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Abstract
We shall investigate randomized algorithms for solving large-scale linear inverse
problems with general Tikhonov regularizations. Our first approach transforms
general form inverse problems into standard form, then we apply randomized
algorithms to reduce large-scale systems of standard form to much smaller-scale
systems and seek their regularized solutions in combination with some popular
choice rules for regularization parameters. Our second approach involves a new
random generalized SVD algorithm that can essentially reduce the sizes of the
original large-scale ill-posed systems. The reduced systems can provide approx-
imate regularized solutions with about the same accuracy as the ones by the
classical generalized SVD, but they are much more stable and much less expensive
as they need only to work on problems of much smaller sizes. Numerical results
are presented to demonstrate the efficiency and accuracy of the algorithms.

Keywords: generalized SVD, randomized algorithm, large-scale inverse
problems

1. Introduction

Tikhonov regularization is one of the most popular and effective techniques for the ill-
conditioned linear system Ky b= arising from the discretization of some linear or nonlinear
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inverse problems [1, 3, 7], where K is an m n× matrix and b is an m 1× vector obtained
from measurement data. The standard Tikhonov regularization of this problem is of the form

Ky b ymin , (1)
y

2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣

where μ is the regularization parameter, and ·∥ ∥ is the 2-norm that will be used throughout
this work unless otherwise specified. We will call formulation (1) as the standard form, where
the second term is for the regularization of the solution and the identity operator is used for
the regularization. The identity operator is the simplest and most convenient regularization,
but it may not be so desirable in most applications. When we know additional a priori
information about the physical solution for a practical problem, we may apply some other
more effective regularizations. To differentiate from the standard one (1), we will adopt other
notation for the general linear ill-conditioned system, namely Ax b= , where A is an m n×
matrix and b is an m 1× vector. Then the associated Tikhonov regularization can be of the
following more general form:

Ax b Lxmin , (2)
x

2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣

where the matrix L is a p n× matrix, which may be a discrete approximation to some
differential operator, for example, the discrete Laplacian or gradient operator. When the null
spaces of A and L intersect trivially, i.e. A L( ) ( ) {0}N N∩ = , the regularized Tikhonov
solutions of (2) are unique. As we shall see, the general form (2) can be transformed into the
standard one (1) for very general regularizations L.

When the system (1) or (2) is large-scale, the traditional methods based on singular value
decomposition (SVD) or generalized SVD (GSVD) are very expensive and unstable, and
often infeasible for practical implementations. For large-scale discrete systems (1) that are
standard form, we can apply the randomized SVD (RSVD) we developed previously in [18]
to essentially reduce the problem size, then combine the L-curve, generalized cross-validation
(GCV), or other heuristic methods to locate reasonable regularization parameters for solving
the reduced regularization systems. In this work, we shall focus on the solution of the general
form (2) of the Tikhonov regularization. In section 2, we discuss several techniques to
transform the general form into the standard one, then use the randomized strategies in [18] to
solve the standard system. In section 3, we consider the general form directly, and introduce a
new random generalized SVD (RGSVD) to reduce the problem size and then seek the
regularized solution. Numerical experiments are presented in section 4.

2. Transformation into standard form and RSVD

In this section we present a general strategy, the first approach in this work, to transform the
problem (2) of general form into the standard one (1), then apply the similar strategy as used
in [18], which combines the randomized SVD with some choice rules on regularization
parameters, to solve the standard system.

2.1. General transformation into the standard system

We demonstrate now how to transform the problem (2) of general form with different reg-
ularization operators L into the standard one (1). Usually we assume A L( ) ( ) {0}N N∩ =
so that the solutions of (2) are unique. For the cases where the matrix L is of full column rank,
this assumption is automatically satisfied. But we shall consider the most general case without
this assumption, so including both cases A L( ) ( ) {0}N N∩ ≠ and A L( ) ( ) {0}N N∩ = .
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For the case with A L( ) ( ) {0}N N∩ ≠ , the solutions of (2) are not unique, so least-squares
solutions with minimum norm will be sought. In this work, for any matrix X we shall often
use its Moore–Penrose generalized inverse X† [8], and write X( )ℛ for its range and X( )ℛ⊥

for its orthogonal complement.
We start with the following theorem which unifies the transformations of problem (2)

into the standard one (1) for all different possibilities, and will discuss in section 2.3 several
cases where A and L have special structures and hence the results can be simplified.

Theorem 1. Let W and Z be any matrices satisfying

W L Z L Z Z I( ) ( ), ( ) ( ), ,TNℛ = ℛ = ℛ =

and L I W AW A L( ( ) )# † †= − . Then the least-squares solution with minimum norm to the
problem (2) of general form can be given by

x L Zy W AW b( ) , (3)# †= +μ μ

where yμ is the minimizer of the following problem

{ }AL Zy b ymin . (4)
y

# 2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣

Equivalently, yμ can be obtained by solving

P AL Zy P b ymin , (5)
y

T T† 2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣

where P satisfies P AW( ) ( )ℛ = ℛ⊥ and P P IT = .

Proof. Consider the SVD of matrix L:

( )L U V U U
V

V
U V,

0
, (6)T

T

T
T

1 2
1 1

2
1 1 1

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Σ Σ Σ= = =

where U U U[ , ]1 2= and V V V[ , ]1 2= are unitary matrices, and 1Σ contains the nonzero
singular values in the diagonal matrix Σ.

For any vector x n∈ , we write it as x V y V z1 1
1

2Σ= +− , i.e., x L U y V z†
1 2= + . Since

Z L U( ) ( ) ( )1ℛ = ℛ = ℛ and W L V( ) ( ) ( )2Nℛ = = ℛ , we can set

x L Zy Wz.†= +
Now we apply the complete orthogonal decomposition on the matrix AW [8]:

Q AW
T

( )
0

0 0
,T 11⎡

⎣⎢
⎤
⎦⎥Π =

where Q and Π are orthogonal matrices, and T11 is nonsingular matrix with the dimension
determined by the rank of AW. For the case where A L( ) ( ) {0}N N∩ = , the matrix AW is of
full column rank, and the zero matrix on the right side of T11 disappears. For the more general
case with A L( ) ( ) {0}N N∩ ≠ , the matrix AW is not of full column rank. Let Q Q Q[ , ]1 2=
be partitioned in compatible dimensions with T11. Then we have Q AW( ) ( )1ℛ = ℛ , and

Q AW( ) ( )2ℛ = ℛ⊥ [8]. And it is easy to verify that
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( )
Ax b Lx

Q AL Zy Q AW z Q b LL Zy

Q AL Zy T z Q b Q AL Zy Q b y¯ ,

T T T T

T T T T

2 2 2

† 2 2 † 2

1
†

11 1 1
2

2
†

2
2 2 2

μ

Π Π μ

μ

∣∣ − ∣∣ + ∣∣ ∣∣

= ∣∣ + − ∣∣ + ∣∣ ∣∣

= ∣∣ + − ∣∣ + ∣∣ − ∣∣ + ∣∣ ∣∣

with z z z[ ¯ , ¯ ]T T T T
1 2Π = , where z̄1 has the compatible dimension with T11.

Minimizing the quadratic form above, we obtain z T Q b AL Zy¯ ( )T
1 11

1
1

†= − μ
− , where yμ is

given by the following subproblem of standard form

Q AL Zy Q b ymin ,
y

T T
2

†
2

2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣

which is in fact the subproblem (5), since we can see from the above proof that Q2 can be
replaced by any orthonormal matrix P satisfying P Q AW( ) ( ) ( )2ℛ = ℛ = ℛ⊥ .

