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Abstract
Given the measurement of temperature at a fixed time θ > 0 and the
measurement of temperature in a subregion of the physical domain, we
investigate the simultaneous reconstruction of the initial temperature and heat
radiative coefficient in a heat conductive system. The stability of the inverse
problem is first established, and then the numerical reconstruction is mainly
studied. The reconstruction process is done by Tikhonov regularization with
the regularizing terms being theL2-norms of gradients, and is carried out in such
a way that the temperature solution of the heat equation matches its fixed time
observation and its subregion observation optimally in the L2-norm sense. The
continuous nonlinear optimization system will be discretized by the piecewise
linear finite element method, and the existence of discrete minimizers and
convergence of the finite element approximation are shown. The discrete finite
element problem is solved by a nonlinear gradient method with an efficient
nonlinear multigrid technique for accelerating the reconstruction process.
Numerical experiments are given to demonstrate the efficiency of the proposed
nonlinear multigrid gradient method for solving the inverse parabolic problem.

1. Introduction

Consider the following heat conduction problem:

ut (x, t) = 
u(x, t) + p(x) u(x, t) in � × (0, T ) (1.1)

with the initial condition

u(x, 0) = µ(x) in � (1.2)

and the Dirichlet boundary condition

u(x, t) = η(x, t) on ∂� × (0, T ) (1.3)
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where the physical domain � is an open bounded domain in R
d (d = 1, 2, 3), with a piecewise

smooth boundary �.
The goal of this paper is to investigate the possibility of the simultaneous numerical

reconstruction of the initial temperature distribution µ and the heat radiative coefficient p
in (1.1), (1.2). Such reconstructions are extremely important in many practical applications.
But unfortunately, they are highly ill-posed in most situations. In order to achieve some
reasonable numerical reconstructions, one has to take into consideration the ill-posedness of
the problem and restoration of stability under suitable a priori information. However, only
few theoretical results seem available for the investigation.

First of all, it is well known that in the case where p is given, the reconstruction of
the initial temperature µ from u(x, θ) for x ∈ � and fixed θ > 0 is highly ill-posed and
impossible in most cases. On the other hand, in the case where µ is given, the inverse problem
of determining p from the observation u(x, θ), x ∈ �, with θ > 0, can be transformed to a
Fredholm equation of the second kind, where there might exist a non-trivial solution which
implies the non-uniqueness for such an inverse problem (e.g. [16]).

Thus we are motivated to adopt a different formulation which should be conditionally
stable and also physically acceptable. Then, as observation of the temperature, we take u(x, θ),
x ∈ � and u|ω×(0,T ), where θ > 0 is fixed and ω ⊂ � is an arbitrarily prescribed subregion.
In general, ω can be assumed to be sufficiently small. We can expect a Lipschitz stability
for determining the coefficient p but a very weak stability for determining an initial status µ
(theorem 2.1). For our numerical reconstruction, we will take some inexact data zθ (x), x ∈ �

and z|ω×(0,T ), instead of the exact data u(·, θ)|� and u|ω×(0,T ):

zθ (x) ≈ u(x, θ), x ∈ � and z(x, t) ≈ u(x, t), (x, t) ∈ ω × (0, T )

(1.4)

whereω is a subregion of�. The distributional observation data zθ and z are possibly obtained
through interpolations of the point observation values in practice.

The essence of our formulation for the inverse problem is to simultaneously reconstruct
the initial valueµ and the radiative coefficientp in the heat conduction system (1.1)–(1.3) from
the measurements of temperatures over ω × (0, T ) and at a fixed moment θ > 0. In the case
of θ = 0, our formulation corresponds to the determination of the coefficient p only, and the
stability and uniqueness are still open problems for an arbitrary subregion ω in � (e.g. [16]).
For our simultaneous reconstruction, we choose a fixed θ ∈ (0, T ). Note that the measurement
of u(·, θ) for θ > 0 is often easier to achieve than the one of u(·, 0), so our formulation also
seems reasonable from the practical point of view.

The main purpose of this paper is to propose some numerical methods for solving the
considered inverse problem, based on our stability analysis. Our numerical experiments
demonstrate that we are indeed able to achieve satisfactory numerical reconstructions for
both the initial data and the heat radiative coefficient (section 6), where the adopted norm is
much weaker and more practical than the norm adopted for our theoretical stability analysis.
The gap here between both norms is a finite order of differentiation, so we conjecture that we
should have the Hölder stability for determining the radiative coefficientp(x) in the case where
we choose the same norm (cf (3.1)–(3.3)). This may be done using the Sobolev interpolation
theory, and will be studied elsewhere. Furthermore, in a succeeding paper, we will give an a
priori strategy for choosing regularizing parameters based on our stability results. For some
existing strategies, see, for example, [9]. As we know, the realization of the a priori strategy
is often a hard problem for actual inverse problems.

To the authors’ knowledge, there exist few publications which discuss numerical
reconstruction grounded on the theoretical stability analysis for the inverse problem with
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restricted measurements such as u(x, t) for x ∈ ω ⊂ � and 0 < t < T . For other
types of inverse parabolic problems, we refer to [3, 13, 18, 20]. For references on analytical
and numerical methods for solving the inverse elliptic problems, see [1, 5, 9, 12, 17] and the
references therein.

Our simultaneous reconstruction is carried out in such a way that the temperature solution
of the heat conduction equation matches its subregion observation data z and the fixed time
observation zθ optimally in the L2-norm sense, with the help of a Tikhonov regularization of
L2-norms of the gradients for both radiative coefficients and initial temperatures (section 3).
We will discretize the continuous nonlinear optimization system and the parabolic equation
by the piecewise linear finite element method, and prove the existence of discrete minimizers
of the finite element system and their convergence to the global minimizers of the continuous
optimization problem (section 4). Then the nonlinear finite element minimization problem
is solved using a gradient method, which usually converges rather slowly, though very stably
in most instances. For accelerating the entire reconstruction process, we will formulate a
nonlinear multigrid gradient method (MGM) (section 5). Numerical experiments will be
given to demonstrate the efficiency of the proposed nonlinear MGM for the simultaneous
reconstruction of the thermal radiative coefficient and the initial temperature status (section 6).
In particular, we would like to stress that our numerical reconstructions are also quite
satisfactory in two dimensions.

2. Stability of the inverse problem

In this section, we present some conditional stability results for the inverse problem formulated
in section 1. Such stability is fundamental for our subsequent numerical reconstruction of
the initial temperature and the heat radiative coefficient in the heat conduction system. The
stability was discussed in Choulli and Yamamoto [7] and Choulli et al [6] for a heat conductive
problem with homogeneous Neumann boundary conditions. Here we will prove the conditional
stability for the system (1.1), (1.2) with the Dirichlet boundary condition (1.3), which appears
to be much more technical from the numerical analysis point of view. However, the stability
established here is still not perfectly adjusted to the same case as adopted in our later numerical
reconstruction. The major difference lies in the considered solution classes: we adopt H 1-
solutions in the numerical reconstruction while the stability of this section will mainly consider
the sufficiently smooth solutions for simplicity. The stability analysis for the H 1-solution case
is much more complicated and will be considered elsewhere.

