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In this work, we develop and analyse an adaptive finite element method for efficiently solving electrical
impedance tomography—a severely ill-posed nonlinear inverse problem of recovering the conductivity
from boundary voltage measurements. The reconstruction technique is based on Tikhonov regularization
with a Sobolev smoothness penalty and discretizing the forward model using continuous piecewise linear
finite elements. We derive an adaptive finite element algorithm with an a posteriori error estimator involving
the concerned state and adjoint variables and the recovered conductivity. The convergence of the algorithm
is established, in the sense that the sequence of discrete solutions contains a convergent subsequence to a
solution of the optimality system for the continuous formulation. Numerical results are presented to verify
the convergence and efficiency of the algorithm.

Keywords: electrical impedance tomography; a posteriori error estimator; adaptive finite element method;
convergence analysis.

1. Introduction

Electrical impedance tomography (EIT) is a diffusive imaging modality for probing internal structures
of the concerned object, by recovering its electrical conductivity/permittivity distribution from voltage
measurements on the boundary. One typical experimental setup is as follows. One first attaches a set
of metallic electrodes to the surface of the object, then injects an input current into the object through
these electrodes, which induces an electromagnetic field inside the object. Finally, one measures the
induced electric voltages on the electrodes. The procedure is usually repeated several times with differ-
ent input currents in order to yield sufficient information about the sought-for conductivity distribution.
In many applications, the physical process can be most accurately described by the complete electrode
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model (CEM) (Cheng et al., 1989; Somersalo et al., 1992). The imaging modality has attracted consider-
able interest in medical imaging, geophysical prospecting, nondestructive evaluation and pneumatic oil
pipeline conveying, etc.

A number of reconstruction algorithms have been proposed for the EIT inverse problem (see e.g.,
Lechleiter & Rieder, 2006; Lechleiter et al., 2008; Knudsen et al., 2009; Adler et al., 2011; Jin &
Maass, 2012a; Jin et al., 2012; Harrach & Ullrich, 2013; Winkler & Rieder, 2014 for an incomplete
list). One prominent idea underlying existing imaging algorithms is regularization, especially Tikhonov
regularization with a smoothness or sparsity type penalty, and they have demonstrated encouraging results
with experimental data. In practice, they are customarily implemented using the continuous piecewise
linear finite element method (FEM), due to its flexibility in handling variable coefficients and general
geometry. Despite its popularity, it was only rigorously justified recently in Gehre et al. (2014) for the
CEM on either polygonal or smooth convex domains.

The accuracy of the CEM relies crucially on the use of nonstandard boundary conditions for capturing
important characteristics of the physical experiment, notably contact impedance effect. As a consequence,
around the boundary of the electrodes, the boundary condition changes from the Neumann to Robin
type, which induces weak singularity of the forward solution around the interface (Grisvard, 1985). The
low-regularity of the sought-for conductivity field, as enforced by Sobolev smoothness penalty, will
possibly also induce weak solution singularities. With a quasi-uniform triangulation of the domain, the
solution singularities are not effectively resolved, and the errors around electrode edges and discontinuity
interfaces are dominant, which can potentially compromise the reconstruction accuracy greatly, if done
inadvertently. This naturally motivates the use of an adaptive strategy to achieve the desired accuracy
with reduced computational complexity. In this work, we shall develop a novel adaptive FEM (AFEM)
for the EIT inverse problem and analyse its convergence.

Generally, the AFEM generates a sequence of nested triangulations and discrete solutions by the
following successive loop:

SOLVE → ESTIMATE → MARK → REFINE. (1.1)

The key ingredient in the procedure is the module ESTIMATE, which computes a posteriori error
estimators, i.e., computable quantities from the discrete solution, the local mesh size and other given data.
This has been thoroughly studied for forward problems (see e.g., Ainsworth & Oden, 2000; Verfürth,
1996). Over the past few decades, there are also many important works on the a posteriori error analysis
of PDE-constrained optimal control problems (see Liu & Yan, 2001; Li et al., 2002; Hintermüller et al.,
2008; Hintermüller & Hoppe, 2010; Becker & Mao, 2011 for a very incomplete list). In particular,
Becker & Mao (2011) showed the quasi-optimality of the AFEM for an optimal control problem with
control constraints. However, the behavior of inverse problems such as EIT is quite different from that
of optimal control problems due to the ill-posed nature, the presence of the data noise and high-degree
nonlinearity.

The adaptive idea, including the AFEM, has started to attract some attention in the context of inverse
problems in recent years. In Becker & Vexler (2004), Beilina & Clason (2006) and Beilina & Johnson
(2005), the AFEM using a dual-weighted residual framework was studied for parameter identification
problems, and high order terms in relevant Lagrangian functionals were ignored. Feng et al. (2008)
proposed a residual-based estimator for state, costate (adjoint) and parameter by assuming convexity of
the cost functional and high regularity on the parameter. Li et al. (2011) derived rigorous a posteriori
error estimators for reconstructing the distributed flux under a practical regularity assumption, in the
sense that, as for forward problems, the errors of the state variable, the adjoint variable and the flux are
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bounded from above and below by multiples of the estimators. In a series of interesting works (Beilina
& Klibanov, 2010a,b; Beilina et al., 2010), Beilina et al. adopted the AFEM for hyperbolic coefficient
inverse problems. Griesbaum et al. (2008) and Kaltenbacher et al. (2014) described and analysed adaptive
strategies for choosing the regularization parameter in Tikhonov regularization and iterative methods,
e.g., Gauss-Newton methods. Unlike the AFEM for forward problems, for which the convergence and
computational complexity have been systematically studied (see the survey articles Nochetto et al., 2009;
Carstensen et al., 2014), the theoretical analysis of the AFEM for inverse problems is still in its infancy.
Recently, Xu & Zou (2015a,b) established the convergence of the AFEM for recovering the flux and
the Robin coefficient. We remark that the convergence rate and optimality of the AFEM in the context
of nonlinear inverse problems are completely open, due to inherent nonconvexity of the functional, and
lack of precise regularity results of the minimizers to the nonlinear optimization problem. Nonethe-
less, our convergence result in Theorem 4.10 provides some theoretical justifications of the AFEM for
the EIT.

In this article, we develop a novel AFEM for the EIT based on Tikhonov regularization with a H1(Ω)

seminorm penalty and analyse its convergence. The AFEM is of the standard form (1.1): it does not require
the interior node property in the module REFINE, and hence it is easy to implement. The derivation of a
posteriori error estimators is constructive: it lends itself to a route for convergence analysis. The analysis
relies on a limiting output least-squares problem defined on the closure of adaptively generated finite
element spaces, and it consists of the following two steps. First, the sequence of discrete minimizers is
shown in Section 4.1 to contain a subsequence converging to a solution of the limiting problem, and
then the limiting minimizer and related state and adjoint variables are proved in Section 4.2 to satisfy the
necessary optimality system of the continuous Tikhonov functional.

This work is a continuation of our prior work (Gehre et al., 2014) on the FEM analysis of EIT but
differs from the latter considerably in several aspects. The major effort of Gehre et al. (2014) was to
justify the convergence of the quasi-uniform FEM approximation of the Tikhonov formulation of the
EIT, and no a posteriori error estimator and adaptive method were studied, which is the main goal of
this work. The convergence analysis in Gehre et al. (2014) relies crucially on the W 1,q(Ω) (q > 2)
regularity of the forward solution and the density of FE spaces Vh in H1(Ω). The density does not
hold generally for adaptively generated FE spaces. Hence, the analysis in Gehre et al. (2014) does
not carry over to the AFEM directly. In this work, we shall adopt a strategy developed in Xu & Zou
(2015a) for recovering the Robin coefficient from the Cauchy data to overcome these technical difficulties.
Nonetheless, there are major differences in the analysis due to higher degree of nonlinearity of the EIT
problem. In Xu & Zou (2015a), the continuity of the parameter-to-state map from L2(Γi) to L2(Γc)

plays a crucial role. For the EIT, only the H1(Ω) weak continuity of the forward map holds (cf. Lemma
4.3), and we shall exploit the pointwise convergence of discrete minimizers and Lebesgue’s dominated
convergence theorem. This allows us to establish the H1(Ω) convergence of discrete state variables (cf.
Theorem 4.4), and thus to verify that the limiting solution also satisfies the continuous optimality system
(Lemmas 4.8 and 4.9).

The rest of this article is organized as follows. In Section 2, we describe the CEM, regularized least-
squares formulation and its necessary optimality system. The finite element discretization is described,
and an adaptive FEM algorithm for the EIT is proposed in Section 3, where a heuristic yet constructive
derivation is also provided. The convergence analysis of the adaptive algorithm is given in Section 4.
Some numerical results are given in Section 5 to illustrate its convergence and efficiency. We conclude
the section with some notation. We shall use the standard notation for Sobolev spaces, following Evans
& Gariepy (1992). Further, we use 〈·, ·〉 and (·, ·) to denote the inner product on the Euclidean space and
(L2(Ω))d , respectively, by ‖ · ‖ the Euclidean norm, and occasionally abuse 〈·, ·〉 for the duality pairing
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between the space H and its dual space. Throughout, the notation c denotes a generic constant, which
may differ at each occurrence, but is always independent of the mesh size and other quantities of interest.

2. Preliminaries

We shall recall in this section the mathematical model for the EIT problem, and describe the reconstruction
technique based on Tikhonov regularization and its necessary optimality system.

2.1 Complete electrode model

Let Ω be an open bounded domain in R
d (d = 2, 3) with a polyhedral boundary Γ . We denote the set

of electrodes by {el}L
l=1, which are line segments/planar surfaces on Γ and disjoint from each other, i.e.,

ēi ∩ ēk = ∅ if i 	= k. The applied current on the lth electrode el is denoted by Il, and the current vector
I = (I1, . . . , IL)

t satisfies
∑L

l=1 Il = 0 by the law of charge conservation. Let the space R
L

 be the subspace

of the vector space R
L with zero mean. Then we have I ∈ R

L

. The electrode voltage U = (U1, . . . , UL)

t

is also normalized such that U ∈ R
L

. Then the CEM reads: given the conductivity σ , positive contact

impedances {zl}L
l=1 and input current I ∈ R

L

, find the potential u ∈ H1(Ω) and electrode voltage U ∈ R

L



such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ · (σ∇u) = 0 in Ω ,

u + zlσ
∂u
∂n = Ul on el, l = 1, 2, . . . , L,∫

el
σ ∂u
∂n ds = Il for l = 1, 2, . . . , L,

σ ∂u
∂n = 0 on Γ \ ∪L

l=1 el.

(2.1)

The physical motivation behind the model (2.1) is as follows. The governing equation is derived under
a quasi-static assumption on the electromagnetic process. The second line describes the contact impedance
effect: When injecting electrical currents into the object, a highly resistive thin layer forms at the electrode-
electrolyte interface, which causes potential drops across the electrode-electrolyte interface. The potential
drop is described by Ohm’s law, with proportionality factors {zl}L

l=1. It also takes into account the fact that
metallic electrodes are perfect conductors, and hence the voltage Ul is constant on each electrode. The
third line reflects the fact that the current Il injected through the electrode el is completely confined to el

itself. The nonstandard boundary conditions is essential for the model (2.1) to reproduce experimental
data within the measurement precision; see Cheng et al. (1989) and Somersalo et al. (1992).