Now we can verify that the solution of problem (2) is given by

x L Zy W
z
z z
¯
¯ ¯ .† 1

2
2

⎡
⎣⎢

⎤
⎦⎥Π= + ∀μ μ

But by the property of the Moore–Penrose generalized inverse, we know
L Zy L W( ) ( )† N∈ = ℛμ

⊥ ⊥ . This implies x L Zy z z[ ¯ , ¯ ]T T T2 † 2
1 2

2∣∣ ∣∣ = ∣∣ ∣∣ + ∥ ∥μ μ , hence yields
the following solution with minimum norm when z̄ 02 = :

( )

( )
( )

x L Zy W
z

L Zy W T Q

Q
b AL Zy

L Zy W AW b AL Zy

I W AW A L Zy W AW b

L Zy W AW b

¯
0

0
0 0

( )

( ) ( )

( ) .

T

T

† 1

† 11
1 1

2

†

† † †

† † †

# †

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Π

Π

= +

= + −

= + −

= − +

= +

μ μ

μ μ

μ μ

μ

μ

−

We can see that for the case with A L( ) ( ) {0}N N∩ = , the vector z̄2 disappears
automatically, so the above solution is the unique least-squares solution of (2).

We can easily verify that the minimizer of (5) is given by

( ) ( ) ( )y Z AL PP AL Z I Z AL PP b.T T T T T T† † 2
1

†⎡
⎣⎢

⎤
⎦⎥μ= +μ

−

Note that PPT is the orthogonal projection onto AW( )ℛ⊥ . From the uniqueness of
orthogonal projection, we have PP I AW AW( )T †= − . It is straightforward to check that

( ) ( ) ( )
PP AL I AW AW AL A AW AW A L AL

AL AL AL PP AL

( ) ( ) ,

.

T

T T T

† † † † † #

# # † †

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= − = − =

=

Hence the solution can be rewritten as

( ) ( ) ( )y Z AL AL Z I Z AL b,T T T T# # 2
1

#⎡
⎣⎢

⎤
⎦⎥μ= +μ

−

which is obviously the minimizer of (4). ■
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We know that the columns of matrix Z span the range of L and Z Z IT = , any vector
y L( ) ∈ ℛ can be expressed as y Zy = . So the problem (4) is equivalent to

{ }AL y b ymin , (7)
y L( )

# 2 2 2 


μ∣∣ − ∣∣ + ∣∣ ∣∣
∈ℛ

whose minimizer is given by

( ) ( ) ( )y Z Z AL AL Z I Z AL b Zy .T T T T# # 2
1

# ⎡
⎣⎢

⎤
⎦⎥μ= + =μ μ

−

2.2. Practical realisation of the transformation

Theorem 1 gives a unified transformation that works for all possible choices of regularization
matrix L in (2). We now discuss some practical realisation of the matrices W, Z, P and the
oblique pseudoinverse L# involved in the transformation as stated in theorem 1. By means of
the standard SVD (6) of the matrix L, we can choose Z U1= and W V2= such that

Z L( ) ( )ℛ = ℛ and W L( ) ( )Nℛ = . But the SVD is usually expensive. Instead we may use
the complete orthogonal factorization [8] in practical computations when L is not of full rank:

U LV T 0
0 0

,T ⎡
⎣⎢

⎤
⎦⎥=

where U u u[ , , ]p1= ⋯ and V v v[ , , ]n1= ⋯ are orthogonal matrices, and T is a r r×
nonsingular matrix, with r rank L( )= . Then we have [8]

L span u u L span v v( ) { , , }, ( ) { , , }.r r n1 1Nℛ = ⋯ = ⋯+

So we can choose W v v[ , , ]r n1= ⋯+ and Z u u[ , , ]r1= ⋯ . When matrix L is of full rank, the
matrices W and Z can be determined by QR, or QR with column pivoting, which are special
cases of the complete orthogonal factorization.

For the choice of matrix P, we perform QR with column pivoting on the matrix AW

[ ]AW Q Q
T

Q T( ) ,
0

,1 2
1

1 1
⎡
⎣⎢

⎤
⎦⎥Π = =

where Π is a permutation matrix, T1 is of full row rank, and Q Q[ , ]1 2 is an orthogonal matrix.
Then we have Q AW( ) ( )1ℛ = ℛ , and Q AW( ) ( )2ℛ = ℛ⊥ . So we can choose P Q2= in
theorem 1. On the other hand, we know from the proof of theorem 1 that problem (5) is the
same as the minimisation (4). So if we choose to solve system (4) instead of (5), then the
matrix P is not needed in all computations.

For the oblique pseudoinverse L#, it involves the Moore–Penrose inverse of AW and can
be computed as follows:

( ) ( )( )AW Q T Q T T Q T T T Q( ) . (8)T T T T T†
1 1

†
1 1

†
1
†

1 1 1 1
1

1Π Π Π Π= = = =
−

For the special case with A L( ) ( ) {0}N N∩ = , the matrix AW is of full column rank, and
we can use QR factorization. Correspondingly we have IΠ = and AW T Q( ) T†

1
1

1= − . For
most applications, the dimension of null space L( )N is very low, for example, L( )N may be
spanned simply by a single vector [1, 1, , 1]T⋯ or n[1, 2, , ]T⋯ . So the matrix AW is very
tall skinny, T1 is a very small matrix, and the cost for computing the Moore–Penrose inverse
of AW is negligible.

Now we can summarise the solution to the problem (2) of general form in algorithm 1.
Clearly, if we solve the subproblem (4) in step 4, then it is necessary to form matrix P.
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Algorithm 1. Regularized solution by standard form transformation

1. Generate W and Z by matrix decomposition on L such that
W L( ) ( )Nℛ = , Z L( ) ( )ℛ = ℛ and Z is column orthogonal.

2. Form AW, generate the column orthogonal matrix P such that P AW( ) ( )ℛ = ℛ⊥ , and
compute AW( )†, for example, by (8).

3. Compute L†, and form the generalized inverse L I W AW A L( ( ) )# † †= − .
4. Find the minimizer yμ of subproblem (5) or (4).

5. Form the regularized solution x L Zy W AW b( )# †= +μ μ .

Moreover, as we shall see in the next section 2.3, some steps of algorithm 1 can be
omitted for matrices L and A of special properties, which are listed below:

1. When L is of full column rank, we have W 0= , hence step 2 can be dropped, and the
terms involving W do not appear in steps 3 and 5. In this case, we have P I= , L L# †= ,
and the subproblems (4) and (5) are exactly the same.

2. When L is of full row rank, we have Z I= , then (4) is reduced to the problem

{ }AL y b ymin .
y

# 2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣

3. If L A( ) ( )N N⊆ , we have AW 0= , hence step 2 can be dropped, and the terms
involving AW disappear in steps 3 and 5. Since P I= and L L# †= in this case, the
subproblems (4) and (5) are the same.

4. When L is of full row rank and A L( ) ( ) {0}N N∩ = , it is unnecessary to form the
pseudo-inverses AW( )† and L# explicitly, instead we can solve the subproblem (5).

5. If L is rank-deficient and A L( ) ( ) {0}N N∩ = , then AW is of full column rank, and the
Moore–Penrose inverse AW( )† can be directly achieved by a QR decomposition.

6. One may use iterative methods to avoid forming the matrix L# explicitly in step 3.
Instead we need only to have a solver for the linear system Lg h= with given right-hand
sides h to achieve g L h†= approximately.

