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A mortar element method for elliptic problems with
discontinuous coefficients
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This paper proposes a mortar finite element method for solving the two-dimensional
second-order elliptic problem with jumps in coefficients across the interface between two
subregions. Non-matching finite element grids are allowed on the interface, so independent
triangulations can be used in different subregions. Explicitly realizable mortar conditions
are introduced to couple the individual discretizations. The same optimalL2-norm and
energy-norm error estimates as for regular problems are achieved when the interface is of
arbitrary shape but smooth, though the regularity of the true solution is low in the whole
physical domain.
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1. Introduction

This paper is concerned with a mortar finite element method for solving the following
two-dimensional elliptic interface problem:

−∇ · (β∇u) = f in Ω , (1.1)

u = 0 on ∂Ω , (1.2)

[u] = 0, [β∂nu] = g on Γ , (1.3)

whereΩ is a convex polygon inR2. We assume that the coefficient functionβ(x) is
discontinuous across an arbitrary butC2-smooth interfaceΓ ⊂ Ω . HereΓ is the boundary
of an open domainΩ1 ⊂⊂ Ω . Let Ω2 = Ω \ Ω̄1 (see Fig. 1). Equations (1.3) are
called the jump conditions on the interfaceΓ , with [v] meaning the jump of a function
v acrossΓ , with n the unit outward normal to the boundary∂Ω1. For definiteness, we let
[v](x) = v1(x) − v2(x) for x ∈ Γ , with v1 andv2 being the restrictions ofv on Ω1 and
Ω2 respectively. Moreover, we assume that the coefficient functionβ(x) is positive and

†Email: jghuang@online.sh.cn
‡Email: zou@math.cuhk.edu.hk

c© The Institute of Mathematics and its Applications 2002



550 J. HUANG AND J. ZOU

Γ

Ω

Ω
Ω

2

1

n

FIG. 1. DomainΩ , its subregionsΩ1, Ω2 and interfaceΓ .

piecewise smooth, i.e.

β(x) =
{

β1(x) for x ∈ Ω1,

β2(x) for x ∈ Ω2,

whereβ1(x) ∈ C2(Ω̄1) andβ2(x) ∈ C2(Ω̄2), and there exist two positive constantsβ1 and
β2 such that

C0β1 � β1(x) � C1β1, ∀x ∈ Ω1; C0β2 � β2(x) � C1β2, ∀x ∈ Ω2.

HereC0 andC1 are two positive constants independent ofβ1 andβ2. This means thatβ(x)

is of sizeβ1 in domainΩ1 and of sizeβ2 in domainΩ2, and thatβ1 andβ2 may differ
greatly in magnitude.

Such interface problems are often encountered in material sciences and fluid dynamics.
It is the case when two distinct materials or fluids with different conductivities or densities
or diffusions are involved. Much attention has been paid to numerical solutions of interface
problems in recent years. The conforming finite element methods (Bramble & King, 1996;
Chen & Zou, 1998; Xu, 1982) were used for such problems when the interfaces are of
arbitrary shape but smooth, while the finite element/finite difference methods with uniform
grids were also widely applied for solving such interface problems: see, for example,
LeVeque & Li (1994); Li (1998). We refer to Chen & Zou (1998) and the references therein
for more detailed elaborations on many existing finite element methods for the elliptic and
parabolic interface problems, and to Xu & Zou (1998) for a survey on non-overlapping
domain decomposition methods for elliptic interface problems.

Most existing methods are basically conforming finite element methods and require
the triangulations in different subregions to be matching on the interface. This may pose
serious restrictions when the physical solutions of the interface problems are of different
scales in different subregions. Mortar element methods seem to be a good alternative to
relax such restrictions. To our knowledge, there has been no study concerned with the
mortar element method for solving interface problems with interfaces of arbitrary shape.
The purpose of this paper is to propose a mortar finite element method for solving the
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elliptic interface problem (1.1)–(1.3). This method allows non-matching finite element
grids on the interfaceΓ , so independent triangulations can be used in the subregionsΩ1
and Ω2. Explicitly realizable mortar conditions are introduced to couple the individual
discretizations in two subregions. It seems to be the first time that the same optimalL2-
norm and energy-norm error estimates as for regular problems are achieved with mortar
finite element methods for the interface problems with interfaces of arbitrary shape, though
the regularity of the true solution for this case is low in the whole physical domain. The
derivation of such optimal error estimates is very tricky and technical and we need many
new technical tools to manage them (see Section 3). For related work, (see Bernardiet al.,
1990a,b) for the basic ideas of the mortar element methods, (Achdou, 1995; Belgacem,
1999; Belgacem & Maday, 1997; Du & Gunzburger, 2000; Marcinkowski, 1996) for the
recent advance on the mortar element methods for PDEs with smooth coefficients, (Cao
& Cunzburger, 1998) for the use of a least-squares finite element method for solving the
elliptic interface problems and (Chenet al., 2000) for solving the Maxwell equations with
jumps in coefficients across some polyhedral interface.