Throughout this section, for any γ ∈ (0, 1) and non-negative integer m, we use

Cγ+m(�̄), Cγ+m, γ+m
2 (�̄ × [0, T ]), Cγ+m, γ+m

2 (∂� × [0, T ])

to denote the usual Hölder spaces (cf [10,21]). We assume that ∂� is of class Cγ+3 with some
γ ∈ (0, 1) and the boundary function η = η(x, t) in (1.3) satisfies

η ∈ Cγ+3, γ+3
2 (∂� × [0, T ]), η(x, t) > η0 on ∂� × [0, T ] (2.1)

with some constant η0 > 0. For any fixed M > 0 and r0 > 0, we set

U = {(p, µ) ∈ Cγ+1(�̄) × Cγ+3(�̄);µ|∂� = η(·, 0), (
µ + pµ)|∂�
= ηt (·, 0), ‖p‖Cγ+1(�) � M, ‖µ‖Cγ+3(�̄) � M,µ(x) � r0 > 0 in �̄}. (2.2)

Then, by the classical parabolic theory (cf [21]), for any (p, µ) ∈ U , there exists a unique
solution u(p,µ) ∈ Cγ+3, γ+3

2 (�̄ × [0, T ]) to the problem (1.1)–(1.3). Let ω ⊂ � be any
subdomain, and θ ∈ (0, T ) be fixed. The inverse problem considered here is to determine
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p = p(x) and µ = µ(x) in � from the measurement given in (1.4). This section aims to
establish a stability estimate for the inverse parabolic problem.

The main result of this section will answer the stability of the inverse problem with the
Dirichlet observation data u|ω×(0,T ) within the class of sufficiently smooth solutions for the
case of θ > 0. For any (p, µ), (q, ν) ∈ U , let

E((p,µ), (q, ν)) = ‖u(p,µ) − u(q, ν)‖H 1(0,T ;L2(ω)) + ‖(u(p, µ) − u(q, ν))(·, θ)‖H 2(�).

Our main result of this section is stated in the following theorem.

Theorem 2.1. There exists a constant C = C(M,�, T , θ, η, γ, ω) > 0 such that

‖p − q‖L2(�) � C E((p,µ), (q, ν)), (2.3)

‖µ − ν‖L2(�) � C {| logE((p,µ), (q, ν))|}−1 (2.4)

for all (p, µ), (q, ν) ∈ U .

Remark 2.1. The determination of initial values involves the backward parabolic equation,
and so one cannot expect good stability in general. However, the determination of heat radiative
coefficients seems much more stable. In the case where u|ω×(0,T ) is replaced by the Neumann
data on any part of ∂�, one can prove similar stability.

Remark 2.2. One can also take the Neumann data ∂u
∂n

|�×(0,T ) as the observation data in place
of u|ω×(0,T ), with � ⊂ ∂� being an arbitrary relatively open subset. Bukhgeim [2] and
Klibanov [19] studied this case and proved the uniqueness of the inverse problem for θ = 0,
provided that � is a sufficiently large part of ∂�. When � does not occupy a sufficient large
part of ∂�, the uniqueness is still open. On the other hand, for θ > 0, Isakov [16] proved the
uniqueness of the inverse problem with the above-mentioned Neumann data on an arbitrarily
small part � over any time interval (0, T ).

Proof of theorem 2.1. We divide the proof into four steps.

First step. We first establish a Carleman estimate. Set

(Pu)(x, t) = ut (x, t) − 
u(x, t) +
d∑
i=1

ai(x, t)
∂u

∂xi
+ b(x, t)u, (x, t) ∈ Q

where Q = � × (0, T ) and the coefficients {ai}di=1 and b satisfy

‖b‖L∞(Q) � M1, ‖ai‖L∞(Q) � M1, i = 1, 2, . . . , d. (2.5)

The next lemma can be found in Fursikov and Imanuvilov [11] and Imanuvilov [15].

Lemma 2.1. Let ω0 be an arbitrary subdomain of � such that ω̄0 ⊂ ω. Then there exists a
function ψ ∈ C2(�) such that ψ(x) = 0 for x ∈ ∂� and

ψ(x) > 0, x ∈ �; |∇ψ(x)| > 0, x ∈ � \ ω0. (2.6)

The following lemma is a Carleman estimate due to [11, 15].

Lemma 2.2. There exists a constant λ̂ = λ̂(M1) > 0 such that for any λ � λ̂ we can choose
s0(λ) > 0 and a constant C = C(λ,M1) > 0, independent of each choice {ai}di=1 and b, such
that for all s � s0(λ), the following inequality holds:∫
Q

{
1

sϕ

(
|zt |2 +

d∑
i,j=1

∣∣∣∣ ∂2z

∂xi∂xj

∣∣∣∣
2)

+ sϕ|∇z|2 + s3ϕ3z2

}
e2sα dx dt

� C

∫
Q

|Pz|2e2sα dx dt + C

∫
Qω

s3ϕ3z2e2sα dx dt
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for all z ∈ W
1,2
2 (Q) with z(x) = 0 for x ∈ ∂�. Here

ϕ(t, x) = eλψ(x)

t (T − t)
, α(t, x) = eλψ(x) − e2λ‖ψ‖C(�)

t (T − t)
.

Remark 2.3. The Carleman estimate is true for a general parabolic operator of second order
with coefficients depending on x and t (cf [15]). For a similar Carleman estimate, we refer to
Tataru [26] where only a sketch of the proof was given.

Second step. First by the maximum principle (cf [21]), we have for any x ∈ � and t ∈ (0, T ),

u(p,µ)(x, t) � e−MT min{min
x∈�

µ(x), min
x∈∂�,t�0

η(x, t)} � e−MT min{η0, r0}. (2.7)

So u(p,µ) is always positive. For simplicity, we will translate the time variable and consider
the problem in the time interval (−δ, T ) with δ > 0:

ut (x, t) = 
u(x, t) + p(x)u(x, t), x ∈ �, −δ < t < T

u(x,−δ) = µ(x), x ∈ �

u(x, t) = η(x, t), x ∈ ∂�, −δ < t < T .

(2.8)

Moreover, we can set θ = T
2 after a suitable translation of time variable. Then using the

compatibility condition of the first order following from (p, µ) ∈ U and the classical parabolic
theory (cf [10, 21]), we have the following lemma.

Lemma 2.3. There exists a constant M2 = M2(U, δ, T ,�) > 0 such that

‖u(p,µ)‖
C
γ+3, γ+3

2 (�̄×[−δ,T ])
� M2, ∀ (p, µ) ∈ U .

Third step. We now prove (2.3). Let

w = u(p,µ) − u(q, ν), f = p − q, R = u(q, ν),

a = u(p,µ)(·, θ) − u(q, ν)(·, θ). (2.9)

Then w satisfies

wt = 
w + pw + fR, (x, t) ∈ � × (−δ, T )

w(x, θ) = a(x), x ∈ �

w = 0 (x, t) ∈ ∂� × (−δ, T ).

(2.10)

Consider z = w/R: it is well defined by (2.7). Using the fact that ∂R
∂t

= 
R + qR, we have

zt = 
z +
2∇R

R
· ∇z + (p − q)z + f in � × (−δ, T )

z(x, θ) = a(x)

R(x, θ)
, x ∈ �

z = 0 on ∂� × (−δ, T )

(2.11)

and y = zt satisfies

yt = 
y +
2∇R

R
· ∇y + (p − q)y +

∂

∂t

(
2∇R

R

)
· ∇z in � × (−δ, T )

y = 0 on ∂� × (−δ, T ).

(2.12)
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By lemma 2.3, we know that 2∇R
R

is uniformly bounded for (q, µ) ∈ U . Then we obtain by
applying lemma 2.2 to (2.12) that, for large s > 0,∫
Q

(
1

sϕ
(|yt |2 + |
y|2) + sϕ|∇y|2 + s3ϕ3y2

)
e2sα dx dt

� C

∫
Q

∣∣∣∣ ∂∂t
(

2∇R

R

)
· ∇z

∣∣∣∣
2

e2sα dx dt + C

∫
Qω

s3ϕ3y2e2sα dx dt. (2.13)

For the first term of the right-hand side, we have using z(x, θ) = a(x)/R(x, θ) that

z(x, t) =
∫ t

θ

y(x, ξ) dξ +
a(x)

R(x, θ)
. (2.14)

Then by lemma 2.3,
∫
Q

∣∣∣∣ ∂∂t
(

2∇R

R

)
· ∇z

∣∣∣∣
2

e2sα dx dt

� C1

∫
Q

∣∣∣∣
∫ t

θ

|∇y(x, ξ)| dξ

∣∣∣∣
2

e2sα dx dt + C1

∫
Q

∣∣∣∣∇
(

a(x)

R(x, θ)

)∣∣∣∣
2

e2sα dx dt

� C1

∫
Q

∣∣∣∣
∫ t

θ

|∇y(x, ξ)| dξ

∣∣∣∣
2

e2sα dx dt + C1(‖aesα‖2
L2(Q) + ‖(∇a)esα‖2

L2(Q)).

