̄n)|2 dt dx.

Now using the above estimates on (I)1, (I)2 and (I)3 and the properties of the averaging
function (cf [15, ch 6]) we derive that asτ, h → 0

max
16n6M

‖ηn
h‖

2
L2(�)

→ 0 and τ

M
∑

n=1

‖∇ηn
h‖

2
L2(�)

→ 0. (3.14)

By means of the results in (3.14) and the relation

vn
h − v̄n = (vn

h − Qhv̄
n) + (Qhv̄

n − v̄n)

we obtain immediately the convergence

max
16n6M

‖vn
h − v̄n‖2

L2(�)
→ 0 and τ

M
∑

n=1

‖∇(vn
h − v̄n)‖2

L2(�)
→ 0 (3.15)

asτ, h → 0. Finally, we are ready to show the desired convergence in lemma 3.2. By the
convergence ofQh and the boundedness ofvn

h andqh, it suffices to prove

IM
h − I σ

h ≡ τ

M
∑

n=M−n0

∫

�

qh|∇(vn
h − zh)|2 dx −

∫ T

T −σ

∫

�

q|∇(v − zh)|2 dx dt → 0

ash, τ → 0, wherezh = Qhz. We can then rewrite it in the following form

IM
h − I σ

h =
M

∑

n=M−n0

∫ tn

tn−1

∫

�

qh(|∇(vn
h − zh)|2 − |∇(v − zh)|2) dx dt

+
∫ T

T −σ

∫

�

(qh − q)|∇(v − zh)|2 dx dt ≡: (II)1 + (II)2.

For (II)2, we know by the Lebesgue dominant convergence theorem and (3.7) that

|(II)2| 6 2
∫ T

T −σ

∫

�

|qh − q||∇(v − z)|2 dx dt + 2
∫ T

T −σ

∫

�

|qh − q||∇(z − zh)|2 dx dt → 0.

For (II)1, we obtain by the Cauchy–Schwarz inequality and (3.9) that

|(II)1| 6 α2

( M
∑

n=M−n0

∫ tn

tn−1
‖∇(vn

h − v)‖2
L2(�)

dt

)1/2

·
( M

∑

n=M−n0

∫ tn

tn−1
‖∇(vn

h + v − 2zh))‖2
L2(�)

dt

)1/2

6 C

( M
∑

n=M−n0

∫ tn

tn−1
‖∇(vn

h − v)‖2
L2(�)

dt

)1/2

which converges to zero by using

‖∇(vn
h − v)‖L2(�) 6 ‖∇(vn

h − v̄n)‖L2(�) + ‖∇(v − v̄n)‖L2(�)

and the convergence in (3.15). Thus we have proved thatIM
h − I σ

h → 0 asτ, h → 0. �
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Finally, we can state the following convergence theorem about the finite element problem
(3.1)–(3.3) (see [12] for details).

Theorem 3.2. Let{q∗
h}h>0 be a sequence of minimizers to the discrete minimization problem

(3.1)–(3.3). Then each subsequence of{q∗
h}h>0 has a subsequence converging to a minimizer

of the continuous problem (2.2)–(2.4).

4. Armijo algorithm

To solve the discretized constrained minimization ofJM
h (·) overKh in (3.1)–(3.3), we reduce

it into a sequence of unconstrained minimizations of the following functionalJM
h (ε; ·) over

the entire spaceVh with ε > 0

minimize JM
h (ε; qh) = JM

h (qh) +
1

ε

∫

�

P(qh)(x) dx (4.1)

subject to qh ∈ Vh and vn
h ≡ vn

h(qh) ∈ V̊h satisfying
∫

�

∂τv
n
hφh dx +

∫

�

qh∇vn
h · ∇φh dx =

∫

�

f̄ nφh dx ∀φh ∈ V̊h (4.2)

for n = 1, 2, . . . , M, with v0
h = Qhu0 andP(qh) defined by

P(qh)(x) = 1
2(qh(x) − α2)

2
+ + 1

2(α1 − qh(x))2
+.