An efficient numerical method for the interface problem should make full use of the
basic feature of the problem: even though the interface is sufficiently smooth, the solution
of the interface problem is only smooth in the individual subregions occupied by different
materials or fluids, but has much lower regularities in the whole domain. For example, if
f ∈ L2(Ω) andg ∈ H1/2(Γ ), then the solutionu of the problem (1.1)–(1.3) isH2-regular
locally but onlyH1-regular globally, namely

u ∈ H1
0 (Ω) ∩ H2(Ω1) ∩ H2(Ω2) ≡ X . (1.4)

Here and in what follows, for each integerm � 0 and realp with 1 � p � ∞, we
use W m,p(Ω) to denote the standard Sobolev space of real functions with their weak
derivatives of order up tom in the Lebesgue spaceL p(Ω), ‖·‖m,p,Ω and|·|m,p,Ω to denote
its norm and semi-norm (Grisvard, 1985). Whenp = 2, we writeW m,2(Ω) = Hm(Ω),
and denote its norm and semi-norm by‖ · ‖m,Ω and| · |m,Ω . For a fractional numbers, the
Sobolev spaceHs(Ω) is defined by the standard interpolation theory (Bergh & Löfstrom,
1976). For the spaceX defined in (1.4), we use its norm of the form

‖v‖X = ‖v‖1,Ω + ‖v‖2,Ω1 + ‖v‖2,Ω2 ∀ v ∈ X .

The followinga priori estimate for the solution of (1.1)–(1.3) will be frequently used later
in our analysis (Chen & Zou, 1998):

‖u‖X � ‖ f ‖L2(Ω) + ‖g‖H1/2(Γ ). (1.5)

Here and in what follows, for any two non-negative numbersx and y, x � y means that
x � Cy for some constantC independent of the mesh sizeh and the related parameters
(e.g. the constant in (1.5) is independent off , g andu), andx =∼ y meansx � y and

y � x .
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2. A mortar finite element method

By integration by parts, we can easily derive the weak formulation of the interface problem
(1.1)–(1.3): Findu ∈ H1

0 (Ω) such that

a(u, v) = ( f, v) + 〈g, v〉, ∀v ∈ H1
0 (Ω). (2.1)

Here(·, ·) denotes the inner product inL2(Ω) and〈·, ·〉 the dual form betweenH1/2(Γ )

and H−1/2(Γ ) (or the inner product inL2(Γ ) if functions are smooth enough).a(·, ·) is
the bilinear form witha(u, v) = a1(u, v) + a2(u, v) and

ai (u, v) =
∫
Ωi

βi (x)∇u · ∇v dx, i = 1, 2.

Wenow derive a mortar finite element method for solving (1.1)–(1.3) or (2.1). We first
introduce two triangulations:T h1 for the domainΩ1 andTh2 for the domainΩ2. To do so,
we choosem1 points on the interfaceΓ : P1

1 ,P1
2 , . . . , P1

m1
; then connect all neighbouring

pairs {P1
i , P1

i+1} to obtain a closed polygonal curve approximatingΓ and a polygonal
domainΩh1 approximatingΩ1. We assume the line segments{ẽ1

i }m1
i=1 with ẽ1

i = P1
i P1

i+1
(P1

m1+1 = P1
1 ) are of sizeh1, that means,|ẽ1

i | =∼ h1, i = 1, . . . , m1. Wefurther triangulate

Ωh1 by a finite set of open triangles̃Th1 = {K }, which is assumed to be quasi-uniform
with mesh sizeh1. The triangulationTh1 is then only the slight modification of̃Th1 by
changing those triangles with one of their edges beingẽ1

j (for some 1� j � m1) into the

curved triangles with two original edges unchanged but the third edgeẽ1
j replaced by the

curved segmente1
j = P̂1

j P1
j+1, whereP̂1

j P1
j+1 denotes the curved segment on the interface

Γ with two endpointsP1
j and P1

j+1. This generates a triangulationTh1 of Ω1 satisfying

Ω̄1 = ⋃
K∈Th1

K̄ .

Furthermore, we choose another set of points onΓ : P2
1 ,P2

2 , . . . , P2
m2

such that the line
segments{ẽ2

i }m2
i=1 with ẽ2

i = P2
i P2

i+1 (P2
m2+1 = P2

1 ) are of sizeh2. We then repeat the same
process for constructingTh1 to generate a triangulationTh2 of the domainΩ2 satisfying

Ω̄2 = ⋃
K∈Th2

K̄ . As before,e2
i = P̂2

i P2
i+1 denotes the curved segment on the interfaceΓ

with two endpointsP2
i andP2

i+1. We also defineΓh1 = {e1
i }m1

i=1 andΓh2 = {e2
i }m2

i=1, which
are two independent triangulations of the interfaceΓ . SinceΓ is C2-smooth, it is easy to
see that the two triangulations are quasi-uniform with respect to the mesh sizesh1 andh2
respectively, that is|e1

i | =∼ h1 for i = 1, 2, . . . , m1, and|e2
i | =∼ h2 for i = 1, 2, . . . , m2.

Since the interfaceΓ is of classC2, there exists a positive constanth0 such that for
0 < h1 � h0, one can introduce a local coordinate system(x j

1, x j
2) for each curved segment

e1
j ∈ Γh1. We take thex j

1-axis along the line segmentẽ j
1 and thex j

2-axis along the normal

to ẽ1
j (Chen & Zou, 1998). Then the curved segmente1

j can be parametrized as follows:

e1
j =

{
(x j

1, x j
2); x j

2 = φ1
j (x j

1), x j
1 ∈ [0, sh1

j ]
}

(2.2)
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wheresh1
j is the length ofẽ1

j . We know (Chen & Zou, 1998) thatφ1
j ∈ C2[0, sh1

j ] for
j = 1, . . . , m1, and

|φ1
j (x j

1)| � h2
1, ∀x j

1 ∈ [0, sh1
j ], (2.3)

|φ̇1
j (x j

1)| � h1, ∀x j
1 ∈ [0, sh1

j ] (2.4)

where φ̇1
j (x j

1) denotes the first-order derivative of the functionφ1
j (x j

1). For the curved

segmentse2
j ∈ Γh2, we have similar results, and the related restricted parameter is still

denoted ash0. From now on we assume that the mesh sizesh1, h2 ∈ (0, h0).
We next introduce some finite element spaces associated with the triangulations

constructed above. LetVhi (i = 1, 2) be the piecewise linear finite element spaces on
Ωi :