Because of physical constraint, the conductivity distribution σ is naturally bounded both from
below and above by positive constants. Hence, we introduce the following admissible set A: for some
λ ∈ (0, 1), let

A = {λ ∈ H1(Ω) : λ ≤ σ(x) ≤ λ−1 a.e. x ∈ Ω}.

The set A is endowed with the H1(Ω)-norm, in view of the H1(Ω)-seminorm regularization, cf. (2.3)
below. Further, we denote by H the product space H1(Ω)⊗ R

L

 with its norm defined by

‖(u, U)‖2
H

= ‖u‖2
H1(Ω)

+ ‖U‖2.

A convenient equivalent norm on the space H is given below.
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Lemma 2.1 On the space H, the norm ‖ · ‖H is equivalent to the norm ‖ · ‖H,∗ defined by

‖(u, U)‖2
H,∗ = ‖∇u‖2

L2(Ω)
+

L∑
l=1

‖u − Ul‖2
L2(el)

.

Proof. The lemma is a folklore result in the EIT community, and we provide a proof only for completeness.
It is easy to verify that ‖(u, U)‖H,∗ indeed defines a proper norm. It suffices to show the following two
inequalities: there exist c1, c2 > 0 such that

c1‖(u, U)‖H ≤ ‖(u, U)‖H,∗ ≤ c2‖(u, U)‖H.

The second inequality follows from the Cauchy–Schwarz inequality and trace theorem. We show the first
inequality by contradiction. Assume the contrary. Then there exists a sequence {(un, Un)} ⊂ H, such
that ‖(un, Un)‖H = 1 and ‖(un, Un)‖H,∗ < n−1. Then there exists a convergent subsequence, also denoted
by {un}, to some u ∈ H1(Ω) weakly in H1(Ω). By the compact embedding of H1(Ω) into L2(Ω), the
sequence {un} converges to u in L2(Ω). Further, by construction, ‖∇un‖L2(Ω) ≤ n−1. Thus, {un} converges
to u in H1(Ω), and u = c in the domain Ω for some c ∈ R. By trace theorem and Sobolev embedding
theorem, {un} converges to u in L2(Γ ). Since ‖un − Un

l ‖L2(el)
< n−1, {Un

l } converges to the trace of u on
el for each l = 1, 2, . . . , L, i.e., the limit U = c(1, . . . , 1)T. Now the condition U ∈ R

L

 implies U = 0,

c = 0 and u ≡ 0. Consequently, un → 0 in H1(Ω) and Un → 0 in R
L, which contradicts the assumption

‖(un, Un)‖H = 1. �

The weak formulation of the model (2.1) reads: find (u, U) ∈ H such that

a(σ , (u, U), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H, (2.2)

where the trilinear form a(σ , (u, U), (v, V)) on A × H × H is defined by

a(σ , (u, U), (v, V)) = (σ∇u, ∇v)+
L∑

l=1

z−1
l (u − Ul, v − Vl)L2(el)

,

where (·, ·)L2(el)
denotes the L2(el) inner product. By Lemma 2.1, for any σ ∈ A, the bilinear form

a(σ , ·, ·) is continuous and coercive on the space H. Hence, by Lax–Milgram theorem, for any fixed
σ ∈ A and given contact impedances {zl}L

l=1 and current I ∈ R
L

, there exists a unique solution (u, U) ≡

(u(σ ), U(σ )) ∈ H to (2.2), and it depends continuously on the input current pattern I . Since σ ∈ A,
one can deduce that u ∈ W 1,q(Ω) for some q > 2 (Jin & Maass, 2012a). See also Jin & Maass (2012a),
Gehre et al. (2014) and Dunlop & Stuart (2015) for various continuity results of (u, U) with respect to
the conductivity σ .

Remark 2.2 Alternatively, one can formulate a proper variational formulation of the CEM (2.1) on the
quotient space Ḣ = (H1(Ω)× R

L)/R, with the norm defined by

‖(u, U)‖Ḣ = inf
c∈R

(‖u − c‖2
H1(Ω)

+ ‖U − c‖2)1/2.
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Then the bilinear form a(σ , ·, ·) is continuous and coercive on the space Ḣ; see Somersalo et al. (1992)
for details. It differs from the preceding one in the grounding condition: in the choice H, the grounding
is enforced by the zero mean condition U ∈ R

L

.

2.2 Tikhonov regularization

The inverse problem is to reconstruct the conductivity σ from noisy measurements Uδ of the exact
electrode voltage U(σ †), corresponding to one or multiple input currents, with a noise level δ:

‖Uδ − U(σ †)‖ ≤ δ.

It is severely ill-posed in the sense that small errors in the data can lead to very large deviations in
the reconstructions. Hence, some sort of regularization is beneficial, and it is incorporated into imaging
algorithms in order to yield physically meaningful images. One prominent idea behind many existing
imaging algorithms is Tikhonov regularization, which minimizes the following functional

min
σ∈A

{
J(σ ) = 1

2‖U(σ )− Uδ‖2 + α

2 ‖∇σ‖2
L2(Ω)

}
, (2.3)

and then takes the minimizer as an approximation to the true conductivity σ †. The first term in the
functional J integrates the information in the data Uδ . For notational simplicity, we consider only one
dataset in the discussion, and the adaptation to multiple datasets is straightforward. The second term
imposes a priori regularity assumption (Sobolev smoothness) on the expected conductivity σ . The scalar
α > 0 is known as a regularization parameter and controls the tradeoff between the two terms (Ito & Jin,
2015). Problem (2.3) has at least one minimizer, and it depends continuously on the data perturbation
(Jin & Maass, 2012a). The convergence of the Tikhonov minimizer to σ † as the noise level δ tends to
zero was shown in Jin & Maass (2012a), if the true conductivity σ † ∈ H1(Ω), and also a convergence
rate O(δ1/2) was given under suitable source condition as δ → 0, both under a proper choice of α.

Following the standard adjoint technique (see e.g., Ito & Kunisch, 2008), we introduce the following
adjoint problem for (2.2): find (p, P) ≡ (p(σ ), P(σ )) ∈ H such that

a(σ , (p, P), (v, V)) = 〈U(σ )− Uδ , V〉 ∀(v, V) ∈ H. (2.4)

Then it can be verified that the Gâteaux derivative of J(σ ) at σ ∈ A in the direction μ is given by

J ′(σ )[μ] = (α∇σ , ∇μ)− (μ∇u(σ ), ∇p(σ )).

Then the minimizer σ ∗ to problem (2.3) and the respective forward solution (u∗, U∗) and the adjoint
solution (p∗, P∗) satisfies the following necessary optimality system:

a(σ ∗, (u∗, U∗), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H,

a(σ ∗, (p∗, P∗), (v, V)) = 〈U∗ − Uδ , V〉 ∀(v, V) ∈ H,

α(∇σ ∗, ∇(μ− σ ∗))− ((μ− σ ∗)∇u∗, ∇p∗) ≥ 0 ∀μ ∈ A,

(2.5)

where the variational inequality at the last line corresponds to the box constraint in the admissible set A.
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3. Adaptive FEM

Now we describe the FEM for discretizing problem (2.3), derive the a posteriori error estimator and
develop a novel adaptive algorithm, which uses a general marking strategy, and thus is easy to implement.
The convergence analysis of the algorithm will be presented in Section 4.

3.1 Finite element discretization

To discretize the problem, we first triangulate the domainΩ . Let T be a shape regular triangulation of the
polyhedral domain Ω consisting of closed simplicial elements, with a local mesh size hT := |T |1/d for
each element T ∈ T , which is assumed to intersect at most one electrode surface el. On the triangulation
T , we define a continuous piecewise linear finite element space

VT = {
v ∈ C(Ω) : v|T ∈ P1(T) ∀T ∈ T

}
,

where the space P1(T) consists of all linear functions on the element T . The space VT is also used
for approximating the potential u and the conductivity σ . The use of piecewise linear finite elements is
popular since the problem data, e.g., boundary conditions, have only limited regularity.

Now we can describe the FEM approximation. First, we approximate the forward map (u(σ ), U(σ )) ∈
H by (uT , UT ) ≡ (uT (σT ), UT (σT )) ∈ HT ≡ VT ⊗ R

L

 defined by

a(σT , (uT , UT ), (vT , V)) = 〈I , V〉 (vT , V) ∈ HT , (3.1)

where the (discretized) conductivity σT lies in the discrete admissible set

AT = {σT ∈ VT : λ ≤ σT ≤ λ−1 a.e. Ω} = A ∩ VT .

Then the discrete optimization problem reads

min
σT ∈AT

{
JT (σT ) = 1

2‖UT (σT )− Uδ‖2 + α

2 ‖∇σT ‖2
L2(Ω)

}
. (3.2)

Because of the compactness of the finite-dimensional space AT , it is easy to see that there exists at
least one minimizer σ ∗

T to problem (3.1)–(3.2) (see e.g., Gehre et al., 2014). The minimizer σ ∗
T and

the related forward solution (u∗
T , U∗

T ) ≡ (u∗
T (σ

∗
T ), U∗

T (σ
∗
T )) ∈ HT and adjoint solution (p∗

T , P∗
T ) ≡

(p∗
T (σ

∗
T ), P∗

T (σ
∗
T )) ∈ HT satisfies the following necessary optimality system

a(σ ∗
T , (u∗

T , U∗
T ), (vT , V)) = 〈I , V〉 ∀(vT , V) ∈ HT ,

a(σ ∗
T , (p∗

T , P∗
T ), (vT , V)) = 〈U∗

T − Uδ , V〉 ∀(vT , V) ∈ HT ,

α(∇σ ∗
T , ∇(μT − σ ∗

T ))− ((μT − σ ∗
T )∇u∗

T , ∇p∗
T ) ≥ 0 ∀μT ∈ AT ,

(3.3)

which is the discrete analog of (2.5). Similar to the continuous case, it is straightforward to verify that
the discrete solutions (u∗

T , U∗
T ) and (p∗

T , P∗
T ) depend continuously on the input current pattern I , i.e.,

‖(u∗
T , U∗

T )‖H,∗ + ‖(p∗
T , U∗

T )‖H,∗ ≤ c(‖I‖ + ‖Uδ‖), (3.4)

where the constant c can be made independent of α.
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3.2 Adaptive algorithm

Now we can present a novel AFEM for problems (2.2)–(2.3). First we introduce some notation. Let T

be the set of all possible conforming triangulations of the domain Ω obtained from some shape-regular
initial mesh T0 by the successive use of bisection. We call T ′ ∈ T a refinement of T ∈ T if T ′ can be
obtained from T by a finite number of bisections. The collection of all faces (respectively, all interior
faces) in T ∈ T is denoted by FT (respectively, F i

T ) and its restriction on the electrode ēl and Γ \ ∪L
l=1 el

by F l
T and F c

T , respectively. The scalar hF := |F|1/(d−1) denotes the diameter of a face F ∈ FT , which is
associated with a fixed normal unit vector nF inΩ with nF = n on the boundary Γ . Further, we denote by
DT (respectively, DF) the union of all elements in T with nonempty intersection with an element T ∈ T
(respectively, F ∈ FT ).

Remark 3.1 Our convergence analysis covers any bisection method that ensures that the family T is
uniformly shape regular during the refinement process, i.e., shape regularity of any T ∈ T is uniformly
bounded by a constant depending only on the initial mesh T0 (Nochetto et al., 2009, Lemma 4.1), and thus
all constants only depend on the initial mesh T0 and given data, but not on any subsequent mesh. Such
bisection methods include in particular newest vertex bisection in two dimensions (Mitchell, 1989) and
the bisection of Kossaczký (1995) in three dimensions. Note that no interior node property is enforced
between two consecutive refinements by bisection in our AFEM.