We now formulate the Armijo algorithm for solving the problem (4.1)–(4.2). To do so,
we need to evaluate the Gateaux derivatives of the following cost functional

JM
h (ε; qh) =

τ

2

M
∑

n=M−n0

∫

�

qh|∇(vn
h(qh) − zh)|2 dx + γNh(qh) +

1

ε

∫

�

P(qh) dx

where zh = Ihz is the finite element interpolant of the measured dataz. First, for each
qh ∈ Kh, we can easily get the Gateaux derivativevn

h(qh)
′ : Vh → V̊h of the functionvn

h(·),
which satisfiesv0

h(qh)
′ph = 0 andvn

h(qh)
′ph ∈ V̊h (n > 1) for any ph ∈ Vh and

∫

�

∂τ (v
n
h(qh)

′ph)φh dx +
∫

�

qh∇(vn
h(qh)

′ph) · ∇φh dx

= −
∫

�

ph∇vn
h(qh) · ∇φh dx ∀φh ∈ V̊h. (4.3)

To compute the derivative of the first term in the cost function, i.e.

J1(qh) =
τ

2

M
∑

n=M−n0

∫

�

qh|∇(vn
h(qh) − zh)|2 dx

we introduce the discrete adjoint state system to (4.2) (cf Lions [11]).
Thus, we need to findwn

h, n = M, M − 1, . . . , 1, 0, such thatwM
h = 0 andwn

h (n < M)
satisfy

−
∫

�

∂τw
n
hφh dx +

∫

�

qh∇wn−1
h · ∇φh dx = µn

∫

�

qh∇(vn
h(qh) − zh) · ∇φh dx

whereµn = 1 for M − n0 6 n 6 M andµn = 0 otherwise. Then we can derive (see [12]
for details)

J1(qh)
′ph = −τ

M
∑

n=1

∫

�

ph∇vn
h(qh) · ∇wn−1

h dx +
τ

2

M
∑

n=M−n0

∫

�

ph|∇(vn
h(qh) − zh)|2) dx.
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For the functionalsJ2(qh) = Nh(qh) and J3(qh) =
∫

�
P(qh) dx, we can easily obtain

their derivatives as follows

J2(qh)
′ph =















∫

�

∇qh · ∇ph
√

|∇qh|2 + δ(h)
dx for Nh(qh) =

∫

�

√

|∇qh|2 + δ(h) dx

2
∫

�

∇qh · ∇ph dx for Nh(qh) =
∫

�

|∇qh|2 dx

and

J3(qh)
′ph =

∫

�

P ′(qh)ph dx.

With these derivatives, we can represent the derivative ofJM
h (ε; qh) by

(JM
h (ε; qh))

′ph = −τ

M
∑

n=1

∫

�

ph∇vn
h(qh) · ∇wn−1

h dx

+
τ

2

M
∑

n=M−n0

∫

�

ph|∇(vn
h(qh) − zh)|2 dx + γ J2(qh)

′ph +
1

ε

∫

�

P ′(qh)ph dx.

Now we are able to present the Armijo algorithm.

Armijo algorithm. Given a step size control fractionβ ∈ (0.5, 1), a penalty constant
ε ∈ (0, 1), and an initial guessq0

h ∈ Kh. Setj = 0.
1. Computevn

h ≡ vn
h(q

j

h) ∈ V̊h by solving

v0
h = Qhu0(x) in �

∫

�

∂τv
n
hφh dx +

∫

�

q
j

h∇vn
h · ∇φh dx =

∫

�

f φh dx ∀φh ∈ V̊h.

ComputewM
h = 0 andwn

h ∈ V̊h, n = M − 1, . . . , 1, 0 by solving

−
∫

�

∂τw
n
hφh dx +

∫

�

q
j

h∇wn−1
h · ∇φh dx = µn

∫

�

q
j

h∇(vn
h(q

j

h) − zh) · ∇φh dx.