Vh1 = {v ∈ C0(Ω̄1); v|K ∈ P1(K ), ∀ K ∈ Th1}, (2.5)

Vh2 = {v ∈ C0(Ω̄2); v|K ∈ P1(K ), ∀ K ∈ Th2 and v = 0 on ∂Ω}. (2.6)

Here we adopt the convention that for any functionvh in Vhi (i = 1, 2), its value on any
elementK ∈ Thi (including the elements with a curved edge) is uniquely defined by the
linear function determined by the values ofvh at the three vertices ofK .

Furthermore, we defineWhi andW̄hi (i = 1, 2) to be the piecewise linear and piecewise
constant finite element spaces onΓhi respectively, i.e.

Whi = {v ∈ C0(Γ ); v|e ∈ P1(e), ∀e ∈ Γhi }, (2.7)

W̄hi = {v ∈ L2(Γ ); v|e = constant, ∀e ∈ Γhi } (2.8)

where P1(K ) is the space of linear polynomials onK and P1(e) is the space of linear
polynomials (according to the arc length parameter) on the curved segmente.

Also, we define a transfer operatorEhi : C0(Ω̄i ) → Whi (i = 1, 2) by

(Ehi v)(Pi
j ) = v(Pi

j ), j = 1, 2, . . . , mi ; ∀v ∈ C0(Ω̄i ), (2.9)

and theL2-orthogonal projection operatorQhi : L2(Γ ) → W̄hi (i = 1, 2) by

〈Qhi v, w〉 = 〈v, w〉, ∀v ∈ L2(Γ ), w ∈ W̄hi . (2.10)

With the above preparations, we now state the mortar finite element space as

Vh = {vh = (vh1, vh2) ∈ Vh1 × Vh2; Qh1 Eh2vh2 = Qh1 Eh1vh1}. (2.11)

The conditionQh1 Eh2vh2 = Qh1 Eh1vh1 in (2.11) is called the mortar condition, which
provides a connection betweenvh1 andvh2 to ensure that they are weakly continuous across
the interfaceΓ . This mortar condition can be replaced by the conditionQh2 Eh2vh2 =
Qh2 Eh1vh1 without any effect on the subsequent convergence results.

Assume thath1 � h2 andm1 is an odd number. Then themortar finite element method
for solving (1.1)–(1.3) is formulated as follows: Finduh = (uh1, uh2) ∈ Vh such that

a(uh, vh) =
2∑

i=1

∫
Ωi

f vhi dx +
∫
Γ

g vh2 ds, ∀vh = (vh1, vh2) ∈ Vh, (2.12)

wherea(uh, vh) = a1(uh1, vh1) + a2(uh2, vh2).
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REMARK 2.1 In the case thath1 � h2, the second term in the right-hand side of (2.12)
should be replaced by

∫
Γ gvh1 ds in order to achieve the optimalH1-norm error estimate,

see Section 4.

REMARK 2.2 The mortar conditionQh1 Eh2vh2 = Qh1 Eh1vh1 in (2.11) can be described
in an explicit form. To see this, by the definitions (2.8) and (2.10), the condition can be
written as

(Eh1vh1)(Mi ) = 1

|e1
i |

∫
e1

i

Eh2vh2 ds, i = 1, 2, . . . , m1, (2.13)

whereMi is the midpoint of the curved segmente1
i . Noting thatEh1vh1 is a linear function

on e1
i , it follows from (2.9) that (2.13) is equivalent to

vh1(P1
i ) + vh1(P1

i+1) = 2

|e1
i |

∫
e1

i

Eh2vh2 ds, i = 1, 2, . . . , m1. (2.14)

As m1 is an odd number, for any givenvh2 ∈ Vh2, the mortar condition (2.14) determines
the nodal values{vh1(P1

j )}m1
j=1 of vh1 on Γ uniquely. In fact, using (2.14) one can easily

express each valuevh1(P1
j ) explicitly in terms of the average values ofEh2vh2 on each

e1
i , i = 1, 2, . . . , m1. So the nodal values{vh2(P2

j )}m2
j=1 of vh2 on the interfaceΓ can

be chosen arbitrarily in advance (Master), then the nodal values ofvh1 on Γ are uniquely
determined (Slave).

The following lemma guarantees the unisolvability of problem (2.12).

LEMMA 2.1 The mortar finite element problem (2.12) is unisolvable.