For the solution (σ ∗
T , u∗

T , U∗
T , p∗

T , P∗
T ) to problem (3.3), we define two element residuals for each

element T ∈ T and two face residuals for each face F ∈ FT by

RT ,1(σ
∗
T , u∗

T ) = ∇ · (σ ∗
T ∇u∗

T ),

RT ,2(u
∗
T , p∗

T ) = ∇u∗
T · ∇p∗

T ,

JF,1(σ
∗
T , u∗

T , U∗
T ) =

⎧⎪⎨⎪⎩
[σ ∗

T ∇u∗
T · nF] for F ∈ F i

T ,

σ ∗
T ∇u∗

T · n + (u∗
T − U∗

T ,l)/zl for F ∈ F l
T ,

σ ∗
T ∇u∗

T · n for F ∈ F c
T ,

JF,2(σ
∗
T ) =

{[α∇σ ∗
T · nF] for F ∈ F i

T ,

α∇σ ∗
T · n for F ∈ F l

T ∪ F c
T ,

where [·] denotes the jumps across interior faces F. Then for any collection of elements MT ⊆ T , we
introduce the following error estimator

η2
T (σ

∗
T , u∗

T , U∗
T , p∗

T , P∗
T , MT ) :=

∑
T∈MT

η2
T (σ

∗
T , u∗

T , U∗
T , p∗

T , P∗
T , T)

:=
∑

T∈MT

η2
T ,1(σ

∗
T , u∗

T , U∗
T , T)+ η2

T ,2(σ
∗
T , p∗

T , P∗
T , T)+ η2

T ,3(σ
∗
T , u∗

T , p∗
T , T),

(3.5)
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Algorithm 1. AFEM for EIT
1. Specify a shape regular initial mesh T0, and set k := 0.
2. (SOLVE) Solve problem (3.1)–(3.2) over Tk for the minimizer (σ ∗

k , u∗
k , U∗

k ) ∈ Ak ×Hk and the adjoint
solution (p∗

k , P∗
k ) ∈ Hk; see (3.3).

3. (ESTIMATE) Compute the error estimator ηk(σ
∗
k , u∗

k , U∗
k , p∗

k , P∗
k ) by (3.2).

4. (MARK) Mark a subset Mk ⊆ Tk with at least one element T̃ ∈ Tk with the largest error indicator:

ηk(σ
∗
k , u∗

k , U∗
k , p∗

k , P∗
k , T̃) = max

T∈Tk
ηk(σ

∗
k , u∗

k , U∗
k , p∗

k , P∗
k , T). (3.6)

5. (REFINE) Refine each element T in Mk by bisection to get Tk+1.
6. Set k = k + 1, and return to Step 2, until a certain stopping criterion is fulfilled.

where the three components η2
T ,i, i = 1, 2, 3, are defined by

η2
T ,1(σ

∗
T , u∗

T , U∗
T , T) := h2

T‖RT ,1(σ
∗
T , u∗

T )‖2
L2(T)

+
∑
F⊂∂T

hF‖JF,1(σ
∗
T , u∗

T , U∗
T )‖2

L2(F)
,

η2
T ,2(σ

∗
T , p∗

T , P∗
T , T) := h2

T‖RT ,1(σ
∗
T , p∗

T )‖2
L2(T)

+
∑
F⊂∂T

hF‖JF,1(σ
∗
T , p∗

T , P∗
T )‖2

L2(F)
,

η2
T ,3(σ

∗
T , u∗

T , p∗
T , T) := h4

T‖RT ,2(u
∗
T , p∗

T )‖2
L2(T)

+
∑
F⊂∂T

h3
F‖JF,2(σ

∗
T )‖2

L2(F)
.

We defer the derivation of the a posteriori error estimator ηT (σ
∗
T , u∗

T , U∗
T , p∗

T , P∗
T , MT ) to Section 3.3

below. The notation MT will be omitted whenever MT = T . Note that the estimator ηT depends only
on the discrete solutions (σ ∗

T , u∗
T , U∗

T , p∗
T , P∗

T ) and the given problem data (e.g., impedance coefficients
{zl}L

l=1), and all the quantities involved in ηT are computable. Further, the regularization parameter α
enters the estimator only through the face residual JF,2(σ

∗
T ). It will be shown in Section 4.2 that this error

estimator is sufficient for the convergence of the resulting adaptive algorithm.
Now we can formulate an adaptive algorithm for the EIT inverse problem, cf. Algorithm 1. Below

we indicate the dependence on the triangulation Tk by the iteration number k in the subscript.

Remark 3.2 The solver in the module SOLVE can be either a (projected) gradient descent method or
iteratively regularized Gauss-Newton method, each equipped with a suitable step size selection rule.

Remark 3.3 Assumption (3.6) in the module MARK is fairly general, and it covers several commonly
used collective marking strategies, e.g., maximum strategy, equidistribution, modified equidistribution
strategy and Dörfler’s strategy (Siebert, 2011, p. 962). Our convergence analysis in Section 4 covers all
these marking strategies. In the module MARK, one may also consider separate marking. The motivation is
to be able to neglect data oscillations, which have no importance for sufficiently fine meshes. Numerically,
this adds little computational overheads, since the module SOLVE is the most expensive step at each
iteration.
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Finally, we give an important geometric observation on the mesh sequence {Tk} and a stability result
on error indicators ηk,1(σ

∗
k , u∗

k , U∗
k ), ηk,2(σ

∗
k , p∗

k , P∗
k ) and ηk,3(σ

∗
k , u∗

k , p∗
k) given in Algorithm 1. Let

T +
k :=

⋂
l≥k

Tl, T 0
k := Tk \ T +

k , Ω+
k :=

⋃
T∈T +

k

DT , Ω0
k :=

⋃
T∈T 0

k

DT .

That is, the set T +
k consists of all elements not refined after the kth iteration, whereas all elements in T 0

k

are refined at least once after the kth iteration. Clearly, T +
l ⊂ T +

k for l < k. We also define a mesh-size
function hk : Ω → R

+ almost everywhere by hk(x) = hT for x in the interior of an element T ∈ Tk , and
hk(x) = hF for x in the relative interior of a face F ∈ Fk . It has the following important property in the
region of Ω involving marked elements (Siebert, 2011, Corollary 3.3).

Lemma 3.4 Let χ 0
k be the characteristic function of Ω0

k . Then limk→∞ ‖hkχ
0
k ‖L∞(Ω) = 0.

The next result gives preliminary bounds on the a posteriori error estimators. Note that only the
constant c for the estimator ηk,3 depends on the regularization parameter α, via the face residuals JF,2(σ

∗
k ),

and all the constants can be naturally made independent of α, if desired.

Lemma 3.5 Let the sequence of discrete solutions {(σ ∗
k , u∗

k , U∗
k , p∗

k , P∗
k )} be generated by Algorithm 1.

Then for each T ∈ Tk with its face F, there hold

η2
k,1(σ

∗
k , u∗

k , U∗
k , T) ≤ c(‖∇u∗

k‖2
L2(DT )

+ hF‖u∗
k − U∗

k,l‖2
L2(F∩el)

),

η2
k,2(σ

∗
k , p∗

k , P∗
k , T) ≤ c(‖∇p∗

k‖2
L2(DT )

+ hF‖p∗
k − P∗

k,l‖2
L2(F∩el)

),

η2
k,3(σ

∗
k , u∗

k , p∗
k , T) ≤ c(h4−d

T ‖∇u∗
k‖2

L2(T)
‖∇p∗

k‖2
L2(T)

+ h2
T‖∇σ ∗

k ‖2
L2(DT )

),

where el denotes the electrode intersecting with the element T ∈ Tk .

Proof. We only prove the third estimate, and the first two follow analogously. By the inverse estimates
and the trace theorem, the local quasi-uniformity of Tk yields

h4
T‖∇u∗

k · ∇p∗
k‖2

L2(T)
≤ ch4−d

T ‖∇u∗
k · ∇p∗

k‖2
L1(T)

≤ ch4−d
T ‖∇u∗

k‖2
L2(T)

‖∇p∗
k‖2

L2(T)
,∑

F⊂∂T

h3
F‖JF,2(σ

∗
k )‖2

L2(F)
≤ ch2

T‖∇σ ∗
k ‖2

L2(DT )
.

�

3.3 Derivation of a posteriori error estimators

Now we motivate the a posteriori error estimator ηT defined in (3.2) underlying the moduleESTIMATE of
Algorithm 1. The algorithm generates a sequence of discrete solutions {(σ ∗

k , u∗
k , U∗

k , p∗
k , P∗

k )} in a sequence
of finite element spaces {Vk} and discrete admissible sets {Ak} over a sequence of meshes {Tk}. Naturally,
some arguments in the a posteriori error estimation for direct problems will be employed. We shall need
the following results on the Lagrange interpolation operator Ik : H2(Ω) → Vk (Ciarlet, 2002) and the
Scott–Zhang interpolation operator Isz

k : H1(Ω) → Vk (Scott & Zhang, 1990) over the triangulation Tk .
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Lemma 3.6 Let ωF be the union of elements with F as a face. For any T ∈ Tk and any F ∈ Fk ,

‖v − Ikv‖L2(T) ≤ ch2
T‖v‖H2(T), ‖v − Ikv‖L2(F) ≤ ch3/2

T ‖v‖H2(ωF )
,

‖v − Isz
k v‖L2(T) ≤ chT‖v‖H1(DT )

, ‖v − Isz
k v‖L2(F) ≤ ch1/2

T ‖v‖H1(DF )
.

To motivate the error estimator ηT , we begin with two auxiliary problems: find (̃u(σ ∗
k ), Ũ(σ ∗

k )) ∈ H

and (̃p(σ ∗
k ), P̃(σ ∗

k )) ∈ H such that

a(σ ∗
k , (̃u, Ũ), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H, (3.7)

a(σ ∗
k , (̃p, P̃), (v, V)) = 〈Ũ − Uδ , V〉 ∀(v, V) ∈ H. (3.8)

The first line in (3.3) is actually the finite element scheme of (3.7) over Tk . Hence, the standard a posteriori
error analysis for forward problems can be applied. By setting vk = Isz

k v ∈ Vk in the first line in (3.3) for
any (v, V) ∈ H, applying elementwise integration by parts and Lemma 3.6, there hold

a(σ ∗
k , (̃u − u∗

k , Ũ − U∗
k ), (v, V)) = 〈I , V〉 − (σ ∗

k ∇u∗
k , ∇v)−

L∑
l=1

z−1
l (u

∗
k − U∗

k,l, v − Vl)L2(el)

= (σ ∗
k ∇u∗

k , ∇(Isz
k v − v))+

L∑
l=1

z−1
l (u

∗
k − U∗

k,l, Isz
k v − v)L2(el)

≤ c

⎛⎝∑
T∈Tk

η2
k,1(σ

∗
k , u∗

k , U∗
k , T)

⎞⎠1/2

‖v‖H1(Ω).