By a direct manipulation, we can show that for any α ∈ C1(Q) satisfying(
t − T

2

)
∂α

∂t
� 0, x ∈ �, 0 � t � T ,

the following inequality holds for all u ∈ L2(Q):
∫
Q

∣∣∣∣
∫ t

θ

|u(x, ξ)| dξ

∣∣∣∣
2

e2sα dx dt � C2(T )

∫
Q

|u(x, t)|2e2sα dx dt.

(This type of inequality is essential for applications of Carleman estimates to inverse problems:
see [2, 16, 19], for example.) This implies
∫
Q

∣∣∣∣ ∂∂t
(

2∇R

R

)
· ∇z

∣∣∣∣
2

e2sα dx dt

� C2

∫
Q

|∇y(x, t)|2e2sα dx dt + C2(‖aesα‖2
L2(Q) + ‖(∇a)esα‖2

L2(Q))

with C2 > 0 independent of s > 0. Thus, taking large s > 0, we obtain from (2.13) that∫
Q

(
1

sϕ
(|yt |2 + |
y|2) + sϕ|∇y|2 + s3ϕ3y2

)
e2sα dx dt

� C

∫
Qω

s3ϕ3y2e2sα dx dt + C(‖aesα‖2
L2(Q) + ‖(∇a)esα‖2

L2(Q))

with Qω = ω × (0, T ). For such fixed s > 0, we have e2sα , s3ϕ3e2sα � C3 in Q and so
∫ 3T

4

T
4

∫
�

(
1

sϕ
(|yt |2 + |
y|2) + sϕ|∇y|2 + s3ϕ3y2

)
e2sα dx dt

� C

∫
Qω

|zt |2 dx dt + C‖a‖2
H 1(�).
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Moreover, noting that

1

sϕ
e2sα, sϕe2sα, s3ϕ3e2sα � C4 > 0 in � ×

(
T

4
,

3T

4

)

for the fixed s > 0, we have∫ 3T
4

T
4

∫
�

(|yt |2 + |
y|2 + |∇y|2 + y2) dx dt � C

∫
Qω

{
|u(p,µ) − u(q, ν)|2

+

∣∣∣∣ ∂∂t (u(p, µ) − u(q, ν))

∣∣∣∣
2 }

dx dt + C‖a‖2
H 1(�). (2.15)

Furthermore, by (2.11), (2.14) and y = zt we have

T

2
f =

∫ 3T
4

T
4

(
zt − 
z − 2∇R

R
· ∇z − (p − q)z

)
dt

=
∫ 3T

4

T
4

(
y −

∫ t

θ


y(x, ξ) dξ − 2∇R

R
·
∫ t

θ

∇y(x, ξ) dξ

−(p − q)

∫ t

θ

y(x, ξ) dξ

)
dt − T

2

(



(
a(x)

R(x, θ)

)
+ (p − q)

a(x)

R(x, θ)

)

−
∫ 3T

4

T
4

2∇R(x, t)

R(x, t)
· ∇

(
a(x)

R(x, θ)

)
dt.

Then by lemma 2.3 and the fact that (p, µ), (q, ν) ∈ U , we further deduce

T

2
‖f ‖2

L2(�) �
∫
�

∣∣∣∣
∫ 3T

4

T
4

(
y −

∫ t

θ


y(x, ξ) dξ − 2∇R

R
·
∫ t

θ

∇y(x, ξ) dξ

−(p − q)

∫ t

θ

y(x, ξ) dξ

)
dt

∣∣∣∣
2

dx + C5(‖a‖2
H 2(�) + ‖p − q‖2

L∞(�)‖a‖2
L2(�))

� C5

∫ 3T
4

T
4

∫
�

(y2 + |
y|2 + |∇y|2 + ‖p − q‖2
L∞(�)y

2) dx dt

+C5(‖a‖2
H 2(�) + ‖p − q‖2

L∞(�)‖a‖2
L2(�)).

Now (2.3) follows from this and (2.15).

Fourth step. Finally, we prove (2.4). Setting w1 = wt in (2.10), we have

(w1)t = 
w1 + p(x)w1 + f (x)Rt (x, t), x ∈ �, −δ < t < T

w1(x, θ) = 
a(x) + p(x)a(x) + f (x)R(x, θ) ≡ b(x), x ∈ �

w1(x, t) = 0, x ∈ ∂�, −δ < t < T .

(2.16)

We then decompose (2.16) as follows:

vt = 
v + p(x)v + f (x)Rt (x, t), x ∈ �, −δ < t < T

v(x,−δ) = 0, x ∈ �

v(x, t) = 0, x ∈ ∂�, −δ < t < T

(2.17)

and
ut = 
u + p(x)u(x, t), x ∈ �, −δ < t < T

u(x, θ) = b(x) − v(x, θ), x ∈ �

u(x, t) = 0, x ∈ ∂�, −δ < t < T .

(2.18)
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We can verify that

w1 = u + v; w1(x,−δ) = u(x,−δ), x ∈ �. (2.19)

Noting that w1 = wt , thus w1(·,−δ) = wt(·,−δ), and we have by lemma 2.3 that

‖w1(·,−δ)‖L∞(�) � C6‖u(p,µ) − u(q, ν)‖
C
γ+3, γ+3

2 (Q)
� C6M2,

which, with (2.19), implies

‖u(·,−δ)‖L∞(�) � C6M2.

Thus we can apply the method of the logarithmic convexity (cf Payne [23]) to obtain

‖u(·, t)‖L2(�) � (C6M2)
1− t+δ

θ+δ ‖u(·, θ)‖
t+δ
θ+δ

L2(�)
, −δ � t � θ. (2.20)

Furthermore, by the semigroup theory (e.g. Pazy [24]), we can write

v(t) = v(·, t) =
∫ t

−δ

e−(t−ξ)Apv(ξ) dξ +
∫ t

−δ

e−(t−ξ)AfRξ (ξ) dξ, −δ < t < θ.

Here A = −
 with D(A) = H 2(�) ∩ H 1
0 (�). By ‖p‖L∞(�) � M and lemma 2.3, we have

‖v(t)‖L2(�) � C7

∫ t

−δ

‖v(ξ)‖L2(�) dξ + C7‖f ‖L2(�), −δ < t < θ.

The Gronwall inequality then yields

‖v(t)‖L2(�) � C8‖f ‖L2(�), −δ � t � θ. (2.21)

In view of (2.16), (2.18) and (2.19), the inequalities (2.20) and (2.21) imply

‖wt(·, t)‖L2(�) � ‖u(·, t)‖L2(�) + ‖v(·, t)‖L2(�)

� C9‖u(·, θ)‖
t+δ
θ+δ

L2(�)
+ C9‖f ‖L2(�)

� C9(‖a‖H 2(�) + ‖f ‖L2(�))
t+δ
θ+δ + C9‖f ‖L2(�), (2.22)

which yields

‖µ − ν‖L2(�) = ‖u(p,µ)(·,−δ) − u(q, ν)(·,−δ)‖L2(�) = ‖w(·,−δ)‖L2(�)

=
∥∥∥∥ −

∫ θ

−δ

wt (·, ξ) dξ + w(·, θ)
∥∥∥∥
L2(�)

� C9

∫ θ

−δ

(‖a‖H 2(�) + ‖f ‖L2(�))
ξ+δ
θ+δ dξ + C9‖f ‖L2(�)(θ + δ) + ‖a‖L2(�)

= C9(θ + δ)
|1 − (‖a‖H 2(�) + ‖f ‖L2(�))|
| log(‖a‖H 2(�) + ‖f ‖L2(�))|

+ C9‖f ‖L2(�)(θ + δ) + ‖a‖L2(�)

� C10

| log(‖a‖H 2(�) + ‖f ‖L2(�))|
.