Proof. Sincem1 is an odd number, it is easy to see from ( 2.14) that the mortar spaceVh

is a nonempty subspace of the product spaceVh1 × Vh2. Hence, the unisolvability of the
problem (2.12) follows if we can verify thata(vh, vh) = 0 with vh = (vh1, vh2) ∈ Vh

impliesvh1 = 0 in Ω1 andvh2 = 0 in Ω2. This can be done easily. Fromah2(vh2, vh2) = 0
andvh2|∂Ω = 0 weknow vh2 = 0 in Ω2. Using the mortar condition (2.14) we then have
vh1(P1

j ) = 0, j = 1, 2, . . . , m1, which together withah1(vh1, vh1) = 0 yieldsvh1 = 0 in
Ω1 immediately. �

We end this section with a remark on a possible solver for the linear algebraic system
of equations corresponding to the mortar finite element method (2.12). Note that (2.12) is
equivalent to the following saddle-point system:

Find (uh, ηh1) ∈ (Vh1 × Vh2) × W̄h1 such that

a(uh, vh) + 〈Eh1vh1 − Eh2vh2, ηh1〉 =
2∑

i=1

( f, vhi ) + 〈g, vh2〉 ∀ vh ∈ Vh1 × Vh2

〈Eh1uh1 − Eh2uh2, ζh1〉 = 0 ∀ ζh1 ∈ W̄h1.

There are many recent investigations on iterative methods for solving such saddle-point
systems, see, for example, the preconditioned Uzawa-type iterative methods (Elman &
Golub, 1994; Hu & Zou, 2001; Rusten & Winther, 1992).
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3. Some discrete operators and their approximation properties

In this section, we introduce some discrete operators and present their approximation
properties, which will be used in the subsequent error analysis for the mortar element
method (2.12).

Before we proceed, we first give some useful estimates for the following elliptic
problem:

−∆u1 + u1 = 0 in Ω1; u1 = g1 onΓ . (3.1)

LEMMA 3.1 The followinga priori estimates hold for the solutionu1 of (3.1):

‖u1‖1,Ω1 � ‖g1‖H1/2(Γ ), ‖u1‖0,Ω1 � ‖g1‖H−1/2(Γ ) (3.2)

if g1 ∈ H1/2(Γ ), and

‖u1‖3/2,Ω1 � ‖g1‖H1(Γ ), ‖u1‖3/2+ε,Ω1 � ‖g1‖H1+ε (Γ ) (3.3)

if g1 ∈ H1(Γ ) or g1 ∈ H1+ε(Γ ) for any 0< ε � 1/2.

Proof. (3.3) and the first estimate of (3.2) are well known (Grisvard, 1985). The second
inequality of (3.2) can be proved by the duality argument, see Huang & Zou (2000) for
details. �

3.1 Interpolation and H1-norm projection operators

Let Ih1 and Ih2 be the piecewise linear nodal value interpolation operators associated with
the finite element spacesVh1 andVh2. Then we have the following lemma.

LEMMA 3.2 For any mesh sizesh1, h2 ∈ (0, h0) and 1< s � 2,∥∥vi − Ihi vi
∥∥

0,Ωi
+ hi

∥∥vi − Ihi vi
∥∥

1,Ωi
� hs

i ‖vi‖s,Ωi
, ∀vi ∈ Hs(Ωi ), i = 1, 2. (3.4)

Proof. The proof follows basically the standard techniques used for theH1- and L2-
norm error estimates of finite element methods (Brenner & Scott, 1994; Ciarlet, 1978).
The crucial step here is to derive the required estimates corresponding to those curved
elements near the interface. For completeness, we give a simple proof fori = 1, the
case withi = 2 can be proved in the same manner. For anyv1 ∈ Hs(Ω1), by the
extension theorem for Sobolev spaces (Grisvard, 1985), there exists an extension operator
E1 : Hs(Ω1) → Hs(R2) such thatE1v1 = v1 in Ω1 and

‖E1v1‖s,R2 � ‖v1‖s,Ω1. (3.5)

If K ∈ Th1 is a triangle, by the standard interpolation error estimates we have (Brenner &
Scott, 1994; Ciarlet, 1978)

∥∥v1 − Ih1v1
∥∥2

0,K + h2
1

∥∥v1 − Ih1v1
∥∥2

1,K � h2s
1 ‖v1‖2

s,K . (3.6)
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Now consider a curved elementK ∈ Th1 with a curved segmente1
j = P̂1

j P1
j+1 as one of its

edges. We know from (2.3) that the largest distance betweene1
j andẽ1

j is of orderO(h2
1),

so we can construct a shape-regular triangleK̃ of sizeh1 such thatK ⊂ K̃ . Then, similar
to (3.6), we have∥∥v1 − Ih1v1

∥∥2
0,K + h2

1

∥∥v1 − Ih1v1
∥∥2

1,K �
∥∥E1v1 − Ih1 E1v1

∥∥2
0,K̃ + h2

1

∥∥E1v1 − Ih1 E1v1∥∥2
1,K̃ � h2s

1 ‖E1v1‖2
s,K̃

. (3.7)

Summing all the estimates (3.6) and (3.7) overK ∈ Th1 and using (3.5), we obtain∥∥v1 − Ih1v1
∥∥2

0,Ω1
+ h2

1

∥∥v1 − Ih1v1
∥∥

1,Ω1
� h2s

1 ‖E1v1‖2
s,R2 � h2s

1 ‖v1‖2
s,Ω1

.