Taking (v, V) = (̃u − u∗
k , Ũ − U∗

k ) ∈ H and using Lemma 2.1 yield

‖(̃u − u∗
k , Ũ − U∗

k )‖H,∗ ≤ c

⎛⎝∑
T∈Tk

η2
k,1(σ

∗
k , u∗

k , U∗
k , T)

⎞⎠1/2

. (3.9)

Further, from the first equation in (2.5) and (3.7), we find for any (v, V) ∈ H

a(σ ∗
k , (u∗ − ũ, U∗ − Ũ), (v, V)) = ((σ ∗

k − σ ∗)∇u∗, ∇v) ≤ ‖(σ ∗ − σ ∗
k )∇u∗‖L2(Ω)‖∇v‖L2(Ω).

Consequently,

‖(u∗ − ũ, U∗ − Ũ)‖H,∗ ≤ c‖(σ ∗ − σ ∗
k )∇u∗‖L2(Ω). (3.10)

Likewise, for (p∗ − p∗
k , P∗ − P∗

k ), we appeal to the second equation in the discrete optimality system (3.3)
and the auxiliary problem (3.8) to deduce

a(σ ∗
k , (̃p − p∗

k , P̃ − P∗
k ), (v, V)) = 〈Ũ − Uδ , V〉 − a(σ ∗

k , (p∗
k , P∗

k ), (v, V))

= 〈Ũ − U∗
k , V〉 + 〈U∗

k − Uδ , V〉 − a(σ ∗
k , (p∗

k , P∗
k ), (v, V))
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= 〈Ũ − U∗
k , V〉 + (σ ∗

k ∇p∗
k , ∇(Isz

k v − v))+
L∑

l=1

z−1
l (p

∗
k − P∗

k,l, Isz
k v − v)L2(el)

≤ c

⎛⎝⎛⎝∑
T∈Tk

η2
k,2(σ

∗
k , p∗

k , P∗
k , T)

⎞⎠1/2

+ ‖Ũ − U∗
k ‖

⎞⎠ ‖(v, V)‖H,∗,

and further

a(σ ∗
k , (p∗ − p̃, P∗ − P̃), (v, V)) = ((σ ∗

k − σ ∗)∇p∗, ∇v)+ 〈U∗ − Ũ, V〉
≤ (‖(σ ∗ − σ ∗

k )∇p∗‖L2(Ω) + ‖U∗ − Ũ‖) ‖(v, V)‖H,∗,

which, together with (3.9) and (3.10) and Lemma 2.1, implies

‖(p∗ − p∗
k , P∗ − P∗

k )‖H,∗ ≤ c

⎛⎝⎛⎝∑
T∈Tk

η2
k,1(σ

∗
k , u∗

k , U∗
k , T)+ η2

k,2(σ
∗
k , p∗

k , P∗
k , T)

⎞⎠1/2

+‖(σ ∗ − σ ∗
k )∇u∗‖L2(Ω) + ‖(σ ∗ − σ ∗

k )∇p∗‖L2(Ω)

)
. (3.11)

In view of (3.9)–(3.11), the estimators ηk,1 and ηk,2 can bound (u∗−u∗
k , U∗−U∗

k ) and (p∗−p∗
k , P∗−P∗

k )

from above up to the terms ‖(σ ∗ −σ ∗
k )∇u∗‖L2(Ω) and ‖(σ ∗ −σ ∗

k )∇p∗‖L2(Ω), which are not computable, but
asymptotically vanishing, provided that σ ∗

k → σ ∗ pointwise. This motivates our choice of a computable
upper bound for σ ∗ − σ ∗

k , upon discarding the uncomputable terms.
To bound the term ‖∇(σ ∗

k − σ ∗)‖L2(Ω), we appeal to the variational inequalities in (2.5) and (3.3).
Since Ikμ ∈ Ak for any μ ∈ A ∩ C∞(Ω), we deduce

α‖∇(σ ∗ − σ ∗
k )‖2

L2(Ω)
≤ α(∇σ ∗

k , ∇(σ ∗
k − σ ∗))− ((σ ∗

k − σ ∗)∇u∗, ∇p∗)

= α(∇σ ∗
k , ∇(σ ∗

k − σ ∗))− ((σ ∗
k − σ ∗)∇u∗

k , ∇p∗
k)

+ (∇u∗
k · ∇p∗

k − ∇u∗ · ∇p∗, σ ∗
k − σ ∗)

≤ α(∇σ ∗
k , ∇(Ikμ− σ ∗))− ((Ikμ− σ ∗)∇u∗

k , ∇p∗
k)

+ (∇u∗
k · ∇p∗

k − ∇u∗ · ∇p∗, σ ∗
k − σ ∗)

= α(∇σ ∗
k , ∇(Ikμ− μ))− (∇u∗

k , ∇p∗
k(Ikμ− μ))

+ (∇u∗
k · ∇p∗

k − ∇u∗ · ∇p∗, σ ∗
k − σ ∗)

+ α(∇σ ∗
k , ∇(μ− σ ∗))− ((μ− σ ∗)∇u∗

k , ∇p∗
k) := I + II + III.

Now Lemma 3.6 and elementwise integration by parts yield

|I| ≤ c

⎛⎝∑
T∈Tk

η2
k,3(σ

∗
k , u∗

k , p∗
k , T)

⎞⎠1/2

‖μ‖H2(Ω) ∀μ ∈ A ∩ C∞(Ω). (3.12)
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By the minimizing property of σ ∗
k for Jk(·), ‖∇σ ∗

k ‖L2(Ω) is bounded. Then (3.4) and the density of
A ∩ C∞(Ω) in A ensure that the term III can be made arbitrarily small. For the term II, we have

|II| = |(∇u∗
k · ∇p∗

k − ∇u∗
k · ∇p∗ + ∇u∗

k · ∇p∗ − ∇u∗ · ∇p∗, σ k − σ ∗)|
≤ ‖∇(p∗

k − p∗)‖L2(Ω)‖(σ ∗
k − σ ∗)∇u∗

k‖L2(Ω) + ‖∇(u∗
k − u∗)‖L2(Ω)‖(σ ∗

k − σ ∗)∇p∗‖L2(Ω),

which are expected to be higher order terms. Upon discarding the uncomputable terms ‖(σ ∗ −
σ ∗

k )∇u∗‖L2(Ω) and ‖(σ ∗ − σ ∗
k )∇p∗‖L2(Ω) in (3.10)–(3.11) and the nonlinear term II, we get all com-

putable quantities in (3.9), (3.11) and (3.12), which are exactly the a posteriori error estimator ηk defined
in (3.2). Thus, we may view it as a reliable upper bound for the error and employ it in the module
ESTIMATE to drive the adaptive refinement process. Moreover, the derivation of (3.12) suggests itself
a natural way to handle the variational inequality in (2.5) in the convergence analysis, which will be
presented in Section 4 below.

4. Convergence analysis

In this section, we shall establish the main theoretical result of this work, the convergence of Algorithm 1,
namely the sequence of discrete solutions {(σ ∗

k , u∗
k , U∗

k , p∗
k , P∗

k )} to the optimality system (3.3) generated
by Algorithm 1, contains a subsequence converging in H1(Ω) × H × H to a solution to the optimality
system (2.5). The main technical difficulty lies in the lack of density of the adaptively generated FE
space Vk in the space H1(Ω). To overcome the challenge, the proof is carried out in two steps. In the first
step (Section 4.1), we analyse a ‘limiting’ optimization problem posed over a limiting set induced by
{Ak}, and show that the sequence of discrete solutions contains a convergent subsequence to a minimizer
to the limiting problem. In the second step (Section 4.2), we show that the solution to the optimality
system for the limiting problem actually solves the optimality system (2.5). It is worth noting that all
the proofs in Section 4.1 only depend on the nestedness of finite element spaces {Vk} and discrete
admissible sets {Ak}, and the error estimator (3.2) and the marking assumption (3.6) are used only in
Section 4.2.

4.1 Limiting optimization problem

For the sequences {Hk} and {Ak} generated by Algorithm 1, we define a limiting finite element space H∞
and a limiting admissible set A∞, respectively, by

H∞ :=
⋃
k≥0

Hk (in H, ∗-norm) and A∞ :=
⋃
k≥0

Ak (in H1(Ω)-norm).

It is easy to see that H∞ is a closed subspace of H. For the set A∞, we have the following lemma.

Lemma 4.1 A∞ is a closed convex subset of A.

Proof. The definition of A∞ implies its strong closedness. For any μ and ν in A∞, there exist two
sequences {μk} and {νk} ⊂ ⋃

k≥0 Ak such that μk → μ and νk → ν in H1(Ω). The convexity of the set
Ak implies {tμk + (1 − t)νk} ⊂ ⋃

k≥0 Ak for any t ∈ (0, 1). Then tμk + (1 − t)νk → tμ + (1 − t)ν in
H1(Ω), i.e., tμ+ (1 − t)ν ∈ A∞ for any t ∈ (0, 1). Hence, A∞ is convex. Moreover, we have μk → μ
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a.e. in Ω after (possibly) passing to a subsequence, which, along with the constraint λ ≤ μk ≤ λ−1 a.e.
in Ω , indicates that λ ≤ μ ≤ λ−1 a.e. in Ω . Lastly, the fact that A∞ ⊂ H1(Ω) concludes A∞ ⊂ A. �

Over the limiting set A∞, we introduce a limiting minimization problem:

min
σ∞∈A∞

{
J∞(σ∞) = 1

2‖U∞(σ∞)− Uδ‖2 + α

2 ‖∇σ∞‖2
L2(Ω)

}
, (4.1)

where (u∞, U∞) ≡ (u∞(σ∞), U∞(σ∞)) ∈ H∞ satisfies the variational problem:

a(σ∞, (u∞, U∞), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H∞. (4.2)

By Lemma 2.1 and Lax–Milgram theorem, the limiting variational problem (4.2) is well posed for any
fixed σ∞ ∈ A∞. The next result shows the existence of a minimizer to the limiting problem (4.1)–(4.2).

Theorem 4.2 There exists at least one minimizer to problem (4.1)–(4.2).

Proof. It is clear that inf J∞(σ ) is finite over A∞, so there exists a minimizing sequence {σ n} ⊂ A∞, i.e.,

lim
n→∞ J∞(σ n) = inf

σ∈A∞
J∞(σ ).

Thus, the sequence {σ n} is uniformly bounded in H1(Ω), and by Sobolev embedding theorem and Lemma
4.1, there exists a subsequence, relabeled as {σ n}, and some σ ∗ ∈ A∞ such that σ n → σ ∗ weakly in
H1(Ω), σ n → σ ∗ a.e. in Ω . By taking σ∞ = σ n ∈ A∞ in (4.2), then (un, Un) ≡ (un(σ n), Un(σ n)) ∈
H∞ ⊂ H satisfies

a(σ n, (un, Un), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H∞. (4.3)

Then by Lemma 2.1, {(un, Un)} is uniformly bounded in H, which gives a subsequence, also denoted by
{(un, Un)}, and some (u∗, U∗) ∈ H∞ such that

(un, Un) → (u∗, U∗) weakly in H and un → u∗ in L2(Γ ). (4.4)

We claim that (u∗, U∗) = (u∗(σ ∗), U∗(σ ∗)) ∈ H∞. To this end, first we observe the splitting

(σ n∇un, ∇v) = ((σ n − σ ∗)∇un, ∇v)+ (σ ∗∇un, ∇v).

The pointwise convergence of the sequence {σ n}, Lebesgue’s dominated convergence theorem (Evans &
Gariepy, 1992) and the uniform boundedness of {un} in H1(Ω) imply that

|((σ n − σ ∗)∇un, ∇v)| ≤ ‖∇un‖L2(Ω)‖(σ n − σ ∗)∇v‖L2(Ω) → 0.