This with (2.3) leads to (2.4), and so completes the proof of theorem 2.1. �
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3. The continuous formulation

From the stability established in section 2 we know that the inverse problem of reconstructing
the initial temperature and the heat radiative coefficient is conditionally stable under a smooth
class of solutions to the corresponding parabolic system and the observation data u ∈
H 1(0, T ;L2(ω)) and u(·, θ) ∈ H 2(�). Clearly, such a requirement on the excessive amount
of observation data is not very practical, but these stability results give us some important
guidance for the possible numerical reconstruction. Moreover, taking into consideration the
finiteness of the gap between the order of the norms for the measurement data adopted for
theorem 2.1 and the one taken in the subsequent numerical analysis, it is very likely to derive
some stability of Hölder type in determining the heat radiative coefficient for the more practical
requirement on the measurement data to be discussed below. But the analysis for this case is
much more technical and complicated and will be left for our forthcoming work.

For the simultaneous numerical reconstruction, we assume that only the perturbed
observation data zθ (x) and z(x, t) given in (1.4) are available. Then we formulate the
reconstruction of the initial temperatureµ and the thermal radiative coefficient p in (1.1), (1.2)
as the following constrained minimizing process: minimize

J (p,µ) = 1
2

∫ T

0

∫
ω

(u(p,µ) − z)2 dx dt + 1
2

∫
�

(u(p,µ)(x, θ) − zθ (x))
2 dx

+β
∫
�

|∇p|2 dx + γ

∫
�

|∇µ|2 dx (3.1)

subject to p ∈ K1, µ ∈ K2 and u(·, t) ≡ u(p,µ)(·, t) ∈ H 1(�) satisfying

u(x, 0) = µ(x) in �; u(x, t) = η(x, t) on ∂� × (0, T ) (3.2)∫
�

ut φ dx +
∫
�

∇u · ∇φ dx =
∫
�

p(x) u φ dx ∀φ ∈ H 1
0 (�) (3.3)

for a.e. t ∈ (0, T ). Note that the system (3.2), (3.3) is the variational formulation associated
with the parabolic problem (1.1)–(1.3). In what follows, we denote the solution of this
variational problem as u(p,µ) or u(p,µ)(x, t). The measurement functions z and zθ satisfy
that z ∈ L2(0, T ;L2(ω)) and zθ ∈ L2(�), the positive constants β and γ are regularization
parameters. The constraint sets K1 and K2 above are chosen to be as follows:

K1 = {p ∈ H 1(�); |p(x)| � α1 a.e. in �},
K2 = {µ ∈ H 1(�); 0 < µ(x) � α2 a.e. in �}.

Here α1 and α2 are two positive constants.
For the minimization problem (3.1)–(3.3), we can show the following theorem.

Theorem 3.1. There exists at least a minimizer to the optimization problem (3.1)–(3.3).

Proof. It is easy to verify that min J (p,µ) is finite over K1 × K2, and thus there exists a
minimizing sequence {pn, µn} from K1 × K2 such that

lim
n→∞ J (pn, µn) = inf

p∈K1
µ∈K2

J (p,µ).

This implies the boundedness of {pn, µn} in H 1(�) × H 1(�) and therefore there is a
subsequence (still denoted as {pn, µn}) such that both pn and µn converge weakly to p∗

and µ∗ respectively in H 1(�). Similarly to the proof of lemma 2.1 in Keung and Zou [18],
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we can show that u(pn, µn) converges weakly to u(p∗, µ∗) in L2(0, T ;H 1(�)) and

lim
n→∞

∫ T

0

∫
ω

(u(pn, µn) − z)2 dx dt =
∫ T

0

∫
ω

(u(p∗, µ∗) − z)2 dx dt,

lim
n→∞

∫
�

(u(pn, µn)(x, θ) − zθ (x))
2 dx =

∫
�

(u(p∗, µ∗)(x, θ) − zθ (x))
2 dx.

Now the proof of (p∗, µ∗) being a minimizer of J over K1 × K2 is routine (cf [18]). �

4. Discretization and its convergence

We now propose a finite element method for solving the continuous minimization
problem (3.1)–(3.3). For the purpose, we triangulate the polyhedral domain � with a regular
triangulation T h of simplicial elements (cf Ciarlet [8]), then define the finite element space

Vh to be the space of all continuous piecewise linear functions over T h, and
◦
V h a subspace of

Vh with all functions vanishing on the boundary ∂�. Let Nh = {xi}Nh

i=1 be the set of all nodal
points of T h. Then we approximate the constraint subsets K1 and K2 by

K1h = {ph ∈ Vh; |ph(xi)| � α1 for xi ∈ Nh},
K2h = {µh ∈ Vh; 0 < µh(xi) � α2 for xi ∈ Nh}.

For the time discretization, we partition the interval [0, T ] using the following points:

0 = t0 < t1 < · · · < tM = T

with tn = nτ , τ = T/M . For a continuous mapping u : [0, T ] → L2(�), we define
un = u(·, nτ) for 0 � n � M . For a given sequence {un}Mn=0 ⊂ L2(�) we define its
difference quotient and the averaging ūn of a given function u(·, t) as follows:

∂τ u
n = un − un−1

τ
, ūn = 1

τ

∫ tn

tn−1
u(·, t) dt

where for n = 0 we let ū0 = u(·, 0).
For our later analysis, we now introduce two discrete projection operators. The first is a

quasi-L2 projection operator πh: L2(�) → Vh (see [28, 29], for example), which possesses
the following properties (cf Xu [28]):

‖πhw‖L2(�) � C‖w‖L2(�), lim
h→0

‖w − πhw‖L2(�) = 0, ∀w ∈ L2(�); (4.1)

‖πhw‖H 1(�) � C‖w‖H 1(�), lim
h→0

‖w − πhw‖H 1(�) = 0, ∀w ∈ H 1(�), (4.2)

and we have πhw ∈ K1h (resp. K2h) for any w ∈ K1 (resp. K2). This property is crucial to
our later convergence analysis. It is important to note that the standard L2 projection does not
have such a nice property [4].

The second operator we need is a discrete operatorQh : H 1(�) → Vh which preserves the
boundary values, namely Qhw = Qhv on ∂� for any two functions w, v ∈ H 1(�) satisfying
w = v on ∂�. Clearly, the quasi-L2 projection πh does not have such a property. The
standard nodal value interpolation associated with Vh has the aforementioned two properties
but it is defined only for smoother functions and it does not have the stability estimates shown
in (4.1), (4.2) either. Next we introduce such a boundary value preserving operator Qh, which
was first proposed by Scott–Zhang [25]. For any xi ∈ Nh (the set of nodal points in T h),
choose τi to be a (d − 1)-simplex from the triangulation T h with vertices zl (l = 1, . . . , d)
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such that z1 = xi . The choice of τi is not unique in general, but if xi ∈ ∂�, we take τi ⊂ ∂�.
Let θi ∈ P1(τi), the set of all linear polynomials on τi , be the unique function satisfying∫

τi

θiλl dx = δl1, l = 1, . . . , d,

where λl is the barycentric coordinate of τi (see Ciarlet [8]) with respect to zl . Obviously,∫
τi

θi v dx = v(xi) for any v ∈ P1(τi).