�

LEMMA 3.3 For anyv1 ∈ H1
0 (Ω1) ∩ H2(Ω1), we have

‖Ih1v1‖L2(Γ ) � h2
1‖v1‖2,Ω1. (3.8)

Proof. For anye1
j ∈ Γh1, using (2.2)–(2.4), the inverse inequality (Babuska & Aziz, 1972)

and Lemma 3.2, we have

‖Ih1v1‖2
L2(e1

j )
=

∫ s
h1
j

0
[(Ih1v1)(x j

1, φ1
j (x j

1)) − (Ih1v1)(x j
1, 0)]2

√
1 + (φ̇1

j (x j
1))2 dx j

1

� |Ih1v1|21,∞,K j
max

0�x j
1�s

h1
j

|φ1
j (x j

1)|2h1

� h3
1|Ih1v1|21,K j

� h5
1|v1|22,K j

+ h3
1|v1|21,K j

(3.9)

whereK j ∈ Th1 is the curved triangle withe1
j being one of its edges. Summing the estimate

(3.9) over j , weobtain

‖Ih1v1‖2
L2(Γ )

� h5
1|v1|22,Ω̃1

+ h3
1|v1|21,Ω̃1

, (3.10)

whereΩ̃1 denotes the union of all those curved elementsK j near the interfaceΓ . We next
estimate the term|v1|1,Ω̃1

. Consider the neighbourhoodNh1(Γ ) of the interfaceΓ of width
h1, i.e.,

Nh1(Γ ) = {x ∈ Ω̄1; dist(x,Γ ) � h1},
we see that̃Ω1 ⊂ Nh1(Γ ). Forany(x1, x2) ∈ Nh1(Γ ), let y2 be the distance from this point
to the interfaceΓ with the corresponding projection point onΓ having arc lengthy1. When
h1 is appropriately small, the mapping from(x1, x2) to (y1, y2) is a C2-diffemorphism,
we denote it byΦ, that is Φ(x1, x2) = (y1, y2). For any w1 ∈ H1(Nh1(Γ )), define
ŵ1(y1, y2) = w1(Φ−1(y1, y2)) ∈ H1(R1), whereR1 = [0, sΓ ]×[0, h1] with sΓ being the
length of the interfaceΓ . Therefore, by the Cauchy–Schwartz inequality we easily have

|ŵ1(y1, y2)|2 =
∣∣∣∣ŵ1(y1, 0) +

∫ y2

0
∂t ŵ1(y1, t) dt

∣∣∣∣
2

� ŵ2(y1, 0) + y2

∫ y2

0
|∂t ŵ1|2(y1, t) dt .
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Then integrating both sides over the domainR1 yields

‖ŵ1‖2
0,R1

� h1‖ŵ‖2
L2([0,sΓ ]×{0}) + ‖∂y2ŵ1‖2

0,R1

∫ h1

0
y2 dy2

� h1‖ŵ‖2
L2([0,sΓ ]×{0}) + h2

1‖∂y2ŵ1‖2
0,R1

. (3.11)

Since Φ is a C2-diffemorphism, we also have‖ŵ‖L2([0,sΓ ]×{0}) =∼ ‖w1‖L2(Γ ) and

‖w1‖s,Nh1(Γ )
=∼ ‖ŵ1‖s,R1 for s = 0, 1 (Grisvard, 1985), thus the estimate (3.11) can

be rewritten as

‖w1‖0,Nh1(Γ ) � h1/2
1 ‖w1‖L2(Γ ) + h1‖w1‖1,Nh1(Γ ) � h1/2

1 ‖w1‖1,Ω1. (3.12)

This implies by lettingw1 = ∂1v1 andw1 = ∂2v1 that

|v1|1,Ω̃1
� h1/2

1 ‖v1‖2,Ω1, (3.13)

which together with (3.10) leads to the desired estimate. �

We next introduce two elliptic projection operatorsPh1 : H1(Ω1) → Vh1 and Ph2 :
H1∗ (Ω2) → Vh2 with H1∗ (Ω2) = {v2 ∈ H1(Ω2); v2 = 0 on∂Ω}. For anyv1 ∈ H1(Ω1)

andv2 ∈ H1∗ (Ω2), Phi vi ∈ Vhi (i = 1, 2) is defined by

(Phi vi , w)1,Ωi = (vi , w)1,Ωi ∀w ∈ Vhi (3.14)

where the scalar products(·, ·)1,Ωi for i = 1, 2 are given by

(v, w)1,Ωi =
∫
Ωi

(∇v · ∇w + vw) dx, ∀ v, w ∈ H1(Ωi ).

LEMMA 3.4 OperatorsPhi , i = 1, 2, possess the following approximation properties:∥∥vi − Phi vi
∥∥

0,Ωi
+ hi

∥∥vi − Phi vi
∥∥

1,Ωi
� h2

i ‖vi‖2,Ωi , ∀vi ∈ H2(Ωi ), (3.15)∥∥vi − Phi vi
∥∥

H−1/2(Γ )
� h2

i ‖vi‖2,Ωi , ∀vi ∈ H2(Ωi ). (3.16)

Proof. (3.15) can be obtained using Lemma 3.2 and the standard finite element analysis
as used for deriving theH1- andL2-norm error estimates (Brenner & Scott, 1994; Ciarlet,
1978). With the help of (3.15), (3.16) can be shown by the standard duality argument, see
Huang & Zou (2000) for details. �

3.2 Extension and modified H1-norm projection operators

We now construct an important extension operatorFh1 : Wh1 → Vh1. For any αh1 ∈
Wh1, Fh1αh1 ∈ Vh1 satisfies(Fh1αh1)(P1

j ) = αh1(P1
j ) ( j = 1, 2, . . . , m1) and solves the

discrete system∫
Ω1

{∇(Fh1αh1) · ∇w + (Fh1αh1)w} dx = 0, ∀w ∈ V 0
h1

(3.17)
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whereV 0
h1

consists of those functions inVh1 which vanish at all interface nodal pointsP1
j ,

j = 1, 2, . . . , m1.
The next lemma presents some useful properties ofFh1, whose proofs are given in the

Appendix.