This and the weak convergence of {un} in H1(Ω) give

(σ n∇un, ∇v)L2(Ω) → (σ ∗∇u∗, ∇v)L2(Ω).
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Then by (4.4), we obtain

(un − Un
l , v − Vl)L2(el)

→ (u∗ − U∗
l , v − Vl)L2(el)

.

Upon taking into account these relations, we deduce

a(σ ∗, (u∗, U∗), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H∞,

i.e., the desired claim (u∗, U∗) = (u∗(σ ∗), U∗(σ ∗)) ∈ H∞. This and the weak lower semicontinuity of
the norm imply that σ ∗ is a minimizer of J∞(·) over A∞, completing the proof of the theorem. �

The preceding proof, together with the uniqueness of the solution to (4.2) and the standard subsequence
argument, yields the following weak continuity result.

Lemma 4.3 Let the sequence {σk} ⊂ ⋃
k≥0Ak converge to some σ ∗ ∈ A∞ weakly in H1(Ω), and

let the solution to (4.2) with σ∞ = σ ∗ be (u(σ ∗), U(σ ∗))∈ H∞. Then the sequence of solutions
{(uk(σk), Uk(σk))} ⊂ ⋃

k≥0 Hk to (3.1) over Tk satisfies

(uk(σk), Uk(σk)) → (u(σ ∗), U(σ ∗)) weakly in H.

Now we analyse the limiting behavior of the sequence {(σ ∗
k , u∗

k , U∗
k )} generated by Algorithm 1: It

contains a subsequence converging in H1(Ω) × H to a minimizer of the limiting problem (4.1)–(4.2).
This result will play a crucial role in the convergence analysis in Section 4.2.

Theorem 4.4 Let {Ak ×Hk} be a sequence of discrete admissible sets and finite element spaces generated
by Algorithm 1. Then the sequence of discrete solutions {(σ ∗

k , u∗
k , U∗

k )} to problem (3.2) has a subsequence
{(σ ∗

km
, u∗

km
, U∗

km
)} converging to a minimizer (σ ∗

∞, u∗
∞, U∗

∞) to problem (4.1)–(4.2) in the sense that

σ ∗
km

→ σ ∗
∞ in H1(Ω), σ ∗

km
→ σ ∗

∞ a.e. in Ω , (u∗
km

, U∗
km
) → (u∗

∞, U∗
∞) in H.

Proof. Since the function σ ≡ 1 ∈ Ak for all k and Jk(σ
∗
k ) attains its minimum at σ ∗

k ∈ Ak , the sequence
{σ ∗

k } is uniformly bounded in H1(Ω). By Sobolev embedding theorem, there exists a subsequence {σ ∗
km

}
and some σ ∗

∞ ∈ A∞ such that σ ∗
km

→ σ ∗
∞ weakly in H1(Ω), σ ∗

km
→ σ ∗

∞ a.e. in Ω . By Lemma 4.3, the
subsequence {(u∗

km
, U∗

km
)} satisfies

(u∗
km

, U∗
km
) → (u∗

∞(σ
∗
∞), U∗

∞(σ
∗
∞)) weakly in H,

where (u∗
∞(σ

∗
∞), U∗

∞(σ
∗
∞)) solves (4.2) with σ∞ = σ ∗

∞. We claim that σ ∗
∞ is a minimizer to J∞ over A∞.

For any σ ∈ A∞, by the definition of A∞, there exists a sequence {σk} ⊂ ⋃
k≥0 Ak such that σk → σ in

H1(Ω). By Lemma 4.3, the sequence of solutions (uk(σk), Uk(σk)) to problem (3.1) over Tk satisfies

(uk(σk), Uk(σk)) → (u∞(σ ), U∞(σ )) weakly in H.

By the minimizing property of σ ∗
k to the functional Jk over Ak , there holds Jk(σ

∗
k ) ≤ Jk(σk). Consequently,

J∞(σ ∗
∞) ≤ lim inf

m→∞ Jkm(σ
∗
km
) ≤ lim sup

k→∞
Jk(σ

∗
k ) ≤ lim sup

k→∞
Jk(σk) = J∞(σ ) ∀σ ∈ A∞.
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Further, by taking σ = σ ∗
∞, we derive limm→∞ Jkm(σ

∗
km
) = J∞(σ ∗

∞), and thus limm→∞ ‖∇σ ∗
km

‖2
L2(Ω)

=
‖∇σ ∗

∞‖2
L2(Ω)

. This and the weak convergence of σ ∗
km

in H1(Ω) shows the first assertion. It remains to show

the convergence of {u∗
km

} in H1(Ω), which follows directly from the identity ‖∇(u∗
km

− u∗
∞)‖L2(Ω) → 0.

Using the discrete problem (3.1) over Tkm , the convergence of {U∗
km

} and the limiting problem (4.2) imply

a(σkm , (u∗
km

, U∗
km
), (u∗

km
, U∗

km
)) = 〈I , U∗

km
〉 → 〈I , U∗

∞〉 = a(σ∞, (u∗
∞, U∗

∞), (u
∗
∞, U∗

∞)).

By the compact embedding from the trace H1/2(Γ ) of H1(Ω) into L2(Γ ), the sequence {u∗
km

} converges
to u∗

∞ in L2(Γ ), and the convergence of {U∗
km

} yield (σ ∗
km

∇u∗
km

, ∇u∗
km
) → (σ ∗

∞∇u∗
∞, ∇u∗

∞). By the identity

‖
√
σ ∗

km
∇(u∗

km
− u∗

∞)‖2
L2(Ω)

= ‖
√
σ ∗

km
∇u∗

km
‖2

L2(Ω)
− 2(σ ∗

km
∇u∗

km
, ∇u∗

∞)+ ‖
√
σ ∗

km
∇u∗

∞‖2
L2(Ω)

and the triangle inequality, we deduce

‖∇(u∗
km

− u∗
∞)‖2

L2(Ω)
≤ c(|(σ ∗

km
∇u∗

km
, ∇u∗

km
)− (σ ∗

∞∇u∗
∞, ∇u∗

∞)| + |(σ ∗
km

− σ ∗
∞, |∇u∗

∞|2)|
+ |(σ ∗

km
∇u∗

km
− σ ∗

∞∇u∗
∞, ∇u∗

∞)|) := I + II + III.

The second term II tends to zero by the pointwise convergence of the sequence {σ ∗
km

} and Lebesgue’s
dominated convergence theorem (Evans & Gariepy, 1992, p. 20). For the third term III, there holds

III ≤ |((σ ∗
km

− σ ∗
∞)∇u∗

km
, ∇u∗

∞)| + |(σ ∗
∞∇(u∗

km
− u∗

∞), ∇u∗
∞)|

≤ ‖∇u∗
km

‖L2(Ω)‖(σ ∗
km

− σ ∗
∞)∇u∗

∞‖L2(Ω) + |(σ ∗
∞∇(u∗

km
− u∗

∞), ∇u∗
∞)| → 0

by the weak convergence of {u∗
km

} in H1(Ω) and the pointwise convergence of {σ ∗
km

}. The preceding three
estimates together complete the proof of the theorem. �

Next we turn to the optimality system of problem (4.1). As in the continuous case, the optimality
condition for the minimizer (σ ∗

∞, u∗
∞, U∗

∞) and the adjoint solution (p∗
∞, P∗

∞) ∈ H∞ is given by

a(σ ∗
∞, (u∗

∞, U∗
∞), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H∞,

a(σ ∗
∞, (p∗

∞, P∗
∞), (v, V)) = 〈U∗

∞ − Uδ , V〉 ∀(v, V) ∈ H∞,

α(∇σ ∗
∞, ∇(μ− σ ∗

∞))− (∇u∗
∞, ∇p∗

∞(μ− σ ∗
∞)) ≥ 0 ∀μ ∈ A∞.

(4.5)

The next result shows the convergence of the sequence of adjoint solutions.

Theorem 4.5 Under the condition of Theorem 4.4, the subsequence of adjoint solutions {(p∗
km

, P∗
km
)}

generated by Algorithm 1 converges to the solution (p∗
∞, P∗

∞) to the limiting adjoint problem in (4.5):

lim
m→∞ ‖(p∗

km
− p∗

∞, P∗
km

− P∗
∞)‖H,∗ = 0.

Proof. The discrete version of the limiting adjoint problem (4.5) reads: find (̃pkm , P̃km) ∈ Hkm such that

a(σ ∗
∞, (̃pkm , P̃km), (v, V)) = 〈U∗

∞ − Uδ , V〉 ∀(v, V) ∈ Hkm . (4.6)
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By Cea’s lemma and the construction of the space H∞, we deduce

‖(p∗
∞ − p̃km , P∗

∞ − P̃km)‖H,∗ ≤ c inf
(v,V)∈Hkm

‖(p∗
∞ − v, P∗

∞ − V)‖H,∗ → 0. (4.7)

By taking (vkm , Vkm) = (̃pkm − p∗
km

, P̃km − P∗
km
) in the second equation of (3.3) and (v, V) = (̃pkm −

p∗
km

, P̃km − P∗
km
) in (4.6), we obtain

‖√σkm∇ (̃pkm − p∗
km
)‖2

L2(Ω)
+

L∑
l=1

z−1
l ‖̃pkm − p∗

km
− P̃km ,l + P∗

km ,l‖2
L2(el)

= 〈U∗
∞ − U∗

km
, P̃km − P∗

km
〉 + ((σ ∗

km
− σ ∗

∞)∇ (̃pkm − p∗
∞), ∇ (̃pkm − p∗

km
))

+ ((σ ∗
km

− σ ∗
∞)∇p∗

∞, ∇ (̃pkm − p∗
km
)) := I + II + III.

The Cauchy–Schwarz inequality and the box constraints on σ ∗
km

and σ ∗
∞ give

|I| ≤ ‖U∗
∞ − U∗

km
‖

RL‖P̃km − P∗
km

‖
RL ,

|II| ≤ c‖∇ (̃pkm − p∗
∞)‖L2(Ω)‖∇ (̃pkm − p∗

km
)‖L2(Ω),

|III| ≤ ‖(σ ∗
km

− σ ∗
∞)∇p∗

∞‖L2(Ω)‖∇ (̃pkm − p∗
km
)‖L2(Ω),

which, together with Lemma 2.1, implies

‖(̃pkm − p∗
km

, P̃km − P∗
km
)‖H,∗ ≤ c(‖U∗

∞ − U∗
km

‖
RL + ‖∇ (̃pkm − p∗

∞)‖L2(Ω) + ‖(σ ∗
km

− σ ∗
∞)∇p∗

∞‖L2(Ω)).

Thanks to the convergence of {U∗
km

}, the pointwise convergence of {σ ∗
km

} in Theorem 4.4 and (4.7), the
right-hand side tends to zero. Now the desired assertion follows from the triangle inequality and (4.7). �

4.2 Convergence of AFEM

Now we establish the main theoretical result of this work: the sequence of discrete solutions generated
by Algorithm 1 contains a convergent subsequence {(σ ∗

km
, u∗

km
, U∗

km
, p∗

km
, P∗

km
)}, and the limit satisfies the

optimality system (2.5). By Theorems 4.4 and 4.5, it suffices to show that the limit {(σ ∗
∞, u∗

∞, U∗
∞, p∗

∞, P∗
∞)}

solves (2.5). Our arguments begin with the observation that the maximal error indicator over marked
elements has a vanishing limit, cf. Lemma 4.6. Then we show that the sequences of residuals with respect
to (u∗

km
, U∗

km
) and (p∗

km
, P∗

km
) converge to zero weakly in Lemma 4.7. This and Theorems 4.4 and 4.5 verify

the first two lines in (2.5) in Lemma 4.8 and the variational inequality in Lemma 4.9.
First we show that the maximal error indicator over the marked elements has a vanishing limit.