For step 4, one may apply the randomised SVD to first reduce the system size essentially,
then solve the reduced system in combination with some strategies for regularization para-
meters, as we did in [18]. The standard form transformation described above is an effective
and efficient approach for solving the ill-posed problem (2), provided that the operations with
L 1− , L† or L# can be efficiently implemented. When L is the discrete Laplacian, the actions of
inverses can be done by the algebraic multigrid method efficiently [14]. For the cases where L
is of special structures, such as Hankel or Toeplitz, there exist many fast solvers for imple-
menting the operations with L 1− or L† [2].

2.3. Special cases

In this subsection, we consider a few important special cases. Although all these cases have
the solutions of same form (3) (see theorem 1), the solutions may be realised very differently
as it is shown below.

Case 1: A L( ) ( ) {0}N N∩ ≠ , and L A( ) ( )N N⊆ . This happens in certain practical
problems, for example, the lead-field matrix and the Laplacian have a vector of all ones in
their null spaces for the inverse problem from electrocardiography. For this case, AW 0= and
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L L# †= . The least-squares solution with minimum norm is given by x L Zy†=μ μ, where yμ
solves the minimisation of standard form

AL Zy b ymin . (9)
y

† 2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣

Suppose we write the SVD of matrix L as L Z U
V

V
U V[ , ]

0

T

T
T

2
1 1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Σ Σ= ≡ , where 1Σ

is the diagonal matrix formed by the nonzero singular values, U Z U[ , ]2≡ and V V V[ , ]1 2≡
are orthogonal matrices. That is, L Z V T

1 1Σ= , L V ZT†
1 1

1Σ= − , and V L( ) ( )2 Nℛ = . Then
using L A( ) ( )N N⊆ , we know AV AV[ , 0]1= . Now by direct computing, we can derive

( ) ( )
( )
( )

( )

A A L L VV A AVV V V

V V A AV V

V V A AV V

V V A AV V

0

0 0

.

T T T T T T

T T T

T T
T

T T T

2 † 2 2 †

2 2 †

1 1
2

1
2 1

1 1 1
2

1
2 1

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

μ μ Σ

μ Σ

μ Σ

μ Σ

+ = +

= +

= +

= +

−

−

But the minimizer yμ of (9) can be given by

( ) ( )

( ) ( )

( )

y AL Z AL Z I AL Z b

AV AV I AV b

AV AV V A b.

T T

T T

T T T

† † 2
1

†

1 1
1

1 1
1 2

1

1 1
1

1 1 1
2

1
2

1

1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

μ

Σ Σ μ Σ

Σ μ Σ

= +

= +

= +

μ

−

− −
−

−

−

Therefore, the least-squares solution with minimum norm for this case is expressed by

( )
( )

x L Zy V y

V AV AV V A b

A A L L A b.

T T T

T T T

†
1 1

1

1 1 1
2

1
2

1

1

2 †

⎡⎣ ⎤⎦

Σ

μ Σ

μ

= =

= +

= +

μ μ μ
−

−

Case 2: L is of full row rank, and A L( ) ( ) {0}N N∩ = . Different from the trans-
formation used in theorem 1, there is an alternative approach in [6], which applies the
following two QR decompositions:

( ) ( )[ ] [ ]L Q R Q Q W AW U T U U P
0

, , ;
0

, , ,T
1 1= = = =

where Q, U are orthogonal matrices, R and T are nonsingular upper triangular matrices. For
this case, the matrix Z can be chosen as the identity. So the three matrices W, P and Z in
theorem 1 are all well defined. Next we shall derive the solution of (2). Note that the range

W L L( ) ( ) ( )T Nℛ = ℛ =⊥ , hence AW is of full rank, and P AW( ) ( )ℛ = ℛ⊥ . Suppose
x L y Wz†= + , with L L LL Q R( )T T T† 1

1= =− − , we can derive that
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Ax b Lx

AL y AWz b LL y

U AL y U AWz U b y

U AL y Tz U b P AL y P b y .

T T T

T T T T

2 2 2

† 2 2 † 2

† 2 2 2

1
†

1
2 † 2 2 2

μ
μ

μ
μ

∣∣ − ∣∣ + ∣∣ ∣∣
= ∣∣ + − ∣∣ + ∣∣ ∣∣
= ∣∣ + − ∣∣ + ∣∣ ∣∣
= ∣∣ + − ∣∣ + ∣∣ − ∣∣ + ∣∣ ∣∣

Then we can show the minimisation (2) is equivalent to the following two separated
subproblems:

P AL y P b y U AL y Tz U bmin and min .
y

T T

z

T T† 2 2 2
1

†
1μ∣∣ − ∣∣ + ∣∣ ∣∣ ∣∣ + − ∣∣

The first subproblem is the same as (5) in theorem 1 corresponding to the matrix Z I= . We
can compute z T U b AL y( )T1

1
†= − μ

− , where yμ is the minimizer of the first subproblem.
Hence,

( )x L y Wz L y WT U b AL y .T† † 1
1

†= + = + −μ μ μ μ
−

Though the matrix AW( )† does not appear explicitly, this solution is in fact equivalent to
(3), by the fact that AW T U( ) T† 1

1= − and Z I= . The solution of this case can be rewritten as

( )x I WT U A L y WT U b L y W AW b( ) .T T1
1

† 1
1

# †= − + = +μ μ μ
− −

For the QR factorization of large matrices, we may use the recently developed new
technique, communication-avoiding QR (CAQR), which invokes tall skinny QR (TSQR) for
each block column factorization, to speed up the computation [4, 5].

Case 3: L is of full column rank. Using the skinny QR decomposition L Q R1= , where
R is nonsingular and upper triangular, and Q1 is column orthogonal, we have Lx Rx∣∣ ∣∣ = ∣∣ ∣∣.
Hence the problem (2) of general form is equivalent to the following system

AR Rx b Rxmin . (10)
x

1 2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣−

Then we can easily transform the system (2) to the standard form (1) by using y Rx= and
K AR 1= − . This is efficient for practical computing since we need only a skinny QR
decomposition and a upper triangular solver. The problem (10) is actually the same as the
problem (4) or (5) with y Q Rx1= , by noting the facts that W 0= , P I= , Z Q1= and
L L L L L R Q( )T T T# † 1 1

1= = =− − in this case.
Case 4: L is a square and nonsingular matrix. As L is nonsingular, we can simply set

K AL x L y, , (11)1 1= =− −

then the problem (2) is rewritten in the standard form (1). The transformation (11) is
applicable whenever the actions of L 1− can be performed efficiently. This is the case when L
is sparse, banded, or of some special structure.

As we have seen from the above cases, by using the transformation that may involve
(generalized) matrix inverses, we can transform the problem (2) of general form into the
problem (1) of standard form. Then existing methods for the standard form can be applied as
we discuss in the next subsection.

2.4. Solution of the standard system (1) by randomized SVD

As we have seen in subsections 2.1–2.3, the regularized solution xμ of general form (2) can be
reduced to the solution to the standard system (1). When the standard system (1) is large-
scale, we can first apply randomized SVD algorithm (see algorithm 2 for m n⩽ ) to reduce it
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to a much smaller system, then solve it by combining with some existing choice rules for
regularization parameters [18]. Similar algorithm can be formulated for m n> [9].

Algorithm 2. (RSVD). Given K m n( )m n∈ ⩽× and l m< , compute an approximate rank-l
SVD: K U V TΣ≈ with U m l∈ × , l lΣ ∈ × and V n l∈ × .