LEMMA 3.5 For the extension operatorFh1 we have

‖Fh1αh1‖1,Ω1
=∼ ‖αh1‖H1/2(Γ ), ‖Fh1αh1‖0,Ω1 � ‖αh1‖H−1/2(Γ ), ∀αh1 ∈ Wh1.

(3.18)

With the extension operatorFh1, we are ready to propose a modifiedH1-norm
projection operatorPh : X → Vh , which will play a crucial role in the subsequent error
estimates for our mortar element method.

We first construct a transfer operatorGh1 : L2(Γ ) → Wh1. For any v1 ∈ L2(Γ ),
Gh1v1 ∈ Wh1 is determined by

Qh1(Gh1v1) = Qh1v1.

Noting thatm1 is an odd number, we can easily find thatGh1 is well defined, and using the
similar deduction for deriving the explicit mortar condition (2.13), we have

(Gh1v1)(M j ) = 1

|e1
j |

∫
e1

j

v1(s) ds, j = 1, . . . , m1. (3.19)

For anyv = (v1, v2) ∈ X , let Phi vi (i = 1, 2) be theH1-norm projections ofvi as
defined in (3.14). Using the following special finite element function inWh1:

αh1 = Gh1(Eh2 Ph2v2 − Eh1 Ph1v1),

we define the modified projection operatorPhv as

(Phv)(x) =
{

(Ph1v1)(x) + (Fh1αh1)(x) for x ∈ Ω1,

(Ph2v2)(x) for x ∈ Ω2 .
(3.20)

Using the fact thatEh1 Fh1αh1 = αh1, it is easy to see thatPhv ∈ Vh . We are now going to
establish some error estimates of the operatorPh , for which we need theH1/2-stability of
Gh1.

LEMMA 3.6 The transfer operatorGh1 : L2(Γ ) → Wh1 is stable inH1/2(Γ ), namely

‖Gh1v‖H1/2(Γ ) � ‖v‖H1/2(Γ ), ∀v ∈ H1/2(Γ ). (3.21)

Proof. Wefirst prove fors = 0, 1 that

‖Gh1v‖Hs (Γ ) � ‖v‖Hs (Γ ), ∀v ∈ Hs(Γ ). (3.22)
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By the standard scaling arguments (Brenner & Scott, 1994; Ciarlet, 1978), (3.19) and the
Cauchy-Schwartz inequality we have

‖Gh1v‖2
L2(Γ )

� h1

m1∑
j=1

|(Gh1v)(M j )|2

� h1

m1∑
j=1

∣∣∣∣ 1

|e1
j |

∫
e1

j

v(s) ds

∣∣∣∣
2

� ‖v‖2
L2(Γ )

.

This proves (3.22) withs = 0. Similarly, notingH1(Γ ) ⊂ C0(Γ ), we have

|Gh1v|2H1(Γ )
� h−1

1

m1∑
j=1

{
Gh1v(M j ) − Gh1v(M j+1)

}2

� h−1
1

m1∑
j=1

{
1

|e1
j |

∫
e1

j

v(s) ds − 1

|e1
j+1|

∫
e1

j+1

v(s) ds

}2

� h−1
1

m1∑
j=1




∣∣∣∣∣ 1

|e1
j |

∫
e1

j

v(s) ds − v(P1
j+1)

∣∣∣∣∣
2

+
∣∣∣∣∣ 1

|e1
j+1|

∫
e1

j+1

v(s) ds − v(P1
j+1)

∣∣∣∣∣
2



� h−1
1

m1∑
j=1

{max
x∈e1

j

|v(x) − v(P1
j+1)|2 + max

x∈e1
j+1

|v(x) − v(P1
j+1)|2}

� |v|2H1(Γ )
.

(3.21) then follows from (3.22) withs = 0, 1 and the interpolation theory of Sobolev
spaces (Bergh & L̈ofstrom, 1976). �

In what follows, for any 1� s � 2 andv = (v1, v2) ∈ Hs(Ω1) × Hs(Ω2), weuse the
following conventional norms and seminorms:

‖v‖s,Ω = (‖v1‖2
s,Ω1

+ ‖v2‖2
s,Ω2

)1/2, |v|s,Ω = (|v1|2s,Ω1
+ |v2|2s,Ω2

)1/2.

LEMMA 3.7 The modified projection operatorPh : X → Vh defined by (3.20) satisfies
the following H1-norm estimate:

‖v − Phv‖1,Ω � h1‖v1‖2,Ω1 + h2‖v2‖2,Ω2, ∀v = (v1, v2) ∈ X . (3.23)

Proof. By the definition (3.20), it follows directly from Lemmata 3.4–3.6 that

‖v − Phv‖1,Ω �
2∑

i=1

‖vi − Phi vi‖1,Ωi + ‖Fh1Gh1(Eh2 Ph2v2 − Eh1 Ph1v1)‖1,Ω1

�
2∑

i=1

hi‖vi‖2,Ωi + ‖Eh2 Ph2v2 − Eh1 Ph1v1‖H1/2(Γ ). (3.24)
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But noting thatv1 = v2 onΓ , we have