2. Compute the components of(JM
h (ε; q

j

h))′ corresponding to thelth basisφl by

gl = −τ

M
∑

n=1

∫

�

φl∇vn
h(q

j

h) · ∇wn−1
h dx +

τ

2

M
∑

n=M−n0

∫

�

φl|∇(vn
h(q

j

h) − zh)|2 dx + γ J2(q
j

h)′φl

+
1

ε

∫

�

P ′(q
j

h)φl dx.

Setgj

h =
∑N

l=1 glφl .

3. Compute the gradient normej = (hd
∑N

l=1 g2
l )

1/2.
4. Setλ = 1.

(i) Compute1 = JM
h (ε; q

j

h + λg
j

h) − JM
h (ε; q

j

h) + 1
2λ e2

j .
(ii) If 1 6 0 , go to (iii); otherwise setλ = βλ, go to (i).
(iii) Compute q

j+1
h = q

j

h + λg
j

h. If ‖qj+1
h − q

j

h‖ < tolerance, stop; otherwise set
j = j + 1, go to step 1.
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5. Numerical experiments

We now show some numerical experiments on the proposed methods for parameter
identifications. The test problem is

∂u

∂t
− ∇ · (q(x)∇u) = f (x, t) (x, t) ∈ � × (0, T )

u(x, 0) = u0(x) x ∈ �

u(x, t) = 0 (x, t) ∈ ∂� × (0, T ) (5.1)

where� = (0, 1) andT = 1. Unless otherwise specified, all the numerical experiments use
the Armijo algorithm withH 1-regularization. The numerical results usingBV -regularization
work equally as well as theH 1-regularization for both the smooth and discontinuous
parameters.

Most parameters related in the algorithm are attached in each figure. The error shown
is the relativeL2-norm error between the exact parameterq(x) to be identified and the
computed parameterqh. The penalty parameterε and the step size control parameterβ in
the Armijo algorithm are taken to be 10−5 and 3/4, respectively. The finite element mesh
sizeh and the time-step sizeτ are both taken to be 1/100. The lower and upper bounds
α1 andα2 in the constrained setK are taken to be 0.5 and 20.0. The constantσ is chosen
to be one time-step sizeτ , son0 = 0.

Example 1. We take the observed dataz as

z = u(x, 1) = sin(2πx)

and the exact solution as

u(x, t) = esin(πt) sin(2πx)

but the identifying coefficientq(x) as

q(x) = 3 + 2x2 − 2 sin(2πx).

The function f (x, t) is then computed through equation (5.1) usingu(x, t) and q(x).
Figure 1 shows the exact solutionq(x) (the full curve) and the numerically identified
solutionqh(x) (open circles). Note that the exact coefficient functionq(x) is very smooth
in the example and the finite element identified solutionqh(x) is nearly indistinguishable
from the true solutionq(x). The initial guessq0

h is taken to be the constant 10.0 everywhere,
which is not a good initial guess at all, but the numerical method still converges steadily
and the approximation appears to be quite accurate.

When the above observed dataz has the following noised form

zδ(x) = z(x) + δ sin(3πx)

the numerical result is shown in figure 2 with the noise parameterδ = 1%, and the output
least square norm in (2.2) is taken to be theL2-norm instead of the original energy-norm.
The numerical recovered coefficient matches the true parameterq(x) well, except for some
oscillations around two singular pointsx = 0.25 and 0.75 whereux = 0.

Example 2. We take the observed dataz as

z = u(x, 1) = sin(πx)

and the exact solution as

u(x, t) = esin(πt) sin(πx)
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and the identifying coefficientq(x) as the highly discontinuous function

q(x) =











2 − x x ∈ [0, 0.3]

1 − x + 4x2 x ∈ (0.3, 0.7)

3 x ∈ [0.7, 1].

The functionf (x, t) is computed through equation (5.1) usingu(x, t) and q(x), and is
also discontinuous. Figure 3 shows the exact solutionq(x) (the broken curve) and the
numerically identified solutionqh(x) (the full curve). We note that although the exact
coefficient functionq(x) is highly discontinuous, the finite element identified solutionqh(x)

matches very well withq(x) except for small oscillations around two discontinuous points
x = 0.3 andx = 0.7. The initial guessq0

h can be taken to be much worse thanq0
h = 4.0

here, sayq0
h = 10.0 or 20.0, the method converges still very stably and gives the same

accurate result asq0
h = 4.0.