1. Generate an l m× Gaussian random matrix Ω .
2. Compute the l n× matrix Y KΩ= .
3. Compute the n l× orthonormal matrix Q via QR factorization Y QRT = .
4. Form the m l× matrix B KQ= .
5. Compute the SVD of a small matrix B: B U HTΣ= .
6. Form the n l× matrix V QH= , then K U V TΣ≈ .

The randomized SVD is much cheaper than the classical SVD. In fact, the flops count of
the classical SVD for matrix K is about mn n4 82 3+ [8], while the cost of algorithm 2 is only
about mnl4 [18]. For the cases where singular values decay rapidly, we can choose l m≪ .
The ratio of the costs between RSVD and the classical SVD is of the order O l n( ) according
to the flops.

We can see that algorithm 2 generates an approximate decomposition
K KQQ U VT TΣ≈ = , where the columns of Q span approximately the range of KT, or the
right singular vectors. The RSVD in algorithm 2 was formulated in [18], and can be directly
applied for the matrix K P AL ZT †= or K AL Z#= in the standard system (5) or (4) trans-
formed from the system (2) of general form. The operations with K involve now the
operations with L 1− , L†, or L#, which can be implemented efficiently in many applications.
For example, when L is the discrete Laplacian the actions of inverses can be done by the
algebraic multigrid method efficiently. For the cases where L is of special structures, such as
Hankel or Toeplitz, there exist many fast solvers for implementing the operations with L 1− or
L† [2].

Suppose that we have an SVD approximation K U V TΣ≈ (by algorithm 2), where Σ is
diagonal with the form diag( , , )l1Σ σ σ= ⋯ , U u u( , , )l1= ⋯ and V v v( , , )l1= ⋯ are
orthonormal matrices. Then the approximate Tikhonov regularized solution of (1) can be
expressed as

x
u b

v .
i

l
i

i

i
T

i
i

1

2

2 2
∑ σ

σ μ σ
=

+
μ

=

The regularization parameter μ can be determined by several existing popular methods, such
as L-curve, GCV function, or some other heuristic methods. If we discard the small diagonal
elements in Σ, we obtain the truncated SVD (TSVD) of K. With an abuse of notation, we
denote the approximate TSVD of K by K U V TΣ≈ , where diag( , , )k1Σ σ σ= ⋯ , either of U
and V has k orthonormal columns. Then the approximate TSVD regularized solution xk is
given by

x
u b

v .k

i

k
i
T

i
i

1

∑
σ

=
=
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3. Inverse problems of general form and solutions by random generalized SVD

As we have discussed in the last section, the problem (2) of general form can be transformed
into the problem of standard form (1), then the classical or randomized SVD method is
applied to seek the regularized solution. The classical SVD is usually very expensive, while
the randomized SVD method is much cheaper. In this section we shall discuss an alternative
strategy for solving the problem (2) of general form by using the generalized SVD (GSVD) of
the matrix pair A L( , ). But again the classical GSVD are expensive, so we try to reduce the
problem size and then seek an approximate solution. We will show that the approximate
regularized solution can be achieved by some randomized algorithms.

3.1. Regularized solution with exact GSVD

We consider the problem (2) of general form and the matrix pair A L( , ) with A m n∈ × ,
L p n∈ × . We assume that A L( ) ( ) {0}N N∩ = . The classical generalized SVD (CGSVD)
is obtained as follows. We first perform a QR factorization for the pair A L( , ):

A
L

Q

Q
R,A

L

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=

where QA
m n∈ × , QL

p n∈ × , the matrix Q Q[ , ]A
T

L
T T is column orthonormal, and R is an

n n× upper triangular matrix. Then the CS decomposition [8, 17] can be applied to this
column orthogonal matrix to yield

Q

Q
U

V
C
S

W0
0

,A

L

T
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=

where U V W, ,m m p p n n  ∈ ∈ ∈× × × are orthogonal matrices, C m n∈ × and S p n∈ ×

are diagonal matrices and will be discussed further below. Let G W RT1 =− , then we have the
classical generalized SVD (CGSVD) of the matrix pair A L( , ) as follows [8]:

A UCG L VSG, . (12)1 1= =− −

The columns of matrices G, U and V are defined by G g g( , , )n1= ⋯ , U u u( , , )m1= ⋯ and
V v v( , , )p1= ⋯ respectively. Next we shall derive the explicit formulas for the solutions of
the regularized system (2) for 4 different cases.

First for the case with m n⩾ and p n⩾ , we have C c cdiag( , , )n
m n

1 = ⋯ ∈ × ,
S s sdiag( , , )n

p n
1 = ⋯ ∈ × , c c0 n1⩽ ⩽ ⋯ ⩽ , s s 0n1 ⩾ ⋯ ⩾ ⩾ , and c s 1i i

2 2+ = . Using
the right singular vectors gi, and the two sets of left singular vectors ui and vi, we can rewrite
the CGSVD as

Ag c u Lg s v i n, for 1, 2, , .i i i i i i= = = ⋯

Now using the above CGSVD, we can find the solution of the regularized system (2):

( ) ( )x A A L L A b G C C S S C U b

c

c s

u b

c
g . (13)

T T T T T T T

i

n
i

i i

i
T

i
i

2 1 2 1

1

2

2 2 2∑

μ μ

μ

= + = +

=
+

μ
− −

=

Next, we consider the case with m n⩾ and p n⩽ . In this case matrices C and S can be
expressed in the form [15]:
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C
S

C
I

S

¯ 0
0
0 0
¯ 0

,
⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥=

where C c c¯ diag( , , )p1= ⋯ and S s s¯ diag( , , )p1= ⋯ are the p p× diagonal matrices. Some
other submatrices may be empty and their sizes can be determined easily. For this case the
generalized singular vectors satisfy the relations:

Ag c u Lg s v i p

Ag u Lg i p n

, for 1, , ;

, 0 for 1, , .
i i i i i i

i i i

= = = ⋯
= = = + ⋯

Using these relations, we can express the regularized solution of the system (2) as

( )x
c

c s

u b

c
g u b g . (14)

i

p
i

i i

i
T

i
i

i p

n

i
T

i
1

2

2 2 2
1

∑ ∑
μ

=
+

+μ
= = +

For p n< , gi for i p n1, ,= + ⋯ are the null vectors of L. We can see that these components
g{ }i i p

n
1= + are incorporated into the solution directly without any regularization.