‖Eh2 Ph2v2 − Eh1 Ph1v1‖H1/2(Γ ) �
2∑

i=1

{‖Ehi (vi − Phi vi )‖H1/2(Γ ) + ‖vi − Ehi vi‖H1/2(Γ )}.
(3.25)

SinceEhi vi is the continuous and piecewise linear interpolation function ofvi associated
with Whi , we have (Babuska & Aziz, 1972; Brenner & Scott, 1994)

‖vi − Ehi vi‖H1/2(Γ ) � hi‖vi‖H3/2(Γ ) � hi‖vi‖2,Ωi . (3.26)

Furthermore, by the inverse inequality, Lemma 3.4 and error estimates of the interpolation
operatorEhi (Babuska & Aziz, 1972; Brenner & Scott, 1994) we know, for anyε ∈ (0, 1

2),
that

‖Ehi (vi − Phi vi )‖H1/2(Γ ) � h−1/2
i ‖Ehi (vi − Phi vi )‖L2(Γ )

� h−1/2
i {‖vi − Phi vi‖L2(Γ ) + ‖(I − Ehi )(vi − Phi vi )‖L2(Γ )}

� h−1/2
i {‖vi − Phi vi‖L2(Γ ) + h1/2+ε

i ‖vi − Phi vi‖H1/2+ε(Γ )}
� h−1/2

i ‖vi − Phi vi‖L2(Γ ) + hε
i ‖vi − Phi vi‖1+ε,Ωi

� h−1/2
i ‖vi − Phi vi‖L2(Γ ) + hi‖vi‖2,Ωi . (3.27)

By the Sobolev interpolation theory (Babuska & Aziz, 1972) and Lemma 3.4 we have

‖vi − Phi vi‖L2(Γ ) � ‖vi − Phi vi‖1/2
H−1/2(Γ )

‖vi − Phi vi‖1/2
H1/2(Γ )

� ‖vi − Phi vi‖1/2
H−1/2(Γ )

‖vi − Phi vi‖1/2
1,Ωi

� h3/2
i ‖vi‖2,Ωi . (3.28)

The desired result then follows from (3.24)–(3.28). �

To derive theL2-norm error estimate of the operatorPh , weneed the following result.

LEMMA 3.8 For theL2 projection operatorQh1 : L2(Γ ) → W̄h1 defined by (2.10), we
have the following estimate:

‖v − Qh1v‖H−1/2(Γ ) � h1‖v‖H1/2(Γ ), ∀v ∈ H1/2(Γ ). (3.29)

Proof. By the standard technique as used for the error estimates ofL2 projection operators
(Xu, 1989) and the Sobolev interpolation theory, we have for 0� s � 1,

‖v − Qh1v‖L2(Γ ) � hs
1‖v‖Hs (Γ ), ∀v ∈ Hs(Γ ). (3.30)
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This with the duality argument yields

‖v − Qh1v‖H−1/2(Γ ) = sup
w∈H1/2(Γ )

〈v − Qh1v, w〉
‖w‖H1/2(Γ )

= sup
w∈H1/2(Γ )

〈v − Qh1v, w − Qh1w〉
‖w‖H1/2(Γ )

� ‖v − Qh1v‖L2(Γ ) sup
w∈H1(Γ )

‖w − Qh1w‖L2(Γ )

‖w‖H1/2(Γ )

� h1 ‖v‖H1/2(Γ ).

�
LEMMA 3.9 The modified projection operatorPh : X → Vh defined by (3.20) satisfies
the following L2-norm error estimate:

‖v − Phv‖0,Ω � h2
1‖v1‖2,Ω1 + (h1h2 + h2

2)‖v2‖2,Ω2 ∀v = (v1, v2) ∈ X . (3.31)

Proof. By the definition of (3.20) and Lemmata 3.4–3.5, we have

‖v − Phv‖0,Ω �
2∑

i=1

‖vi − Phi vi‖0,Ωi + ‖Fh1αh1‖0,Ω1

�
2∑

i=1

h2
i ‖vi‖2,Ωi + ‖αh1‖H−1/2(Γ ). (3.32)

On the other hand, it follows from the identityQh1αh1 = Qh1(Eh2 Ph2v2 − Eh1 Ph1v1) and
(3.29) that

‖αh1‖H−1/2(Γ ) � ‖αh1 − Qh1αh1‖H−1/2(Γ ) + ‖Qh1(Eh2 Ph2v2 − Eh1 Ph1v1)‖H−1/2(Γ )

� h1‖αh1‖H1/2(Γ ) + ‖Qh1(Eh2 Ph2v2 − Eh1 Ph1v1)‖H−1/2(Γ )

� h1‖αh1‖H1/2(Γ ) + ‖(I − Qh1)(Eh2 Ph2v2 − Eh1 Ph1v1)‖H−1/2(Γ )

+‖Eh2 Ph2v2 − Eh1 Ph1v1‖H−1/2(Γ )

� h1‖αh1‖H1/2(Γ ) + h1‖Eh2 Ph2v2 − Eh1 Ph1v1‖H1/2(Γ )

+‖Eh2 Ph2v2 − Eh1 Ph1v1‖H−1/2(Γ ). (3.33)

By Lemma 3.6 and (3.25) we see

‖αh1‖H1/2(Γ ) � ‖Eh2 Ph2v2 − Eh1 Ph1v1‖H1/2(Γ ) � h1‖v1‖2,Ω1 + h2‖v2‖2,Ω2, (3.34)

while by the triangle inequality, Lemma 3.4 and the fact thatv1 = v2 onΓ , weobtain