The average nodal value interpolant Qh is then defined by

Qhv(x) =
Nh∑
i=1

φi(x)

∫
τi

θi v dx. (4.3)

For any v ∈ H 1/2(∂�), we define

Qb
hv(x) =

∑
xi∈∂�

φi(x)

∫
τi

θi v dx ≡ Qhv(x) ∀ x ∈ ∂�. (4.4)

Note that the above definitions for Qh and Qb
h do not make sense for n = 1. In this case, we

let Qh and Qb
h be the standard nodal value interpolant Ih on Vh, which is well defined since

H 1(�) ⊂ C0(�̄) for n = 1.

Lemma 4.1 (cf [25]). The operator Qh defined by (4.3) satisfies:

(a) Qhw = Qhv on ∂� if w, v ∈ H 1(�) and w = v on ∂�,
(b) |v − Qhv|Ht (�) � hs−t |v|Hs(�)∀ v ∈ Hs(�) (s = 1, 2; t = 0, 1),
(c) |Qhv|H 1(�) � |v|H 1(�) and ‖Qhv‖H 1(�) � ‖v‖H 1(�)∀ v ∈ H 1(�).

With the above notation and the discretization of the first term of (3.1) by the composite
trapezoidal rule in time, we formulate the finite element approximation of the problem (3.1)–
(3.3) as follows: minimize

Jh(ph, µh) = τ

2

M∑
n=0

αn

∫
ω

(unh(ph, µh) − zn)2 dx +
1

2

∫
�

(u
n0
h (ph, µh) − zθ )

2 dx

+β
∫
�

|∇ph|2 dx + γ

∫
�

|∇µh|2 dx (4.5)

over all ph ∈ K1h and µh ∈ K2h with unh ≡ unh(ph, µh) ∈ Vh satisfying

u0
h = µh and unh = Qb

hη̄
n + ûnh, (4.6)∫

�

∂τu
n
h φh dx +

∫
�

∇unh · ∇φh dx =
∫
�

ph u
n
h φh ∀φh ∈ ◦

V h (4.7)

for n = 1, 2, . . . ,M . Here α0 = αM = 1
2 and αn = 1 for all n �= 0,M while ûnh ∈ ◦

V h and
n0 > 0 is an integer such that n0τ = θ . Note that η̄n is the average of η(x, t) on [tn−1, tn], so
Qb

hη̄
n is easy to calculate on the boundary ∂� using (4.4).
As for the existence of the minimizers to the finite element problem (4.5)–(4.7), we have

the following theorem, which can be proved basically along the same line as given in Keung
and Zou [18].

Theorem 4.1. There exists at least a minimizer to the finite element problem (4.5)–(4.7).
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In the rest of this section we are going to prove the convergence of the discrete minimizers
of (4.5) to the global minimizers of (3.1). For this purpose, we need three auxiliary lemmas,
and the detailed proofs are given in [29]. The first one is about the error estimate of the
composite trapezoidal rule, as presented in the following lemma.

Lemma 4.2. For any given function f ∈ H 1(0, T ), we have

E(f 2) � 2τ

( ∫ T

0
f ′(t)2 dt

)1/2( ∫ T

0
f 2(t) dt + max

t∈[0,T ]
f 2(t)

)1/2

(4.8)

where E(f 2) is the approximation error given by

E(f 2) =
∫ T

0
f 2(t) dt − τ

2

M∑
n=1

{f 2(tn−1) + f 2(tn)}.

From now on, we assume that the given boundary function in (1.3) satisfies

η(x, t) ∈ H 1(0, T ;H 1/2(∂�)),

and then extend η over the domain � by solving the Dirichlet problem at each time t :


η∗(x, t) = 0 in �; η∗(x, t) = η(x, t) on ∂�.

With this extension we have η∗(x, t) ∈ H 1(0, T ;H 1(�)). We remark that this extension is
only used in the convergence analysis and will never be needed in our numerical algorithm.

Remark 4.1. Note that η∗(x, t) = η(x, t) on ∂�, so their averages over [tn−1, tn] are the

same, i.e. η̄n∗(x) = η̄n(x) on ∂�. Using this, we can write Qhη̄
n
∗ = Qb

hη̄
n + ũnh with ũnh ∈ ◦

V h.
Then the solution unh in (4.6) can be decomposed as

unh = Qb
hη̄

n + ûnh = Qhη̄
n
∗ + (ûnh − ũnh). (4.9)

The relation (4.9) will be very important for the convergence analysis. Using (4.9), (4.7)
and some careful manipulations, we can derive the following two lemmas.

Lemma 4.3. Let unh(ph, µh) be the solution of the finite element problem (4.6), (4.7)
corresponding to ph ∈ K1h and µh ∈ K2h. Then the following stability estimates hold:

max
1�n�M

‖unh‖2
H 1(�) + τ

M∑
n=1

(‖∇unh‖2
L2(�) + ‖∂τunh‖2) � C (‖µh‖2

H 1(�) + ‖η∗‖2
H 1(0,T ;H 1(�)))

with C independent of ph, µh, h and τ .

Lemma 4.4. For any sequence {ph, µh} in Vh × Vh converging to {p,µ} weakly in H 1(�)×
H 1(�) as h → 0, we have∫

�

(u
n0
h (ph, µh)(x) − zθ (x))

2 dx →
∫
�

(u(p,µ)(x, θ) − zθ (x))
2 dx,

τ

M∑
n=0

αn

∫
ω

(unh(ph, µh) − zn)2 dx →
∫ T

0

∫
ω

(u(p,µ) − z)2 dx dt

when h → 0 and τ → 0.

Finally, we have the following convergence theorem about the finite element
problem (4.5)–(4.7).
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Theorem 4.2. Let {p∗
h, µ

∗
h}h>0 be a sequence of minimizers to the finite element problem (4.5)–

(4.7). Then each subsequence of {p∗
h, µ

∗
h}h>0 has a subsequence converging in L2(�) to a

minimizer of the continuous problem (3.1)–(3.3). If the minimizers of the continuous problem
are unique, then the whole sequence {p∗

h, µ
∗
h}h>0 converges to the unique minimizer of (3.1)–

(3.3).

Proof. It is not difficult to see that Jh(p∗
h, µ

∗
h) � C for some constant C independent of

τ and h. This implies that {p∗
h} and {µ∗

h} are both bounded in H 1(�) and so there exists a
subsequence of {p∗

h} and {µ∗
h} each, still denoted as {p∗

h} and {µ∗
h}, such that

p∗
h → p∗ weakly in H 1(�), µ∗

h → µ∗ weakly in H 1(�).

Then for any p ∈ K1 andµ ∈ K2, we have by lemma 4.4 and the properties of πh in (4.1), (4.2)
that

J (p∗, µ∗) � lim
h→0
τ→0

τ

2

M∑
n=0

αn

∫
ω

(unh(p
∗
h, µ

∗
h) − zn)2 dx + lim

h→0
τ→0

1

2

∫
�

(u
n0
h (p

∗
h, µ

∗
h) − zθ )

2 dx

+β lim
h→0
τ→0

inf ‖∇p∗
h‖2 + γ lim

h→0
τ→0

inf ‖∇µ∗
h‖2

� lim
h→0
τ→0

inf Jh(p
∗
h, µ

∗
h) � lim

h→0
τ→0

inf Jh(πhp, πhµ)

= 1
2

∫ T

0

∫
ω

(u(p,µ) − z)2 dx dt + 1
2

∫
�

(u(x, θ) − zθ (x))
2 dx

+β ‖∇p‖2 + γ ‖∇µ‖2 = J (p,µ),

that is, {p∗
h, µ

∗
h} is a minimizer of the problem (3.1)–(3.3). The proof of the last statement is

standard. �

5. Numerical algorithms

This section is devoted to some iterative methods for solving the discretized finite element
minimization of Jh(ph, µh) over K1h and K2h in (4.5)–(4.7). For the purpose we need to

calculate the Gateaux derivative of Jh(ph, µh) at any given direction (qh, λh) ∈ Vh × ◦
V h,

and the derivative will be written as Jh(ph, µh)
′(qh, λh). Note that the directions for µh are

searched only in
◦
V h instead of Vh because of the considered Dirichlet boundary condition.