For the case with m n⩽ and p n⩾ , we can write [15]

C
S

C
S

I

¯ 0
¯ 0
0
0 0

,
⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥=

where C c c¯ diag( , , )m1= ⋯ and S s s¯ diag( , , )m1= ⋯ are the m m× diagonal matrices. The
submatrices 0 or I above may not exist. Now the regularized solution of system (2) can be
expressed by

x
c

c s

u b

c
g . (15)

i

m
i

i i

i
T

i
i

1

2

2 2 2∑
μ

=
+

μ
=

The last case is for m n⩽ and p n⩽ . In this case we have [15]

C
S

C
I

S
I

¯ 0 0
0 0
¯ 0 0
0 0

,
⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥=

where C c c¯ diag( , , )q1= ⋯ and S s s¯ diag( , , )q1= ⋯ are the q q× diagonal matrices, with
q m p n= + − . The sizes of the identity matrices and zero submatrices above can be
determined accordingly. Then the regularized solution of the system (2) is of the form

( )x
c

c s

u b

c
g u b g . (16)

i

q
i

i i

i
T

i
i

i q

m

i
T

i
1

2

2 2 2
1

∑ ∑
μ

=
+

+μ
= = +

One can easily see that the explicit formulae (13)–(16) for all 4 different cases can be
unified in the following formula, with d p n m p n mmin{ , , , }= + − :

( )x
c

c s

u b

c
g u b g , (17)

i

d
i

i i

i
T

i
i

i d

m n

i
T

i
1

2

2 2 2
1

min{ , }

∑ ∑
μ

=
+

+μ
= = +

and the second term above does not appear when d m nmin{ , }= .
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Similarly to TSVD, a truncated version of GSVD can be naturally extended for the
problem (2) of the general form. The truncated GSVD (TGSVD) solution reads

( )x
u b

c
g u b g .k

i d k

d
i
T

i
i

i d

m n

i
T

i
1 1

min{ , }

∑ ∑= +
= − + = +

We can use the GSVD based Tikhonov regularization to solve (2), but the classical
GSVD (CGSVD) above is expensive and impractical for large-scale problems. We shall
derive a randomized GSVD algorithm that helps us reduce the large-scale problem size
essentially and seek an approximate regularized solution.

3.2. Problem size reduction and approximate solution

For the sake of exposition we only discuss the case with m n⩽ in this section. Suppose that
the matrix A in (2) has the SVD of the form A U V TΣ= , whereU m m∈ × and V n n∈ × are
unitary matrices, and m nΣ ∈ × is a diagonal matrix with the diagonal elements

0m1σ σ⩾ ⋯ ⩾ ⩾ . We divide the matrix Σ into two parts: diag( , )1 2Σ Σ Σ= , where
r r

1 Σ ∈ × and m r n r
2

( ) ( )Σ ∈ − × − . Correspondingly we partition the matrices U and V as
U U U[ , ]1 2= , V V V[ , ]1 2= , where U m r

1 ∈ × , U m m r
2

( )∈ × − , V n r
1 ∈ × , and V n n r

2
( )∈ × − .

Then we can split matrix A into two parts:

( )A U U
V

V
U V U V, . (18)

T

T
T T

1 2
1

2

1

2
1 1 1 2 2 2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Σ
Σ Σ Σ= = +

Suppose that there is a gap among the singular values. The diagonals of 2Σ correspond to
the smaller singular values, while the diagonals of 1Σ include the larger ones. Then the matrix
can be approximated by A U V T

1 1 1Σ≈ . Since the singular vectors associated with smaller
singular values have more sign changes in their components, we may seek the solution of the
form x V x̄1=μ to the system (2) and come to solve the following problem of the reduced size:

AV x b LV xmin ¯ ¯ . (19)
x̄

1
2 2

1
2μ∣∣ − ∣∣ + ∣∣ ∣∣

It is equivalent to

A
L

V x bmin ¯
0

.
x̄

1
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥μ −

Since A L( ) ( ) {0}N N∩ = , then
A
L

⎡
⎣⎢

⎤
⎦⎥μ is of full column rank. As V1 is column orthogonal,

so
A
L V1

⎡
⎣⎢

⎤
⎦⎥μ is also of full column rank. Hence the reduced problem (19) has a unique solution:

( )( )x V A A L L V V A b¯ . (20)LS
T T T T T

1
2

1
1

1μ= +
−

Note that for this approximate regularized solution to (19) we only need to work with the
matrix pair AV LV( , )1 1 with the size of m r× and p r× respectively, while the original matrix
pair A L( , ) is of size m n× and p n× respectively. We often take r n≪ , so the size of the
approximate system (19) is essentially smaller than the original one (2). We shall only work
on the reduced problem, hence the memory requirement and CPU time can be significantly
reduced.

Next, we shall compare the approximate solution (20) to the reduced system (19) with the
exact solution to the system (2) of general form. To do so, we represent x̄LS in terms of the
SVD (18) of A. Define ¯ diag( , , , 0, , 0)T

r m
n r n r

2
2

2 2 1
2 2 ( ) ( )Σ Σ Σ σ σ= = ⋯ ⋯ ∈+

− × − . Now a
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direct computing yields that

A A L L V LV LV V

V
F B
B D

V

¯
( ) ( )

, (21)

T T T T

T
T

2 1
2

2
2

2
⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

μ
Σ

Σ
μ+ = +

=

where F, B and D are given by

( )
( )

( )

F LV LV

B LV LV

D LV LV

,

,

¯ .

T r r

T r n r

T n r n r

1
2 2

1 1

2
1 2

( )

2
2 2

2 2
( ) ( )







Σ μ

μ

Σ μ

= + ∈

= ∈

= + ∈

×

× −

− × −

It is easy to see that F is nonsingular, and we can write the solution of (19) as follows:

x V V
F B
B D

V V V V U b

I
F B
B D

I I U b

F U b

¯

[ , 0]
0

[ , 0]

.

LS
T

T
T T

T
T

T T
T

T

1 1

1

1
1

2

1
1

2

1
1 1

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Σ
Σ

Σ
Σ

Σ

=

=

=

−

−

−

Then we obtain an approximate regularized solution of (2):

x x V x V F U b¯ ¯ . (22)LS
T

1 1
1

1 1Σ≈ ≡ =μ μ
−

For the special case where L I= , the formula (22) is simplified as

x
u b

v ,
i

r
i

i

i
T

i
i

1

2

2 2
∑ σ

σ μ σ
≈

+
μ

=

which is further reduced for 0μ = as

x
u b

v .
i

r
i
T

i
i

1

∑
σ

≈μ
=

This can be regarded as a regularized solution by truncation.
Next, we further analyze the difference between the approximate solution x̄μ in (22) and

the original exact solution xμ. This process will show us how to obtain this approximate

solution alternatively. For this purpose, we define the Schur complement S D B F BT 1= − −

associated with the governing matrix in (21). It is easy to check that

( ) ( )y Sy y y LV y I LV F LV LV y¯ .T T T T
2
2 2

2
2

1
1

1 2
⎡⎣ ⎤⎦Σ μ μ= + − −

Since μ is a small parameter, it is reasonable to assume that y Sy 0T > for any y 0≠ , hence S
is nonsingular. We can verify that

F B
B D

M M

M S
,

T

1
11 12

21
1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=

−

−

where M F F BS B F ,T
11

1 1 1 1= +− − − − and M M S B FT T
21 12

1 1= = − − − . We can write the solution
of (2) as
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( )

( )
( )
( )

[ ]

x A A L L A b

V V
M M

M S

U

U
b

V M U b V M U b V M V S U b

V I F BS B F U b V S B F U b

V V F B S U b

,

. (23)

T T T

T

T

T

T T T T

T T T T

T T

2 1

1 2
11 12

21
1

1

2

1

2

1 11 1 1 2 21 1 1 1 12 2
1

2 2

1
1 1 1

1 1 2
1 1

1 1

2 1
1 1

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

μ

Σ
Σ

Σ Σ Σ

Σ Σ

Σ

= +

=

= + + +

= + −

+ −

μ
−

−

−

− − − − −

− −

We shall show how to achieve the approximate regularized solution (22) from the exact
solution (23) by truncation. Suppose that there exists a gap between 1Σ and 2Σ . And we
further assume that O (1)1Σ = , and O ( )2Σ ϵ= or o ( )ϵ . Then the last term in (23) may be
ignored, leading to

( )x V I F BS B F U b V S B F U b.T T T T
1

1 1 1
1 1 2

1 1
1 1Σ Σ≈ + −μ

− − − − −

Note that V2 is associated with the smallest singular values and its columns are highly
oscillatory and have more frequent sign changes. If we drop the second term involving V2 in
(23) like we do with TSVD, we then derive

( )x V I F BS B F U b.T T
1

1 1 1
1 1Σ≈ +μ

− − −

The expected regularization parameters are usually small, and it is reasonable to assume
that O ( )μ ϵ= . Then we can see that B O ( )2ϵ= , F O (1)1 =− , S O ( )2ϵ= , and
F BS B O ( )T1 1 2ϵ=− − . If we further omit the higher order terms in the above expression, then
we obtain the following approximate solution

x V F U b, (24)T
1

1
1 1Σ≈μ

−

which is exactly the approximate solution x̄μ in (22) that we will use in the following
randomized algorithm. So we can see that the approximate solution x̄μ can be achieved by
dropping the higher order terms and those oscillatory terms.