When the above observed dataz has the following noised form

zδ(x) = z(x) + δ sin(3πx)

the numerical identified result is shown in figure 4 with the output least squares norm in
(2.2) taken to be theL2-norm instead of the original energy-norm. The numerical identified
parameter appears to be reasonably good considering that the identifying parameter is highly
discontinuous. When the noise parameterδ goes over 1%, the error exceeds 0.05 but the
numerical solution still keeps a very good shape of the true parameter function.

We also plot the numerical experiment withBV -regularization for comparison in
figure 5. Here we take the smoothing parameterδ(h) in Nh(qh) to be 0.2. The numerical
solution is close to that withH 1-regularization plotted in figure 3.

Example 3. We take the observed dataz as

z = u(x, 1) = sin(πx)

and the exact solution as

u(x, t) = esin(πt) sin(πx)

but the identifying coefficientq(x) as the highly discontinuous and oscillating function

q(x) =











2 x ∈ [0, 0.3]

4 x ∈ (0.3, 0.6)

2 + sin(10πx) x ∈ [0.6, 1].

The functionf (x, t) is computed through equation (5.1) usingu(x, t) andq(x), and is also
discontinuous and oscillating. Figure 6 shows the exact coefficientq(x) (the broken curve)
to be recovered and the numerically identified solutionqh(x) (the full curve). Note that the
exact parameter functionq(x) is highly discontinuous and oscillating in this example, but
the finite element identified solution matches well withq(x) except for small perturbations
around two discontinuous pointsx = 0.3 andx = 0.6.

Example 4. We take the observed dataz to be the hat function

z = u(x, 1) = 0.5 − |x − 0.5|

and the exact solution as

u(x, t) = esin(πt)(0.5 − |x − 0.5|)
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Figure 1. q
(0)
h = 10.0, γ = 10−7, error= 0.0013.
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Figure 2. q
(0)
h = 4.0, γ = 10−10, δ = 1%, error= 0.0276.
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Figure 3. q
(0)
h = 4.0, γ = 10−7, error= 0.024.
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Figure 4. q
(0)
h = 4.0, γ = 10−10, δ = 0.5%, error= 0.034.
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Figure 5. BV -norm,q(0)
h = 4.0, γ = 10−5, error= 0.027.
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Figure 6. q
(0)
h = 3.0, γ = 10−7, error= 0.054.
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Figure 7. q
(0)
h = 3.0, γ = 10−8, error= 0.018.
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Figure 8. q
(0)
h = 4.0, γ = 10−7, error= 0.026.
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but a smooth coefficientq(x) = 2 + sin(2πx). Note that the observed data have lowest
regularity in this case, i.e.z ∈ H 1(�), but the exact parameterq(x) is still smooth. Figure 7
shows the exact solutionq(x) (the broken curve) and the numerically identified solution
qh(x) (the full curve). We see that the lack of regularity on the observed data does not
affect our numerical method too much, which gives a very satisfactory approximation.

Example 5. We take the observed dataz to be the hat function

z = u(x, 1) = 0.5 − |x − 0.5|
and the exact solution as

u(x, t) = esin(πt)(0.5 − |x − 0.5|)

but a highly discontinuous coefficientq(x) as

q(x) =











2 − x x ∈ [0, 0.3]

1 − x + 4x2 ∈ (0.3, 0.7)

3 x ∈ [0.7, 1].

Note that in this case not only does the observed data have a lowest regularity, i.e.
z ∈ H 1(�), but the identifying parameterq(x) is also highly discontinuous. Figure 8
shows the exact solutionq(x) (the broken curve) and the numerically identified solution
qh(x) (the full curve). We can see that the lack of regularity on both the observed data
and the parameter to be identified does not affect our numerical method too much and the
numerical location of the discontinuity and singularity points(x = 0.3, 0.5, 0.7) is very
accurate.
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