Lemma 4.6 Let {Tk , Ak × Hk , (σ ∗
k , u∗

k , U∗
k , p∗

k , P∗
k )} be the sequence of meshes, discrete admissible sets,

finite element spaces and discrete solutions generated by Algorithm 1 and Mk the set of marked elements
by (3.6). Then for each convergent subsequence {(σ ∗

km
, u∗

km
, U∗

km
, p∗

km
, P∗

km
)}, there holds

lim
m→∞ max

T∈Mkm

ηkm(σ
∗
km

, u∗
km

, U∗
km

, p∗
km

, P∗
km

, T) = 0.
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Proof. We denote by T̃ the element with the largest error indicator in Mkm . Since the set DT̃ ⊂ Ω0
km

, it
follows from Lemma 3.4 that

|DT̃ | ≤ c‖hkm‖d
L∞(Ω0

km
)
→ 0, |∂T̃ ∩ el| ≤ c‖hkm‖d−1

L∞(Ω0
km
)
→ 0 as m → ∞. (4.8)

By Lemma 3.5, the local quasi-uniformity of Tkm , inverse estimates, trace theorem (Evans & Gariepy,
1992, p. 133) and the triangle inequality, we have

η2
km ,1(σ

∗
km

, u∗
km

, U∗
km

, T̃) ≤ c(‖∇u∗
km

‖2
L2(DT̃ )

+ hT̃‖u∗
km ,l − U∗

km ,l‖2
L2(∂T̃∩el)

)

≤ c(‖(u∗
km

− u∗
∞, U∗

km
− U∗

∞)‖2
H,∗ + ‖∇u∗

∞‖2
L2(DT̃ )

+ ‖u∗
∞,l − U∗

∞,l‖2
L2(∂T̃∩el)

),

η2
km ,2(σ

∗
km

, p∗
km

, P∗
km

, T̃) ≤ c(‖∇p∗
km

‖2
L2(DT̃ )

+ hT̃‖p∗
km ,l − P∗

km ,l‖2
L2(∂T̃∩el)

)

≤ c(‖(p∗
km

− p∗
∞, P∗

km
− P∗

∞)‖2
H,∗ + ‖∇p∗

∞‖2
L2(DT̃ )

+ ‖p∗
∞,l − P∗

∞,l‖2
L2(∂T̃∩el)

),

η2
km ,3(σ

∗
km

, u∗
km

, p∗
km

, T̃) ≤ c(h4−d
T̃

‖∇u∗
km

‖2
L2(T̃)

‖∇p∗
km

‖2
L2(T̃)

+ h2
T̃‖∇σ ∗

km
‖2

L2(DT̃ )
)

≤ c|DT̃ |4/d−1
(
(‖∇(u∗

km
− u∗

∞)‖2
L2(T̃)

+ ‖∇u∗
∞‖2

L2(T̃)
)(‖∇(p∗

km
− p∗

∞)‖2
L2(T̃)

+ ‖∇p∗
∞‖2

L2(T̃)
)+ (‖∇(σ ∗

km
− σ ∗

∞)‖2
L2(DT̃ )

+ ‖∇σ ∗
∞‖2

L2(DT̃ )
)
)
.

The desired result follows from Theorems 4.4 and 4.5, (4.8), and the absolute continuity of the norms
‖ · ‖L2(Ω) and ‖ · ‖L2(Γ ) with respect to the Lebesgue measure. �

Now we define two residuals with respect to (u∗
k , U∗

k ) and (p∗
k , P∗

k ) as

〈R(u∗
k , U∗

k ), (v, V)〉 := a(σ ∗
k , (u∗

k , U∗
k ), (v, V))− 〈I , V〉 ∀(v, V) ∈ H,

〈R(p∗
k , P∗

k ), (v, V)〉 := a(σ ∗
k , (p∗

k , P∗
k ), (v, V))− 〈U∗

k − Uδ , V〉 ∀(v, V) ∈ H.

By definition, we have the following Galerkin orthogonality

〈R(u∗
k , U∗

k ), (v, V)〉 = 0 ∀(v, V) ∈ Hk ,

〈R(p∗
k , P∗

k ), (v, V)〉 = 0 ∀(v, V) ∈ Hk .
(4.9)

To relate the limit {(σ ∗
∞, u∗

∞, U∗
∞, p∗

∞, P∗
∞)} to the optimality system (2.5), we exploit the marking

assumption (3.6) in Algorithm 1. The next result gives the weak convergence of the residuals to zero.

Lemma 4.7 For the convergent subsequence {(σ ∗
km

, u∗
km

, U∗
km

, p∗
km

, P∗
km
)} given in Theorems 4.4 and 4.5,

there hold

lim
m→∞〈R(u∗

km
, U∗

km
), (v, V)〉 = 0 ∀(v, V) ∈ H,

lim
m→∞〈R(p∗

km
, P∗

km
), (v, V)〉 = 0 ∀(v, V) ∈ H.

Proof. We only prove the first assertion since the second follows analogously and relabel the index km

by k. Let Ik and Isz
k be the Lagrange and Scott–Zhang interpolation operators, respectively, associated
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with Vk . Then by (4.9), elementwise integration by parts and Lemma 3.6, we deduce for k > l and any
(ψ , V) ∈ C∞(Ω)× R

L

∣∣〈R(u∗

k , U∗
k ), (ψ , V)〉∣∣ = ∣∣〈R(u∗

k , U∗
k ), (ψ − Ikψ , 0)〉∣∣ = ∣∣〈R(u∗

k , U∗
k ), (w − Isz

k w, 0)〉∣∣
=

∣∣∣∣∣(σ ∗
k ∇u∗

k , ∇(w − Isz
k w))+

L∑
l=1

z−1
l ((u

∗
k − U∗

k,l), (w − Isz
k w))L2(el)

∣∣∣∣∣
≤ c

∑
T∈Tk

ηk,1(σ
∗
k , u∗

k , U∗
k , T)‖w‖H1(DT )

= c

⎛⎜⎝ ∑
T∈Tk\T +

l

ηk,1(σ
∗
k , u∗

k , U∗
k , T)‖w‖H1(DT )

+
∑

T∈T +
l

ηk,1(σ
∗
k , u∗

k , U∗
k , T)‖w‖H1(DT )

⎞⎟⎠,

where w = ψ − Ikψ . By appealing to Lemma 3.5 and (3.4), we deduce

⎛⎜⎝ ∑
T∈Tk\T +

l

η2
k,1(σ

∗
k , u∗

k , U∗
k , T)

⎞⎟⎠
1/2

≤ c

and further by the error estimate of the interpolation operator Ik from Lemma 3.6, we arrive at

∣∣〈R(u∗
k , U∗

k ), (ψ , V)〉∣∣ ≤ c1‖hl‖L∞(Ω0
l )

‖ψ‖H2(Ω) + c2

⎛⎜⎝ ∑
T∈T +

l

η2
k,1(σ

∗
k , u∗

k , U∗
k , T)

⎞⎟⎠
1/2

‖ψ‖H2(Ω).

By Lemma 3.4, c1‖hl‖L∞(Ω0
l )

‖ψ‖2 → 0 as l → ∞. From T +
l ⊂ T +

k ⊂ Tk for k > l and the marking
condition (3.6), we deduce

⎛⎜⎝ ∑
T∈T +

l

η2
k,1(σ

∗
k , u∗

k , U∗
k , T)

⎞⎟⎠
1/2

≤
√

|T +
l | max

T∈T +
l

ηk,1(σ
∗
k , u∗

k , U∗
k , T) ≤

√
|T +

l | max
T∈T +

k

ηk,1(σ
∗
k , u∗

k , U∗
k , T)

≤
√

|T +
l | max

T∈Mk
ηk(σ

∗
k , u∗

k , U∗
k , p∗

k , P∗
k , T).

Now Lemma 4.6 implies that for any fixed large l1, we can choose some k1 > l1 such that

c2

⎛⎜⎝ ∑
T∈T +

l

η2
k,1(σ

∗
k , u∗

k , U∗
k , T)

⎞⎟⎠
1/2

‖ψ‖2 < ε
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for any positive small number ε and k > k1. Thus, we arrive at

lim
m→∞〈R(u∗

km
, U∗

km
), (v, V)〉 = 0 ∀(v, V) ∈ C∞(Ω)× R

L

,

which, together with the density of C∞(Ω) in H1(Ω), gives the desired assertion. �

Next we show that the limit (σ ∗
∞, u∗

∞, U∗
∞, p∗

∞, P∗
∞) actually solves the variational equations in (2.5).

Lemma 4.8 The solution to problem (4.5) solves the two variational equations in (2.5), i.e.,

a(σ ∗
∞, (u∗

∞, U∗
∞), (v, V)) = 〈I , V〉 ∀(v, V) ∈ H,

a(σ ∗
∞, (p∗

∞, P∗
∞), (v, V)) = 〈U∗

∞ − Uδ , V〉 ∀(v, V) ∈ H.

Proof. We prove only the first assertion, since the proof of the second is analogous. Given the convergent
subsequence {(σ ∗

km
, u∗

km
, U∗

km
, p∗

km
, P∗

km
)} in Theorems 4.4 and 4.5, for any (v, V) ∈ H, there holds

∣∣∣a(σ ∗
∞, (u∗

∞, U∗
∞), (v, V))− 〈I , V〉

∣∣∣ ≤
L∑

l=1

z−1
l

∣∣∣(u∗
∞ − U∗

∞,l − u∗
km

+ U∗
km ,l, v − Vl)L2(el)

∣∣∣
+

∣∣∣((σ ∗
∞∇u∗

∞ − σ ∗
km

∇u∗
km
), ∇v)L2(Ω)

∣∣∣ + ∣∣〈R(u∗
km

, U∗
km
), (v, V)〉∣∣.

In view of Theorem 4.4 and Lemma 4.7, the first and third terms tend to zero. For the second term,

|((σ ∗
∞∇u∗

∞ − σ ∗
km

u∗
km
), ∇v)| ≤ |(σ ∗

∞∇(u∗
∞ − u∗

km
), ∇v)| + |((σ ∗

∞ − σ ∗
km
)∇u∗

km
, ∇v)|

≤ |(σ ∗
∞∇(u∗

∞ − u∗
km
), ∇v)| + ‖∇u∗

km
‖L2(Ω)‖(σ ∗

∞ − σ ∗
km
)∇v‖L2(Ω) → 0,

by the convergence of {u∗
km

}, and the pointwise convergence of {σ ∗
km

} in Theorem 4.4 and Lebesgue’s
dominated convergence theorem (Evans & Gariepy, 1992, p. 20). �

Now we turn to the variational inequality in (2.5). We resort again to a density argument: we first
show the assertion over a smooth subset and then extend it to A by a density argument.

Lemma 4.9 The solution to the variational inequality of problem (4.5) satisfies

α(∇σ ∗
∞, ∇(μ− σ ∗

∞))− (∇u∗
∞, ∇p∗

∞(μ− σ ∗
∞)) ≥ 0 ∀μ ∈ A.