We end this subsection with some remarks on a few important cases where we may
further simplify the representation of solutions.

Case 1: L I= . For this simplest case, we can check that B 0= , F I1
2 2Σ μ= + , and

S D I¯
2
2 2Σ μ= = + . Then the exact solution (23) of (2) can be expressed by

x V F U b V S U b,T T T
1

1
1 1 2

1
2 2Σ Σ= +μ

− −

which is the same as A A I A b( )T T2 1μ+ − by using the SVD (18) of A. If we chop off the
second oscillation term, we have x V F U bT

1
1

1 1Σ≈μ
− in (24).

Case 2: V A( ) ( )T
1ℛ = ℛ . In this case we know 2Σ is simply a zero matrix, and the last

term in (23) vanishes. Then the exact solution (23) of (2) reduces to

x V M U b V M U b.T T
1 11 1 1 2 21 1 1Σ Σ= +μ

Note that the second term above lies in A( )N and is perpendicular to the first term. Hence the
least-squares solution with minimum norm is given by

x V M U b.T
1 11 1 1Σ=μ

As we have seen before, this term can be further approximated as x V F U bT
1

1
1 1Σ≈μ

− .
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Case 3: V L A( ) ( ) ( )2 N Nℛ ⊆ ⊆ . For this case, we can see that all the matrices B, 2Σ , S
and D vanish. Then the exact solution (23) of (2) is simplified to

x V F U b,T
1

1
1 1Σ=μ

−

which is exactly the same as A A L L A b( )T T T2 †μ+ .

3.3. Regularized solution by random GSVD

As discussed in section 3.2, we need to obtain a good approximation V1 required in the
system (19), in order to reduce the size of the problem (2) of general form and find its
approximate solution. If we directly perform the SVD of A and choose V1 from its right
singular vectors, it will be very expensive and impractical for large-scale systems. We now
seek an economic way to obtain a good approximation V1. Suppose that we have an
approximate SVD of A, that is, A U V TΣ≈ , where U m l∈ × and V n l∈ × are orthonormal.
There is an abuse of notations U and V here in GSVD of A L( , ), but they can be differentiated
from the context. The approximate SVD of A can be achieved by RSVD, i.e. Algorithm 2
with K replaced by A. We write this approximation as A U Ṽ

T
1Σ≈ , then we can seek the

solution of the form x V x1̃= , where the n l× column orthogonal matrix Ṽ1 forms the
approximate right singular vectors of A. Now the transformed problem (19) reads as follows:

AV x b LV xmin ˜ ˜ . (25)
x

1
2 2

1
2 


μ∣∣ − ∣∣ + ∣∣ ∣∣

Define A AṼ1
 = and L LṼ1 = . This problem still has the general form

A x b Lxmin , (26)
x

2 2 2 


μ∣∣ − ∣∣ + ∣∣ ∣∣

where A m l ∈ × and L p l ∈ × . Since A L( ) ( ) {0}N N∩ = and Ṽ1 is column orthogonal,

then A L[ , ]
T T T μ is of full column rank. Hence the reduced problem (26) has a unique

solution. But the matrix pair A L( , ) is of much smaller size compared with the original matrix
pair A L( , ), and we can easily apply the classical GSVD (CGSVD) to this matrix pair. The
solution procedure is summarized in algorithm 3.

Algorithm 3. Approximate regularized solution by RGSVD.

1. Use RSVD, i.e algorithm 2 with K replaced by A, to obtain
A U Ṽ

T
1Σ≈ with U m l∈ × , l lΣ ∈ × and Ṽ n l

1 ∈ ×

2. Apply CGSVD to the matrix stencil AV LV( ˜ , ˜ )1 1 of smaller size.
3. Solve the Tikhonov regularization problem (25) and obtain the minimizer xLS .
4. Achieve the approximate regularized solution x V x˜ LS1=∼

μ .

Suppose that the CGSVD of the matrix pair A L( , ) has the similar form as (12),

A UCG L V S G, ,
1 1    = =− −

where U m m ∈ × , V p p ∈ × are orthogonal matrices, C m l ∈ × , S p l ∈ × are diagonal
matrices, and G l l ∈ × is nonsingular. Then the solution x of (26) can be expressed by

( )x G C C S S C U b.LS
T T T T2

1
     μ= +

−
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And this gives us an approximate solution of the original problem (2):

( )x x V x V G C C S S C U b˜ ˜ . (27)LS
T T T T

1 1
2

1
     μ≈ ≡ = +∼

μ μ
−

In the following we will demonstrate that this approximation can be regarded as the least-
squares solution with minimum norm of a nearby problem. To this aim, we define

A

L

A
L

V V A
L

V
UCG V

V S G V
˜ ˜ ˜

˜

˜
. (28)

T T
T

T
1 1 1

1
1

1
1

 
  



⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥≔ = =∼

∼ −

−

Lemma 1. The approximate solution (27) is the solution to the following problem with
minimum norm:

A x b Lxmin . (29)
x

2 2 2μ∣∣ − ∣∣ + ∣∣ ∣∣∼∼

Proof. We can check that L A V( ) ( ) { ˜ }1N N= = ℛ∼ ∼ ⊥, which is included in Case 1 in
section 2.3, from where we know minimisation (29) has the least-squares solution with
minimum norm:

( )x A A L L A b.
T T T2

†
μ= +∼ ∼ ∼∼ ∼ ∼

μ

Using the decomposition (28) and the property of Moore–Penrose inverse, this regularized
solution can be further expressed as

( )
( )
( )

x V G C C S S G V A b

V G C C S S G V A b

V G C C S S C U b

˜ ˜

˜ ˜

˜ .

T T T T T

T T T T T

T T T T

1
2 1

1

†

1
2

1

1

1
2

1

 

 

 

 

 

  

 

 

 

⎡
⎣⎢

⎤
⎦⎥μ

μ

μ

= +

= +

= +

∼ ∼

∼

μ
− −

−

−

This is exactly the solution (27). ■

In summary, for the least-squares solution of general form (2), we can approximate it by
solving the problem (26) and set x V x1̃= , which is equivalent to the least-squares solution of
(29) with minimum norm. Note that the size of the matrix pair A L( , ) is much smaller than
the matrix pair A L( , ), and we need to work only on the matrix pair A L( , ) in practice. Using
algorithm 3, we can obtain an approximate solution (22) based on the GSVD on the matrix
pair A L( , ) with A m l ∈ × and L p l ∈ × , while the original problem of general form has the
regularized solution (13) when CGSVD is applied directly on the matrix pair A L( , ). Fur-
thermore, we know the approximate solution is spanned by the columns of Ṽ1. So if we have
some a priori information about the solution, we may incorporate it into Ṽ1 by orthogonali-
zation with its columns.