This can be easily adapted for Neumann boundary conditions.
First of all, we note that the Gateaux derivative for the discrete parabolic solution

unh(ph, µh) at any given direction (qh, λh) ∈ Vh × ◦
V h, denoted as unh(ph, µh)

′(qh, λh), solves

the following discrete system: U0
h = λh and Un

h ≡ unh(ph, µh)
′(qh, λh) ∈ ◦

V h for n = 1, 2, . . . ,
satisfies∫
�

∂τUn
h φh dx +

∫
�

∇Un
h · ∇φh dx =

∫
�

ph Un
h φh dx +

∫
�

qh u
n
h(ph, µh)φh dx ∀φh ∈ ◦

V h .

(5.1)

To derive an easy-to-implement formula for computing the derivative Jh(ph, µh)
′(qh, λh),

we use the adjoint equation technique (cf [18, 22]). For this, we define a discrete sequence

{wn
h}Mn=0 ⊂ ◦

V h such that wM
h = 0 and wn

h ∈ ◦
V h for n < M solves the discrete backward



1194 M Yamamoto and J Zou

parabolic equation

−
∫
�

∂τw
n
h φh dx +

∫
�

∇wn−1
h · ∇φh dx −

∫
�

ph w
n−1
h φh dx

= ταn

∫
ω

(unh(ph, µh) − zn)φh dx + kn

∫
�

(unh(ph, µh) − zθ )φh dx ∀φh ∈ ◦
V h

(5.2)

where kn0 = 1 and kn = 0 for n �= n0.
Using (5.1) and the sequence {wn

h}Mn=0, we come to the following simple formula for the
evaluation of the derivative of Jh(ph, µh) (cf [29]):

Jh(ph, µh)
′(qh, λh)

= τα0

∫
ω

(µh − z0)λh dx + τ−1
∫
�

w0
h λh dx +

M∑
n=1

∫
�

qh w
n−1
h unh(ph, µh) dx

+2β
∫
�

∇ph · ∇qh dx + 2γ
∫
�

∇µh · ∇λh dx. (5.3)

With the formula (5.3) we are now ready to present the following gradient method for
solving the discrete minimization problem (4.5)–(4.7).

Gradient method I. Let an initial guess (p(0)
h , µ

(0)
h ) ∈ K1h × K2h be given.

(a) Compute u0
h = µ

(0)
h and unh ≡ unh(p

(0)
h , µ

(0)
h ) = Qb

hη̄
n + ûnh from (4.6), (4.7).

Compute wM
h = 0 and wn−1

h ∈ ◦
V h for n = M,M − 1, . . . , 1 from (5.2).

(b) Compute the components of (Jh(p
(0)
h , µ

(0)
h ))′ corresponding to all the basis functions {φm}

from Vh and {φl} from
◦
V h using (5.3) respectively:

ḡm =
M∑
n=1

∫
�

unh(p
(0)
h , µ

(0)
h ) wn−1

h φm dx + 2β
∫
�

∇p
(0)
h · ∇φm dx;

gl = τα0

∫
ω

(µ
(0)
h − z0)φl dx + τ−1

∫
ω

w0
h φl dx + 2γ

∫
�

∇µ
(0)
h · ∇φl dx.

Set ḡh = ∑
m ḡmφm and gh = ∑

l glφl .
(c) Find λ∗ > 0 such that Jh(p

(0)
h − λ ḡh, µ(0)

h − λ gh) is minimized over all λ > 0.
(d) Project the outputs p̃h = p

(0)
h − λ∗ ḡh and µ̃h = µ

(0)
h − λ∗ gh onto the constraint sets K1h

and K2h respectively:

p∗
h = min{max{−α1, p̃h}, α1}, µ∗

h = min{max{0, µ̃h}, α2}.
If ‖(p∗

h, µ
∗
h) − (p

(0)
h , µ

(0)
h )‖ � tolerance, stop;

otherwise set (p(0)
h , µ

(0)
h ) = (p∗

h, µ
∗
h), j = j + 1, goto (a).

For later convenience, we denote the output of the above gradient method I as

(p∗
h, µ

∗
h) = Gradient I(Jh, p

(0)
h , µ

(0)
h , mh)

i.e., (p∗
h, µ

∗
h) is the approximate solution obtained using mh iterations of the gradient method

I with the cost functional Jh and initial guess (p(0)
h , µ

(0)
h ).

Remark 5.1. There are many existing approaches for finding the step size λ in step (c). We
usually use the parabolic curve search method and it takes about five searches on the average
in our numerical experiments.
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Through numerous numerical experiments, we find that the above gradient method
converges in most cases globally (even with very bad initial guesses) and stably. In particular,
we have observed that the first few iterations of the method often converge very fast and
then the convergence slows down significantly. If one still continues with the gradient
method after the first few iterations, then it will take a great many more iterations to
reach the tolerance; a few thousand iterations are often needed even for one-dimensional
inverse parabolic problems. This is very much like the performance of the classical iterative
methods for solving second-order boundary value problems. For the latter, there exists a
well developed MGM which can deal with such a slow-down very efficiently by making
full use of the fast convergence of the first few iterations of the classical iterative methods.
The MGM starts with a fine grid and iterates a few times using a classical iterative method
(called a smoothing step) and then goes to a coarser grid to solve the residual equation
to achieve some coarse correction for the approximate solution obtained on the fine grid,
again applying the same iterative method a few iterations for the residual equation. The
MGMs have been proved to be very effective for solving various direct problems for
partial differential equations: see [14, 27, 30] and references therein. However, to our
knowledge, there seem still to be no applications of the MGM for solving the highly nonlinear
optimization systems arising from ill-posed inverse problems. For such applications, one first
has to find a feasible way of formulating the MGM for the highly nonlinear minimization
problem with constraints involving some initial-boundary value problems. Clearly this is not
straightforward.

In the rest of this section we propose a nonlinear MGM for solving the nonlinear
minimization system (4.5)–(4.7), and the numerical results will demonstrate its effectiveness
in solving the inverse parabolic problem considered in this paper.

Assume that we are given a nested set of shape regular triangulations {T hk }Nk=0, with T hk+1

being a refinement of T hk . {Vhk }Nk=0 are the continuous piecewise linear finite element spaces
defined on {T hk }Nk=0 such that

Vh0 ⊂ Vh1 ⊂ · · · ⊂ VhN ≡ Vh.

Our goal is to solve the discrete minimization problem (4.5)–(4.7), which is defined on the
finest space V h, by making use of the auxiliary coarser spaces Vhk for 0 � k < N .