Proof. As before, we relabel the index km by k, and let Ik be the Lagrange interpolation operator associated
with Vk . Then for any μ ∈ Ã := A ∩ C∞(Ω), Ikμ ∈ Ak and the discrete variational inequality in (3.3)
yields

α(∇σ ∗
k , ∇(μ− σ ∗

k ))− ((μ− σ ∗
k )∇u∗

k , ∇p∗
k)

=α(∇σ ∗
k , ∇(μ− Ikμ))− ((μ− Ikμ)∇u∗

k , ∇p∗
k)

+ α(∇σ ∗
k , ∇(Ikμ− σ ∗

k ))− ((Ikμ− σ ∗
k )∇u∗

k , ∇p∗
k)

≥α(∇σ ∗
k , ∇(μ− Ikμ))− ((μ− Ikμ)∇u∗

k , ∇p∗
k).

(4.10)
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Using elementwise integration by parts, the definition of ηk,3 and error estimates for Ik , cf. Lemma 3.6,
we deduce that for k > l, there holds∣∣∣α(∇σ ∗

k , ∇(μ− Ikμ))− ((μ− Ikμ)∇u∗
k , ∇p∗

k)

∣∣∣ ≤ c
∑
T∈Tk

ηk,3(σ
∗
k , u∗

k , p∗
k , T)‖μ‖H2(T)

≤ c3

⎛⎜⎝
⎛⎜⎝ ∑

T∈Tk\T +
l

η2
k,3(σ

∗
k , u∗

k , p∗
k , T)

⎞⎟⎠
1/2

+
⎛⎜⎝ ∑

T∈T +
l

η2
k,3(σ

∗
k , u∗

k , p∗
k , T)

⎞⎟⎠
1/2⎞⎟⎠ ‖μ‖H2(Ω).

The Lemma 3.5, (3.4), Theorem 4.4 and Lemma 3.4 give

∑
T∈Tk\T +

l

η2
k,3(σ

∗
k , u∗

k , p∗
k , T) ≤ c

⎛⎜⎝‖hl‖4−d

L∞(
Ω l

0

)‖∇pk‖2
L2(Ω)

∑
T∈Tk\T +

l

‖∇u∗
k‖2

L2(T)
+ ‖hl‖2

L∞(Ω l
0)
‖∇σ ∗

k ‖2
L2(Ω)

⎞⎟⎠
≤ c

(
‖hl‖4−d

L∞(
Ω l

0

) + ‖hl‖2

L∞(
Ω l

0

)
)

≤ c‖hl‖4−d

L∞(
Ω l

0

) → 0.

Upon noting the inclusion T +
l ⊂ Tk for k > l, we deduce from the marking condition (3.6)⎛⎜⎝ ∑

T∈T +
l

η2
k,3(σ

∗
k , u∗

k , p∗
k , T)

⎞⎟⎠
1/2

≤
√

|T +
l | max

T∈T +
l

ηk,3(σ
∗
k , u∗

k , p∗
k , T) ≤

√
|T +

l | max
T∈Mk

ηk(σ
∗
k , u∗

k , U∗
k , p∗

k , P∗
k , T).

Appealing again to Lemma 4.6, we can choose k2 > l2 for some large fixed l2 such that when k > k2

c3(
∑

T∈T +
l
η2

k,3(σ
∗
k , u∗

k , p∗
k , T))1/2‖μ‖H2(Ω) is smaller than any given positive number. Hence,

(α∇σ ∗
k , ∇(μ− Ikμ))− (∇u∗

k , ∇p∗
k(μ− Ikμ)) → 0 ∀μ ∈ Ã. (4.11)

Using the H1(Ω)-convergence of {σ ∗
k } from Theorem 4.4, we have

(α∇σ ∗
k , ∇(μ− σ ∗

k )) → (α∇σ ∗
∞, ∇(μ− σ ∗

∞)) ∀μ ∈ Ã. (4.12)

The convergence of {p∗
k} to p∗

∞ in H1(Ω) in Theorem 4.5, (3.4) and the box constraint in Ã yield

|(μ∇u∗
k , ∇(p∗

k − p∗
∞))| ≤ c‖∇(p∗

k − p∗
∞)‖L2(Ω) → 0,

and this together with Theorem 4.4 implies

(μ∇u∗
k , ∇p∗

k) = (μ∇u∗
k , ∇(p∗

k − p∗
∞))+ (μ∇u∗

k , ∇p∗
∞) → (μ∇u∗

∞, ∇p∗
∞) ∀μ ∈ Ã. (4.13)

By elementary calculations, we derive

(σ ∗
k ∇u∗

k , ∇p∗
k)− (σ ∗

∞∇u∗
∞, ∇p∗

∞) = (σ ∗
k ∇u∗

k , ∇(p∗
k − p∗

∞))+ ((σ ∗
k − σ ∗

∞)∇u∗
k , ∇p∗

∞)

+ (σ ∗
∞∇(u∗

k − u∗
∞), ∇p∗

∞).
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Repeating the arguments for (4.13) yields that for the first and third terms there hold (σ ∗
k ∇u∗

k , ∇(p∗
k −

p∗
∞)) → 0 and (σ ∗

∞∇(u∗
k − u∗

∞), ∇p∗
∞) → 0. The estimate (3.4), the pointwise convergence of {σ ∗

k } of
Theorem 4.4 and Lebesgue’s dominated convergence theorem (Evans & Gariepy, 1992, p. 20) show

|((σ ∗
k − σ ∗

∞)∇u∗
k , ∇p∗

∞)| ≤ c‖(σ ∗
k − σ ∗

∞)∇p∗
∞‖L2(Ω) → 0.

Hence,

(σ ∗
k ∇u∗

k , ∇p∗
k) → (σ ∗

∞∇u∗
∞, ∇p∗

∞). (4.14)

Now by passing both sides of (4.10) to the limit and combining (4.11)–(4.14), we obtain

α(∇σ ∗
∞, ∇(μ− σ ∗

∞))L2(Ω) − (∇u∗
∞, ∇p∗

∞(μ− σ ∗
∞))L2(Ω) ≥ 0 ∀μ ∈ Ã.

By the density of C∞(Ω) in H1(Ω) and the construction via a standard mollifier (Evans & Gariepy, 1992,
p. 122), for any μ ∈ A there exists a sequence {μn} ⊂ Ã such that ‖μn −μ‖H1(Ω) → 0 as n → ∞. Then
by Lebesgue’s dominated convergence theorem (Evans & Gariepy, 1992, p. 20), we deduce

(α∇σ ∗
∞, ∇μn) → (α∇σ ∗

∞, ∇μ) and (μn∇u∗
∞, ∇p∗

∞) → (μ∇u∗
∞, ∇p∗

∞)

after possibly passing to a subsequence. The desired result follows from the preceding two estimates. �

Finally, by combining preceding results, we obtain the main theoretical result: the sequence of
solutions generated by the AFEM contains a subsequence converging to a solution of (2.5).

Theorem 4.10 The sequence of discrete solutions {(σ ∗
k , u∗

k , U∗
k , p∗

k , P∗
k )} generated by Algorithm 1 has

a subsequence {(σ ∗
km

, u∗
km

, U∗
km

, p∗
km

, P∗
km
)} converging to a solution (σ ∗, u∗, U∗, p∗, P∗) to the continuous

optimality system (2.5) in the following sense:

‖σ ∗
km

− σ ∗‖H1(Ω), ‖(u∗
km

− u∗, U∗
km

− U∗)‖H,∗, ‖(p∗
km

− p∗, P∗
km

− P∗)‖H,∗ → 0 as m → ∞.

Remark 4.11 Theorem 4.10 is only concerned with the convergence of the adaptive solution to the
continuous Tikhonov solution, which is limited by the data accuracy (i.e., the noise level δ) and regular-
ization parameter α. In the spirit of the classical discrepancy principle (Ito & Jin, 2015), it is unnecessary
to make the adaptive FEM approximation of the forward model far more accurate than the data accu-
racy. In practice, it is advisable to terminate the refinement step when the estimator ηk falls below
a multiple of the noise level δ; however, the regularizing property of such a procedure is still to be
studied.

5. Numerical experiments and discussions

In this section, we present numerical results to illustrate the convergence and efficiency of the adaptive
algorithm. All the computations were carried out using MATLAB 2013a on a personal laptop with 6.00
GB RAM and 2.5 GHz CPU. The setup of the numerical experiments is as follows. The domain Ω is
taken to be a square Ω = (−1, 1)2. There are 16 electrodes {el}L

l=1 (with L = 16) evenly distributed
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along the boundary Γ , each of the length 1/4, thus occupying one half of the boundary Γ . The con-
tact impedances {zl}L

l=1 on the electrodes {el}L
l=1 are all set to unit, and the background conductivity

σ0 is taken to be σ0 ≡ 1. For each example, we measure the electrode voltages U for the first 10
sinusoidal input currents, in order to gain enough information about the true conductivity σ †. Then
the noisy data Uδ is generated by adding componentwise Gaussian noise to the exact data U(σ †) as
follows

Uδ
l = Ul(σ

†)+ εmax
l

|Ul(σ
†)|ξl l = 1, . . . , L,

where ε is the (relative) noise level, and {ξl} follow the standard normal distribution. The exact data U(σ †)

is computed on a much finer mesh generated adaptively (and thus completely different from the one used
in the inversion), in order to avoid the most obvious form of ‘inverse crime’. In all the experiments, the
marking strategy (3.6) in the module MARK is represented by a specific maximum strategy, cf. Remark
3.2, i.e., mark a minimal subset Mk ⊆ Tk , i.e., the refinement set, such that

ηk(σ
∗
k , u∗

k , U∗
k , p∗

k , P∗
k , Mk) ≥ θηk(σ

∗
k , u∗

k , U∗
k , p∗

k , P∗
k , Tk),

with a threshold θ ∈ (0, 1]. In the computation, we fix the threshold θ at θ = 0.7. For the adaptive
refinement, we employ the newest vertex bisection to subdivide the marked triangles; see Mitchell (1989)
for implementation details. The discrete nonlinear optimization problems (3.1)–(3.2) are solved by a
nonlinear conjugated gradient method, where the box constraints are enforced by pointwise projection
into the admissible set A after each update, and the initial guess of the conductivity at the coarsest mesh
T0 is initialized to the background conductivity σ0 = 1, and then for k = 1, 2, . . ., the reconstruction on
the mesh Tk−1 is interpolated to the mesh Tk to warm start the (projected) conjugate gradient iteration
for the discrete optimization problem on the mesh Tk . Throughout the adaptive loop, the regularization
parameter α in the model (2.3) is fixed and it is determined in a trial-and-error manner, and the chosen
values of α in the experiments below are roughly of the order of the noise level δ, which is a popular
a priori parameter choice; see Ito & Jin (2015) for further discussions about parameter choice. It is an
interesting research question to adapt the choice of α with the a posteriori estimator ηk within the adaptive
algorithm; see Remark 4.11.

Example 5.1 The true conductivity σ † is given by σ †(x) = σ0(x)+e−8(x2
1+(x2−0.55)2), with the background

conductivity σ0(x) = 1.

In this example, the true conductivity σ † consists of a very smooth blob in a constant background, and
the profile is shown in Fig. 1(a). The final recovered conductivity fields from the voltage measurements
with ε = 0.1% data noise are shown in Fig. 1. For both uniform and adaptive refinements, the recoveries
capture well the location and height of the blob: it is very smooth because of the use of a smoothness
prior. Hence, it does not induce any grave solution singularity. The recoveries by both methods are similar
to each other in terms of location and magnitude. Both suffer from a slight loss of the contrast, which is
typical for EIT recoveries with a smoothness penalty; see e.g., Lechleiter & Rieder (2006) and Winkler
& Rieder (2014) for similar results by an iteratively regularized Gauss–Newton method.