Similarly to the truncated SVD (TSVD), we can use the truncated GSVD (TGSVD) to
seek the regularized solution [11]. That is, after using algorithm 3, we chop off those smallest
singular values to achieve a truncated version of RGSVD. Then we use the L-curve, GCV, or
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some other heuristic methods to determine the regularization parameter. This procedure is
similar to Tikhonov regularization, and we do not go into further details about this.

4. Numerical experiments

For the system (1) of standard form, we studied RSVD and tested various linear inverse
problems in [18]. In this section, we shall mainly focus on the system (2) of general form
directly and test the newly proposed algorithm 3 with examples from different linear inverse
problems to illustrate the performance of the algorithm. As we shall see, we can essentially
reduce the problem size by using RGSVD, but still obtain reasonably good approximate
regularized solutions. The following tests are done using MATLAB R2012a in a laptop with
Intel(R) Core(TM) i5 CPU M480 @2.67G.

In this section we will test some examples from Regularization Tools [10]. Most of the
cases are related to the Fredholm integral equation of the first kind,

K s t x t dt g s c s d( , ) ( ) ( ), , (30)
a

b∫ = ⩽ ⩽

where K is the square integrable kernel function. In the tests the kernel K and the solution x
are given and discretized to yield the matrix A and the vector x, then the discrete right-hand
side is determined by b Ax= . Matrix L in the general form (2) is the discrete approximation
to the first or second order differential operator. In particular we will try the following
choices:

L L

1 1
1 1

1 1

and

1 2 1
1 2 1

1 2 1

.

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟=

−
−
⋱ ⋱

−

=
−

−
⋱ ⋱ ⋱

−
We will write them by L bidiag (1, 1) n n( 1)= − ∈ − × and L tridiag (1, 2, 1) n n( 2)= − ∈ − ×

respectively.
In all our numerical experiments, the observation data bδ is generated from the exact data

b by adding the noise in the form

b b
b

s
s b

s

s
,δ ε= + ∣∣ ∣∣

∣∣ ∣∣
= +

∣∣ ∣∣
δ

where s is a random vector, s randn n( , 1)= if not specified otherwise, bε δ= ∣∣ ∣∣ is the so-
called noise level, and δ is the relative noise level [12]. In our numerical tests, we choose the
relative noise level δ= 1e-4 as in [13].

In the following tests, we shall compare the performance of 5 different algorithms for
solving the general problem (2), including RGSVD (the random GSVD, i.e. Algorithm 3), the
classical GSVD (CGSVD), two methods ‘std+CSVD’ and ‘std+RSVD’, which transform first
the general problem (2) into the standard form, then apply CSVD and RSVD respectively to
achieve the regularized solution, and the method which uses CSVD directly for the problem
(2) but with a trivial regularization operator L I= . In all our numerical tests, the sampling
size is set to l 50= and the regularisation operator to L tridiag (1, 2, 1)= − if not specified
otherwise. In all subsequent tables we shall use the following notation: μ stands for the
regularization parameter, err for the relative error x x x2 2∣∣ − ∣∣ ∣∣ ∣∣μ of the computed
Tikhonov regularized solution xμ to the exact solution x, and n for the problem size, and T for
the computational time (in seconds). To fairly compare the efficiency and accuracy of 5
different methods, we shall fix the regularization parameter μ for the results in tables 2 and 3.
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Table 1. Example SHAW. Comparison of the total computational times and solution accuracies.

std + CSVD std + RSVD CGSVD RGSVD CSVD(L=I)

n μ T s( ) err μ T s( ) err μ T s( ) err μ T s( ) err μ T s( ) err

500 8.26E-02 0.34 1.40E-02 8.26E-02 0.09 1.40E-02 8.26E-02 0.41 1.40E-02 8.26E-02 0.05 1.40E-02 3.14E-04 0.41 2.66E-02
1000 1.52E-01 2.24 1.75E-02 1.52E-01 0.27 1.75E-02 1.52E-01 2.41 1.75E-02 1.52E-01 0.08 1.75E-02 1.00E-04 1.31 2.96E-02
2000 8.52E-01 18.24 1.20E-02 8.52E-01 1.03 1.20E-02 8.52E-01 19.30 1.20E-02 8.52E-01 0.18 1.20E-02 1.47E-04 9.21 2.08E-02
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That is, we shall solve the general problem (2) with the same parameter μ. Thus each
computational time T in tables 2 and 3 will include the time for the (approximate) matrix
factorisation and the computing of the Tikhonov regularized solution, but not the time for
determining the regularization parameter. However, for a more complete comparison among
all the methods, we shall report also the total computational time required for computing a
Tikhonov regularized solution, namely including also the time for determining the regular-
ization parameter, by the parameter choice rule GCV function, and the numerical results are
shown in table 1.

Example 1 (SHAW). This is a one-dimensional model of an image reconstruction problem. It
arises from discretization of the integral equation (30) with the kernel K being the point
spread function for an infinitely long slit:

K s t s t u u u s t( , ) (cos cos ) (sin ) , (sin sin ).2 2 π= + = +

The exact solution is given by ( )x t a c t t a c t t( ) exp ( ) exp( ( ) ),1 1 1
2

2 2 2
2= − − + − − where

the parameters a a,1 2, c1, c2, t1 and t2 are constants chosen to give two different humps [10].

The computational times, the regularization parameters and the relative errors of the
computed solutions are listed in table 1. The regularization parameters are determined by
GCV functions in combination with 4 methods, i.e. std+CSVD, std+RSVD, CGSVD and
RGSVD, and they are almost the same, so leading to about the same accuracy for all these
methods; see figure 1 and the errors listed in table 1. But the randomized algorithms, namely
std+RSVD and RGSVD, are much faster than the classical methods std+CSVD and CGSVD,
as the problems they need to solve are much smaller than those solved by the classical
methods. As we can see from table 1, for the problem of size n 2000= , the new method
RGSVD is about 100 times faster than the classical method CGSVD. And such out-
performance of RGSVD becomes more significant when the problem size increases. Also
from the relative errors shown in table 1, we can see that the regularization with
L tridiag (1, 2, 1)= − is more accurate than the identity regularisation L I= .

Similar observations above apply also to the subsequent testing examples FOXGOOD,
GRAVITY, HEAT, PHILLIPS from [10], so will not be mentioned any more below.

Example 2 (I_LAPLACE). This test problem is the inverse Laplace transformation, a
Fredholm first kind integral equation, discretized by Gauss–Laguerre quadrature. The kernel
K is given by K s t exp st( , ) ( )= − .

Regularization Tools [10] provides the test problem I_LAPLACE(n e, g), with n being the
matrix size, and e 1, 2, 3g = or 4 corresponding to 4 different examples (e 1g = by default).
The test problem I_LAPLACE(n, 1) has the exact solution x t exp t( ) ( 2)= − , and I_LAPLACE(n,
3) gives x t t exp t( ) ( 2)2= − . For these two cases, the solutions are very smooth. The method
RGSVD works very well with regularization L bidiag (1, 1)= − and small sample size
l 50= . Its accuracy is also comparable or even better than that of the classical method
CGSVD, but the CPU times and memories are significantly smaller. We do not report the
numerical results for these two relatively simple cases, but focus on the other two cases,
e 2g = , 4, which are more difficult due to the sudden change and strong discontinuity in the
solutions. For these two cases, the regularization in general form (2) is necessary to ensure a
meaningful numerical solution.