To do so, we need to introduce some more notation. Corresponding to each coarse
triangulation T hk , we divide the time interval [0, T ] into Mk subintervals using the points

0 = t0
k < t1

k < · · · < t
Mk

k = T

with tnk = nτk and τk = T/Mk . Similarly to K1h and K2h, we define two constrained subsets
K1hk and K2hk . Furthermore, for the initialization step of the nonlinear MGM to be introduced
below, we have to solve a coarse minimization problem on each coarse space Vhk :

minimize J 0
k (phk , µhk ) = τk

2

Mk∑
n=0

αn

∫
ω

(unhk − zn)2 dx +
1

2

∫
�

(u
nk
hk

− zθ )
2 dx

+β
∫
�

|∇phk |2 dx + γ

∫
�

|∇µhk |2 dx (5.4)

over all phk ∈ K1hk and µhk ∈ K2hk , where unhk ≡ unh(phk , µhk ) ∈ Vhk solves (4.6), (4.7) on
V 0
hk

. Here α0 = αMk
= 1

2 and αn = 1 for all n �= 0,Mk while nk > 0 is an integer such that
nkτk = θ .
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Another important step of the MGM is the coarse grid correction, for which we define the
following nonlinear functional:

Jk(ph + phk , µh + µhk ) = τk

2

Mk∑
n=0

αn

∫
ω

(unhk − zn)2 dx +
1

2

∫
�

(u
nk
hk

− zθ )
2 dx

+β
∫
�

|∇(ph + phk )|2 dx + γ

∫
�

|∇(µh + µhk )|2 dx

where phk ∈ Vhk and µhk ∈ V 0
hk

, while u0
hk

= µh + µhk and for n = 1, 2, . . . ,Mk ,
unhk ≡ unhk (ph + phk , µh + µhk ) = Qb

hk
η̄n + ûnhk ∈ Vhk solves

(∂τu
n
hk
, φhk ) + (∇unhk ,∇φhk ) = (ph + phk , u

n
hk
φhk ) ∀φhk ∈ V 0

hk
. (5.5)

Finally, corresponding to the adjoint parabolic solution wn
h given by (5.2), we define an

adjoint solution on each coarse space Vhk such that wMk

hk
= 0 and wn−1

hk
for n = M, . . . , 1

solves

−
∫
�

∂τw
n
hk
φhk dx +

∫
�

∇wn−1
hk

· ∇φhk dx −
∫
�

(ph + phk ) w
n−1
hk

φhk dx

= τkαn

∫
ω

(unhk − zn)φhk dx + kn

∫
�

(unhk − zθ ) φhk dx ∀φhk ∈ V 0
hk

(5.6)

where unhk is the solution of (5.5).
Before we state the nonlinear MGM, we first formulate the gradient method for solving

the following minimization problem:

min Jk(ph + phk , µh + µhk )

over all phk ∈ Vhk and µhk ∈ V 0
hk

such that ph + phk ∈ K1h and µh + µhk ∈ K2h. This
minimization will constitute the coarse grid correction step in the MGM.

Gradient method C. Let an initial guess p(0)
hk

∈ K1hk and µ
(0)
hk

∈ K2hk be given.

(a) Solve the parabolic and backward parabolic equations (5.5), (5.6) for {unhk }Mk

n=0 and

{wn
hk

}Mk

n=0.

(b) Compute the components of (Jk(ph + p
(0)
hk
, µh + µ

(0)
hk
))′ corresponding to all the basis

functions {φm} from Vhk and {φl} from V 0
hk

respectively:

ḡhk,m =
Mk∑
n=1

(unhk w
n−1
hk

, φm) + 2β (∇(ph + p
(0)
hk
),∇φm);

ghk,l = τkα0

∫
ω

(µh + µ
(0)
hk

− z0)φl dx + τ−1
k

∫
ω

w0
hk
φl dx + 2γ (∇(µh + µ

(0)
hk
),∇φl).

Set ḡhk = ∑
m ḡhk,m φm and ghk = ∑

l ghk,l φl .

(c) Find λ∗ > 0 such that Jk(ph +p(0)
hk

−λ ḡhk , µh +µ(0)
hk

−λ ghk ) is minimized over all λ > 0.

(d) Project p̃h = ph + p
(0)
hk

− λ∗ḡhk and µ̃h = µh + µ
(0)
hk

− λ∗ ghk onto the constraint sets K1h

and K2h:

p∗
h = min{max{−α1, p̃h}, α1}, µ∗

h = min{max{0, µ̃h}, α2}.
Set (p(0)

hk
, µ

(0)
hk
) := (p

(0)
hk

− λ ḡhk , µ
(0)
hk

− λ ghk ), j := j + 1, goto (a).
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In what follows, we denote the output of the gradient method C above as

(p∗
h, µ

∗
h) = Gradient C (Jk, ph, µh, p

(0)
hk
, µ

(0)
hk
, mk)

i.e., (p∗
h, µ

∗
h) is the coarse correction of (ph, µh), obtained using mk iterations of the gradient

method C with the cost functional Jk and coarse initial guess (p(0)
hk
, µ

(0)
hk
).

With the above preparation, we are now ready to formulate the nonlinear MGM for solving
the finite element minimization problem (4.5)–(4.7).

Nonlinear MGM. Let (p(0)
h0
, µ

(0)
h0
) ∈ K1h0 ×K2h0 be a given initial guess on the coarsest finite

element space Vh0 .

I. Coarse grid initialization.

For k = 0, 1, . . . , N − 1, do:
If k �= 0, calculate p(0)

hk
= Bk

k−1 p
∗
hk−1

and µ
(0)
hk

= Bk
k−1 µ

∗
hk−1

.

Compute (p∗
hk
, µ∗

hk
) = Gradient I (J 0

k , p
(0)
hk
, µ

(0)
hk
, mk).

end;
Compute p(0)

h = BN
N−1 p

∗
hN−1

and µ
(0)
h = BN

N−1 µ
∗
hN−1

.

II. Smoothing and coarse grid correction. Set the iteration number j = 0.

(a) Set p̄(0)
h = p

(0)
h and µ̄

(0)
h = µ

(0)
h .

For k = N,N − 1, . . . , 1, 0, do:
If k �= N , compute p(0)

h = p∗
h and µ

(0)
h = µ∗

h.
Compute (p∗

h, µ
∗
h) = Gradient C (Jk, p

(0)
h , µ

(0)
h , 0, 0, nk).

(b) If ‖(p∗
h, µ

∗
h) − (p̄

(0)
h , µ̄

(0)
h )‖ � tolerance, stop;

otherwise set p(0)
h = p∗

h and µ
(0)
h = µ∗

h, j := j + 1, goto (a).

Remark 5.2. The operators Bk
k−1 in step I can be any interpolation from Vhk−1 onto Vhk . We

use the natural finite element injections since Vhk−1 ⊂ Vhk . For the starting values p(0)
hk

and µ(0)
hk

in step II, we take the most natural zero.

Remark 5.3. The major computational costs of the nonlinear MGM are from the iterations on
the finest grid, while all the costs of iterations on the coarse grids are very small compared to
the ones on the finest grid since the unknowns on the coarse spaces are considerably scaled
down compared with those on the fine space. This is one of the essential ingredients of MGMs.

6. Numerical experiments

In this section we show some numerical experiments on the nonlinear MGM proposed in
the previous section for the simultaneous reconstruction for the initial value µ(x) and the
coefficient p(x) in the following test problem:

∂u

∂t
(x, t) = 
u(x, t) + p(x)u(x, t), (x, t) ∈ � × (0, T )

u(x, 0) = µ(x), x ∈ �

u(x, t) = η(x), (x, t) ∈ ∂� × (0, T ).

(6.1)

Here � is a one- or two-dimensional domain. The observed data will be taken to be

zθ (x) = u(x, θ), x ∈ �; z(x, t) = u(x, t), (x, t) ∈ ω × (0, T ).
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For the one-dimensional case, we take � = (0, 1), T = 1, θ = 1/2 and ω = (1/4, 3/4).
And we use the four-level nested finite element grids with mesh sizes h3 = 1/40, h2 = 1/20,
h1 = 1/10, h0 = 1/5, and choose the parameters mk = 5 and nk = 5 in the nonlinear
MGM. For the two-dimensional case, we take � = (0, 1) × (0, 1), T = 1, θ = 1/2 and
ω = (1/4, 3/4)× (1/4, 3/4), but we use the three-level nested finite element grids with mesh
sizes h2 = 1/40, h1 = 1/20, h0 = 1/10, and choose the parameters mk = 3 and nk = 3
in the nonlinear MGM. The regularization parameters are listed in our figure captions, and E
denotes the relative L2-norm error between the exact parameter p(x) (or µ(x)) to be identified
and the numerically reconstructed parameter ph(x) (or µh(x)). The upper bounds α1 and α2

in the two constraint sets K1 and K2 are both taken to be 100.
In our numerical implementations, we always assume the observation data have some

observation errors. That is, instead of using the exact data zθ (x) and z(x, t), we take the noisy
data of the following form:

zδθ (x) = zθ (x) + δ sin(3πx), zδ(x, t) = z(x, t) + δ sin(3πx)

for the one-dimensional examples, and

zδθ (x, y) = zθ (x, y) + δ sin(3π(x + y)), zδ(x, y, t) = z(x, y, t) + δ sin(3π(x + y))

for the two-dimensional examples. Here δ is a noise level parameter, and we use the function
sin(3πx) instead of the random function simply for the convenience of the reader’s numerical
verification.