Next we examine the adaptive refinement more closely. On a very coarse initial mesh T0, which
is a uniform triangulation of the domain Ω , cf. Fig. 2(a), the recovered conductivity tends to have
pronounced oscillations around the boundary, since the forward solution is not accurately resolved over



AFEM FOR EIT 1543

Fig. 1. The final reconstructions by the uniform and adaptive refinements, for Example 5.1 with ε = 0.1% noise in the data. The
degree of freedom is 9818 and 16641 for the adaptive and uniform refinement, respectively. The regularization parameter α is fixed
at α = 2.5 × 10−4. (a) true conductivity, (b) adaptive refinement, and (c) uniform refinement.

Fig. 2. The recovered conductivity distributions σ ∗
k during the adaptive refinement, for Example 5.1 with ε = 0.1% noise. The

regularization parameter α is fixed at α = 2.5 × 10−4. (a) 0th step, (b) 4th step, (c) 9th step, and (d) 14th step.

there. In particular, the discretization error significantly compromises the reconstruction accuracy, and it
induces large errors in the location and height of the recovered conductivity. This motivates the use of the
adaptive strategy. The meshes during the adaptive iteration and the corresponding recoveries are shown
in Fig. 2. The refinement step first concentrates only on the region around the electrode surface. This is
attributed to the change of the boundary condition, which induces weak singularities in the direct and
adjoint solutions. Then the AFEM starts to refine also the interior of the domain, simultaneously with the
boundary region. Accordingly, the spurious oscillations in the recovery are suppressed as the iteration
proceeds (provided that the regularization parameter α is properly chosen). Interestingly, the central part
of the domain Ω is refined only slightly during the whole refinement procedure, and in the end, much
coarse elements are used for the conductivity inversion in these regions. This concurs with the empirical
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(a) (b)

Fig. 3. The L2(Ω) and H1(Ω) errors versus the degree of freedom N of the mesh, for Example 5.1 at two different noise levels,
using the adaptive refinement (solid line) and uniform refinement (dashed line). (a) ε = 1 × 10−3 and (b) ε = 1 × 10−2.

Table 1 The empirical convergence rates O(N−r), N being the degree of freedom, of
the recoveries in the L2(Ω)- and H1(Ω)-norms, for the numerical examples, where
the exponent r is presented

ε = 1 × 10−3 ε = 1 × 10−2

Adaptive Uniform Adaptive Uniform

Example L2 H1 L2 H1 L2 H1 L2 H1

5.1 1.31 1.19 1.04 0.93 1.23 0.91 1.01 0.70
5.2 1.32 1.19 1.05 0.94 1.23 0.88 0.99 0.73
5.3 1.08 0.88 0.83 0.73 0.91 0.67 0.72 0.40

observation that the inclusion in the central part is much harder to resolve from the boundary data. Hence,
the adaptive algorithm tends to adapt automatically to the resolving power of the conductivity (from the
boundary data) in different regions.

In Fig. 3, we plot the L2(Ω) and H1(Ω) errors of the recoveries versus the degree of freedom N
of the mesh Tk for the adaptive and uniform refinement, where the recovery on the finest mesh is taken
as a respective reference solution, since the recoveries by the uniform and adaptive refinements are not
necessarily the same (although always close), even initialized identically. The corresponding empirical
convergence rates in L2(Ω)-norms and H1(Ω)-norms are given in Table 1. It is observed that with the
same degree of freedom, the AFEM can give much more accurate results than the uniform one (with
respect to the respective reference solution). This is also confirmed by the computing time: for the results
in Fig. 1, the one by the adaptive refinement takes about 30 min, whereas that by the uniform refinement
takes about 80 min. This is consistent with the fact that at each iteration of the algorithm, the module
SOLVE is predominant and that the computational cost of the conjugate gradient descent algorithm is
proportional to the number of forward and adjoint solves at each iteration and each forward/adjoint solve
is determined by the degree of freedom of the system. This shows clearly the computational efficiency
of the proposed adaptive algorithm.

A second example contains two neighboring smooth blobs.
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Fig. 4. The final reveries by the adaptive and uniform refinements, for Example 5.2 with ε = 0.1% noise. The degree of freedom is
9803 and 16641 for the adaptive and uniform refinement, respectively. The regularization parameter α is fixed at α = 2.5 × 10−4.
(a) True conductivity, (b) adaptive refinement, and (c) uniform refinement.

Example 5.2 The true conductivity σ † is given by σ †(x) = σ0(x)+ e−20((x1+0.7)2+x2
2 ) + e−20(x2

1+(x2−0.7)2),
and the background conductivity σ0(x) = 1.

As before, the true conductivity σ † is smooth (cf. Fig. 4(a) for the profile), and thus the smoothness
penalty is suitable. Overall, the observations from Example 5.1 remain valid: the recovered coefficient
captures very well the supports of the inclusions, and the magnitude is also reasonable. The recovery
by the adaptive algorithm is comparable with that based on uniform one, but requiring far less degrees
of freedom. However, because of the smoothing nature of the H1(Ω) penalty, the recoveries tend to
be diffusive, and the magnitude also suffers from a loss of about 20% for both uniform and adaptive
refinements. Such smoothing is well known in EIT imaging. These drawbacks can be partially alleviated
by sparsity-promoting penalty (Jin & Maass, 2012b; Jin et al., 2012), to which it is of great interest to
extend the proposed AFEM.

We plot in Fig. 5 the meshes and recoveries at the intermediate refinement steps. At the initial
stage, the refinement mainly occurs in the region around electrode surfaces, where the weak solution
singularity appears. As the refinement proceeds, the region away from the boundary is also refined, but to
a much lesser degree, especially for the central part of the domain. In case of a very coarse initial mesh,
the recovery even fails to correctly identify the number of inclusions, but as the AFEM proceeds, the
spurious oscillations disappear, and then it can identify reasonably the locations and magnitudes of the
blobs from the recoveries, cf. Fig. 5. In Fig. 6, we show the L2(Ω) and H1(Ω) errors of the recoveries
versus the degree of freedom N of the mesh Tk for the adaptive and uniform refinement. These plots fully
show the efficiency of the adaptive algorithm, for both ε = 0.1% and ε = 1% noise; see also Table 1 for
the empirical convergence rates.

Finally, we consider one example with a discontinuous conductivity field.

Example 5.3 The true conductivity σ † is given by σ †(x) = σ0(x) + (x1/2 + x2)χΩ ′ , where χΩ ′ is the
characteristic function of the setΩ ′ = (1/4, 3/4)×(0, 1/2), and the back ground conductivity σ0(x) = 1.

Since the H1(Ω) penalty imposes a global smoothness condition, it is unsuitable for recovering
discontinuous conductivity fields. Hence, in this example, we assume that the support Ω ′ of the true
conductivity field σ † is known and aim at determining the variation within the support using the H1(Ω ′)
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(a) (b) (c) (d)

Fig. 5. The recovered conductivity during the adaptive refinement, for Example 5.2 with ε = 0.1% noise. The regularization
parameter is fixed at α = 2.5 × 10−4. (a) 0th step, (b) 4th step, (c) 9th step, and (d) 14th step.

(a) (b)

Fig. 6. The L2(Ω) and H1(Ω) errors versus the degree of freedom N of the mesh, for Example 5.2 at two different noise levels,
using the adaptive refinement (solid line) and uniform refinement (dashed line). (a) ε = 1 × 10−3 and (b) ε = 1 × 10−2.

seminorm penalty. The adaptive algorithm and the convergence proof can be extended directly: the
variational inequality is now defined only onΩ ′, and the estimator η2

T ,3(σ
∗
T , u∗

T , p∗
T , T) is only for elements

in Ω ′).
The numerical results for the example are presented in Figs 7–9. The observations from the preceding

two examples remain largely valid. The magnitude of the conductivity is slightly reduced, but otherwise
the profile is reasonable, and visually the recoveries by the adaptive and the uniform refinements are
close to each other, cf. Fig. 7(b,c). Even though the conductivity field σ is discontinuous, the adaptive
algorithm first mainly resolves the singularity due to the change of boundary conditions, i.e., around
the boundary, cf. Fig. 8(b). As the adaptive iteration proceeds, the algorithm then starts to refine the
region near the boundary ∂Ω ′ of the subdomain Ω ′: first the part close to the boundary ∂Ω and then
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Fig. 7. The final reveries by the adaptive and uniform refinements, for Example 5.3 with ε = 0.1% noise. The degree of freedom is
19608 and 33025 for the adaptive and uniform refinement, respectively. The regularization parameter α is fixed at α = 3.2 × 10−3.
(a) True conductivity, (b) adaptive refinement, and (c) uniform refinement.

Fig. 8. The recovered conductivity during the adaptive refinement, for Example 5.3 with ε = 0.1% noise. The regularization
parameter is fixed at α = 3.2 × 10−3. (a) 0th step, (b) 4th step, (c) 9th step, and (d) 14th step.

the part away from ∂Ω , cf. Fig. 8(c,d). This is consistent with the empirical observation that the further
away from the boundary, the more challenging it is to be resolved (from the boundary data), i.e., the
boundary data allow better resolving the regions close to the boundary. Hence, the solution singularity
induced by the conductivity discontinuity does not play an important role in the inversion as it was in
direct problems. The gain of computational efficiency is shown in Fig. 9: the L2(Ω)- and the H1(Ω)

errors decrease faster with the increase of degree of freedom for the adaptive algorithm than that for the
uniform refinement.
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(a) (b)

ε ε

Fig. 9. The L2(Ω ′) and H1(Ω ′) errors versus the degree of freedom N of the mesh, for Example 5.3 at two different noise levels,
using the adaptive refinement (solid line) and uniform refinement (dashed line). (a) ε = 1 × 10−3 and (b) ε = 1 × 10−2.

6. Concluding remarks

In this work, we have developed a novel AFEM for the EIT inverse problem, modeled by the CEM. It
is formulated as an output least-squares problem with a Sobolev smoothness penalty. The weak solution
singularity around the electrode surfaces and low-regularity conductivity motivate the use of the adaptive
refinement techniques. We have derived a residual-type a posteriori error estimator, which involves the
state, adjoint and conductivity estimate, and established the convergence of the sequence of solutions
generated by the adaptive technique that the accumulation point solves the continuous optimality system.
The efficiency and convergence of the algorithm is confirmed by a few numerical experiments.

This work represents only a first step towards the rigorous AFEM for nonlinear inverse problems
associated with PDEs. There are several research problems deserving further study. First, the proposed
algorithm is only for the smoothness penalty, which is essential in the development and convergence
analysis of the algorithm. It is of much interest to derive and to analyse adaptive algorithms for nonsmooth
penalties, e.g., total variation and sparsity. Second, numerically one observes that the algorithm can
approximate a (local/global) minimizer of the continuous optimization well, instead of only a solution
to the necessary optimality condition. This is still theoretically to be justified. Third, the reliability
and optimality of adaptive algorithms for nonlinear inverse problems are open, which seems not fully
understood even for linear ones. The optimality issue in the context of inverse problems should be
related to the noise level. The crucial interplay between the error estimator and noise level is to be
elucidated.
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