First for the test problem I_LAPLACE(n, 2), the exact solution is x t exp t( ) 1 ( 2)= − − ,
which has a horizontal asymptote. For this problem, the identity regularization L I= can not
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give a good reconstruction [13] (see figure 2), and the regularization L tridiag (1, 2, 1)= −
does not work well either. Instead, the regularization L bidiag (1, 1)= − is very effective to
capture the rapid change in the solution.

Let e be the vector of all ones, i.e. e ones n( , 1)= . Clearly e is the basis vector of the null
space of operator L bidiag (1, 1)= − . This suggests us to incorporate a constant mode into
the matrix W in algorithm 3. Suppose we have the approximate SVD of the matrix A by
randomized algorithm. That is, A U W TΣ≈ . Let w I WW e( )T= − , then we enlarge the
matrix W by adding one more column vector, namely w w∣∣ ∣∣. This is equivalent to finding
the orthogonal projection onto W( )ℛ ⊥, then adding it to matrix W as a new column.

For most of our cases, the sample size can be as small as 50. But for this difficult case, we
need to use larger sample sizes for RGSVD: for the problems of sizes n 500= , 1000, 2000,
we choose the sample sizes l= 150, 300, 600 respectively. However, the method std+RSVD
still works very well with small sample sizes (l=50), and is hence much faster in terms of
computational times. Even with larger sample size, the computational time of RGSVD is still
much less than the classical methods, and the approximate solution is still quite accurate; see
figure 2 and table 2 for more details. In table 2, the regularization parameter μ is chosen to be
the same for all 4 methods and L I≠ . For L I= , the parameter is chosen by GCV, but for a
fair comparison the computational time T includes also only the time for matrix factorization
and the computing of the regularized solution, without the time for choosing the regular-
ization parameter.

Figure 1. Example SHAW of size n 2000= .

Figure 2. Example I_LAPLACE(n, 2) of size n 2000= .

Inverse Problems 31 (2015) 085008 H Xiang and J Zou

20



Table 2. Example I_LAPLACE(n, eg) with e 2g = , 4. Comparison of the computational times and solution accuracies.

(L I≠ ) std + CSVD std + RSVD CGSVD RGSVD (L=I) CSVD

eg n μ T s( ) err T s( ) err T s( ) err T s( ) err μ T s( ) err

2 500 0.05 0.35 3.70E-03 0.09 3.70E-03 0.34 3.70E-03 0.16 2.20E-03 2.60E-04 0.11 7.56E-01
1000 0.15 2.86 2.10E-03 0.29 2.10E-03 2.33 2.10E-03 0.94 5.00E-03 2.52E-04 1.03 7.49E-01
2000 0.20 21.95 9.50E-03 1.06 9.50E-03 17.48 9.50E-03 5.41 5.50E-03 6.42E-05 8.07 7.66E-01

(L I≠ ) std + CSVD std + RSVD CGSVD RGSVD (L=I) CSVD

eg n μ T(s) err T(s) err T(s) err T s( ) err μ T s( ) err

4 500 0.05 0.37 4.34E-02 0.09 4.34E-02 0.33 4.34E-02 0.16 4.42E-02 2.60E-04 0.12 7.54E-01
1000 0.15 2.86 3.68E-02 0.30 3.68E-02 2.30 3.68E-02 0.94 3.71E-02 2.52E-04 0.92 7.50E-01
2000 0.20 21.95 3.58E-02 1.06 3.58E-02 17.65 3.58E-02 5.36 3.06E-02 3.28E-04 7.94 7.47E-01
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We have observed from all the examples we have tested, our method working on a much
smaller-sized problem is often more robust and stable than the classical method. This is also
clearly observed in our test with I_LAPLACE(n, 4) from Regularization Tools [10]. The exact
solution to the problem has a big jump:

x t
t
t

( )
0, 2;
1, 2.

⎧⎨⎩= ⩽
>

We still choose the regularization L bidiag (1, 1)= − , and other parameters are the same as
for I_LAPLACE(n, 2). Our tests show that our randomized algorithms can always provide the
regularized solutions with desired accuracy but require much less computational times; see
more details in figure 3 and table 2.

As our last set of numerical tests, we consider 6 different inverse problems taken from
[10], namely the problems FOXGOOD, GRAVITY, HEAT, I_LAPLACE, PHILLIPS, SHAW as listed
there. All the problems are solved with the same regularisation parameter μ and the numerical
results are shown in table 3. One can easily see from the table that RGSVD is the most
efficient method: it can provide a regularized solution of the same accuracy as the one by the
classical methods but requires much less computational time.

We remark that the truncated version of RGSVD also works quite well for all the
examples tested in this section. Since the numerical results are very similar to the ones by the
Tikhonov regularization, we do not present the numerical results by TGSVD in this work.

In this section we have tested two different approaches we have proposed for solving the
Tikhonov regularization problems of general form (2). The first approach transforms a general
problem (2) into a standard one (1), then solves the standard problem using the randomised
SVD we developed in [18], while the second approach applies the generalized SVD directly
for the general form (2). Based on many of our numerical experiments, the second approach is
mostly more efficient than the first approach, as we can clearly see from the numerical results
in tables 1 and 3 for 6 different inverse problems. However, the first approach may work
equally well as the second approach in some special cases, where the sample size does not
need to be large and very efficient evaluations of the generalized inverse are available as the
generalized inverses contribute to the major computational efforts in the first approach.
Indeed this can be confirmed clearly from the numerical results shown in table 2 for example
I_LAPLACE(n, eg) with e 2g = or 4.

Figure 3. Example I_LAPLACE (n, 4) of size n 2000= .
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Table 3. The computational time and accuracy of RGSVD compared with other three methods when the same regularized problem is solved with
size n 2500= and L bidiag (1, 1)= − .

std + CSVD std + RSVD CGSVD RGSVD

μ T s( ) err T s( ) err T s( ) err T s( ) err

FOXGOOD 5E-03 35.57 1.6673E-02 1.40 1.6673E-02 35.68 1.6673E-02 0.20 1.6674E-02
GRAVITY 5E-02 34.68 1.3886E-02 1.41 1.3886E-02 35.01 1.3886E-02 0.18 1.3886E-02
HEAT 2E-03 36.12 1.2441E-02 1.59 1.2325E-02 35.74 1.2441E-02 0.18 1.9250E-02
I_LAPLACE 1E-03 42.83 4.8063E-01 1.64 4.8063E-01 33.98 4.8063E-01 0.50 2.2425E-01
PHILLIPS 5E-03 36.79 7.2537E-02 1.41 4.0793E-02 36.61 7.2537E-02 0.17 3.0862E-02
SHAW 2E-02 34.75 2.2152E-02 1.40 2.2152E-02 36.93 2.2152E-02 0.17 2.2152E-02
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5. Concluding remarks

We have considered the randomized algorithms for the solutions of discrete ill-posed pro-
blems in general form. Several strategies are discussed to transform the problem of general
form into the standard one, then the randomized strategies in [18] can be applied. The second
approach we have proposed is to work on the problem of general form directly. We first
reduce the original large-scale problem essentially by using the randomized algorithm
RGSVD, so flops and memory are significantly saved. Our numerical experiments show that,
using RGSVD we can still achieve the approximate regularized solutions of the same
accuracy as the classical GSVD, but gain obvious robustness, stability and computational
time as we need only to work on problems of much smaller size.
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