Example 1. We take the exact solution u(x, t) as

u(x, t) = exp(−3t − x2 + x + 1/2) + exp(t + x2 − x − 1/2)

and the coefficient p(x) and the initial data µ(x) as

p(x) = −4x2 + 4x − 2, µ(x) = exp(−x2 + x + 1/2) + exp(x2 − x − 1/2).

Figures 1 and 2 show the exact coefficient and initial data {p(x), µ(x)} (the dashed curves)
and the numerically reconstructed {ph(x), µh(x)} (the solid curves) when the noise level is
δ = 1%. The initial guess {p0

h(x), µ
0
h(x)} is taken to be the constant pair {−2.5, 2.0} at all

six grid points on the coarsest grid with h0 = 1/5. That is, we start with only these six nodal
point values and then iterate with the nonlinear MGM. Clearly, this initial guess is not good at
all, but the MGM converges very stably and fast (the result shown is obtained from the tenth
iteration) and the reconstruction of both p and µ appears to be rather satisfactory with 1%
noise present.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
− 2

− 1.9

− 1.8

− 1.7

− 1.6

− 1.5

− 1.4

− 1.3

− 1.2

− 1.1

− 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

Figure 1. p(0)h = −2.5, β = 5E−6, E = 2.8E−2. Figure 2. µ(0)
h = 2.0, γ = 5E−6, E = 5.3E−3.
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6.2

6.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

Figure 3. The exact observation zθ = u(x, 1/2). Figure 4. µ0
h = 5.0, γ = 1.0E−7, E = 2.3E−3,

δ = 1%.

Example 2. This example tests the effectiveness of the reconstruction of only the initial
temperatureµ(x), with the radiative coefficientp(x) known. To construct more general testing
functions p and µ, we add a source function f (x, t) to the right-hand side of equation (6.1).
Then we take the exact solution u(x, t) = sin πx(t + 1) + x2 + 5 and the identifying initial
data µ(x) = x2 + 5 + sin πx with p(x) = 3 + cos(2πx) given. The function f (x, t) is then
calculated through (6.1) using u(x, t) and p(x).

Figure 3 is the exact observation zθ = u(x, θ) given at θ = 1/2, very different from
the initial temperature µ(x) to be reconstructed. Figure 4 shows the exact initial data µ(x)

(the dashed curve) and the numerically reconstructed µh(x) (the solid curve) obtained at the
tenth iteration of the MGM with noise level δ = 1%. The initial guess µ0

h(x) was taken to
be the constant 5.0 on the coarsest grid everywhere. It can be seen that the reconstructed µh

matches the exactµ very satisfactorily. We reduced the size of the subregionω from (1/4, 3/4)
to (3/8, 5/8) and then to (7/16, 9/16); the reconstructions are nearly as accurate as the one
shown in figure 4, although needing a few more iterations: 20 and 25 respectively. If ω is
shifted to be in the left half or the right half of � = (0, 1), the reconstructions are still very
satisfactory but not as accurate as in the previous cases. Finally, we tried to switch off the
observation on the subregion ω × (0, 1) with only the measurements given by zθ = u(·, θ).
The reconstructions are then always extremely bad even without any noise present. This is
consistent with the well known instability of the backward parabolic problem.

Example 3. We take the exact solution u(x, t) = exp(t)(2 − sin 2πx), the initial data
µ(x) = u(x, 0) and the radiative coefficient p(x) as

p(x) = 2 − sin 2πx − 4π2 sin 2πx

2 − sin 2πx
.

We see that the function p has a very large fluctuation between its maximum and minimum
(difference �50). Reconstruction of such a function is very hard from the numerical point of
view. Figures 5 and 6 show the exact coefficient p(x) with the initial data µ(x) (the dashed
curves) and the numerically reconstructed {ph(x), µh(x)} (the solid curve) and with noise
level δ = 1%. The initial guess {p0

h(x), µ
0
h(x)} is taken to be the constant pair {0.5, 2.0}

everywhere, which is certainly a very bad initial guess for the reconstruction, but the nonlinear
MGM converges very stably and the reconstruction obtained using only 20 iterations (figure 5)
appears to be satisfactory, considering the large fluctuation of function values of p.
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Figure 5. p(0)h = 0.5, β = 5E−9, E = 1.3E−1. Figure 6. µ(0)
h = 2.0, γ = 1.0E−7, E = 8.6E−3.

3

3.5

4

4.5

5

0
0.2

0.4
0.6

0.8
1

0 0.2
0.4

0.6 0.8
1

3

3.5

4

4.5

0
0.2

0.4
0.6

0.8
1

0 0.2
0.4

0.6 0.8
1

Figure 7. µ
(0)
h = 5.0, γ = 1.0E−3, two iterations,

E = 1.26E−2.
Figure 8. µ

(0)
h = 5.0, γ = 5.0E−5, three iterations,

E = 1.02E−2.

Example 4. This example contains two two-dimensional numerical tests: one takes the
exact solution u(x, y, t) = 4 + sin πxy sin πt + cosπxy cosπt + t2, and the other takes
u(x, y, t) = 4 − sin(5πx/4 − π/8) sin(5πy/4 − π/8) cos 2πt + t2. The radiative coefficient
p(x, y) = 2+cosπxy and the initial dataµ(x, y) = u(x, y, 0) are to be identified. These initial
profiles are interesting and challenging. Figures 7 and 8 show the numerically reconstructed
initial temperature µh(x, y) by the nonlinear MGM with the initial guesses both being the
constant 5.0 at the grid points on the coarsest mesh h0 = 1/10. These are certainly very bad
initial guesses given the complicated shapes of the initial profiles. However, in spite of the
instability of the inverse problem, surprisingly, the reconstructions are very satisfactory (see
figures 7 and 8) with only two and three iterations respectively and the noise being present
(δ = 1%).

Example 5. This example tries to reconstruct both p(x, y) and µ(x, y). The exact solution
u(x, y, t) is chosen to be

u(x, y, t) = t2 + (2 − sin(πx)(1 − x) sin(πy)(1 − y)) cosh(t),

the radiative coefficient is p(x, y) = 4 − xy(1 − x)(1 − y) and the identifying initial data
µ(x, y) = u(x, y, 0). This example is a little challenging to our numerical method. The main
difficulty lies in the fact that both functions change their values in a very small range (0.35 for
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Figure 9. µ
(0)
h = 2.0, γ = 1.0E−4, iter = 2,

E = 2.48E−2.
Figure 10. p

(0)
h = 4.0, β = 1.0E−7, iter = 2,

E = 1.16E−3.

µ(x, y) and 0.07 for p(x, y): the former is five times the latter). Our nonlinear MGM starts
with a constant initial guess 2.0 forµ(x, y) and 4.0 forp(x, y) at the grid points on the coarsest
mesh h0 = 1/10 and achieves satisfactory outputs for both µ and p at the second iteration:
see figures 9 and 10. We then tried to reduce the size of the observation domain ω to a much
smaller subsquare centred at the point (0.5, 0.5) with an area of 1/16: the reconstruction is
almost the same as in figures 9 and 10.
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