‖Eh2 Ph2v2 − Eh1 Ph1v1‖H−1/2(Γ )

�
2∑

i=1

{‖Ehi Phi vi − Phi vi‖H−1/2(Γ ) + ‖vi − Phi vi‖H−1/2(Γ )}

�
2∑

i=1

‖Ehi Phi vi − Phi vi‖H−1/2(Γ ) +
2∑

i=1

h2
i ‖vi‖2,Ωi . (3.35)
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It remains to estimate‖Ehi Phi vi − Phi vi‖H−1/2(Γ ). It suffices to give the estimate for
the case withi = 1. For any e1

j ∈ Γh1, let K j be the curved element withe1
j as one of

its edges. Noting that(Ph1v1)|K j ∈ P1(K j ) (thus the second-order derivatives ofPh1v1
vanish onK j ) andEh1 Ph1v1 is the continuous and piecewise linear interpolation ofPh1v1,

and using the inverse inequality we have

‖Eh1 Ph1v1 − Ph1v1‖L2(e1
j )

� h2
1|Ph1v1|H2(e1

j )
� h5/2

1 ‖Ph1v1‖2,∞,K j

= h5/2
1 ‖Ph1v1‖1,∞,K j � h3/2

1 ‖Ph1v1‖1,K j . (3.36)

Squaring both sides of (3.36) and summing them over all curved elementsK j near the
interface, we derive

‖Eh1 Ph1v1 − Ph1v1‖2
L2(Γ )

� h3
1‖Ph1v1‖2

1,Ω̃1
, (3.37)

whereΩ̃1 is defined as that introduced in the proof of Lemma 3.3. Similar to the proof of
(3.13), we can show that

‖v1‖2
1,Ω̃1

� h1‖v1‖2
2,Ω1

, ∀v1 ∈ H2(Ω1),

which, together with Lemma 3.4 yields

‖Ph1v1‖2
1,Ω̃1

� ‖v1 − Ph1v1‖2
1,Ω1

+ ‖v1‖2
1,Ω̃1

� h1‖v1‖2
2,Ω1

. (3.38)

Now it follows from (3.37)–(3.38) that

‖Eh1 Ph1v1 − Ph1v1‖H−1/2(Γ ) � ‖Eh1 Ph1v1 − Ph1v1‖L2(Γ )

� h2
1‖v1‖2,Ω1. (3.39)

The desired estimate (3.31) then follows directly from (3.32)–(3.35) and (3.39). �

LEMMA 3.10 For thejumps of the modified projection operatorPh across the interface
Γ , we have the following estimate:

‖ [Phv] ‖H−1/2(Γ ) � h2
1‖v1‖2,Ω1 + (h1h2 + h2

2)‖v2‖2,Ω2, ∀v = (v1, v2) ∈ X . (3.40)

Proof. The proof will be given in the Appendix as it needs some technique used in the
proof of Lemma 3.5. �

4. Error estimates for the mortar finite element method

This section is devoted to theH1- andL2-norm error estimates for the mortar finite element
method (2.12) with the caseh1 � h2. The other case withh1 < h2 (see Remark 2.1) can be
dealt with similarly. We assume thatf ∈ L2(Ω) andg ∈ H1/2(Γ ), and thus the solution
u ∈ X = H2(Ω1) ∩ H2(Ω2) ∩ H1

0 (Ω). By the second Strang Lemma (Ciarlet, 1978) we
have

‖u − uh‖1,Ω � ‖u − Phu‖1,Ω + sup
ξ=(ξ1,ξ2)∈Vh

|a(u, ξ) − ( f, ξ) − 〈g, ξ2〉|
‖ξ‖1,Ω

. (4.1)
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The first term in the right-hand side of (4.1) represents the approximation error, while the
second denotes the inconsistency error. From Lemma 3.7 we have

‖u − Phu‖1,Ω � h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2. (4.2)

Moreover, by integration by parts and using (1.1)–(1.3) we see

a(u, ξ) =
2∑

i=1

∫
Ωi

βi (x)∇ui · ∇ξi dx

=
2∑

i=1

∫
Ωi

(−∇ · (βi (x)∇ui )ξi dx +
∫
Γ

β1(x)∂nu1 ξ1 ds −
∫
Γ

β2(x)∂nu2 ξ2 ds

= ( f, ξ) +
∫
Γ

g ξ1 ds +
∫
Γ

β2(x)∂nu2 [ξ ] ds.

That implies

a(u, ξ) − ( f, ξ) − 〈g, ξ2〉 =
∫
Γ

g [ξ ] ds +
∫
Γ

β2(x)∂nu2 [ξ ] ds

=
∫
Γ

β1(x)∂nu1 [ξ ] ds ≡ III.

Wenow estimate the term III. We first rewrite it as

III =
∫
Γ

β1(x)∂nu1 (Eh1ξ1 − Eh2ξ2) ds

+
∫
Γ

β1(x)∂nu1 (ξ1 − Eh1ξ1) ds −
∫
Γ

β1(x)∂nu1 (ξ2 − Eh2ξ2) ds

≡ III 1 + III 2 + III 3. (4.3)

For anye1
j ∈ Γh1, noting thatξ1|K j ∈ P1(K j ) andEh1ξ1 is the continuous and piecewise

linear interpolation ofξ1 onΓ , and using the inverse inequality we have

‖ξ1 − Eh1ξ1‖L2(e1
j )

� h2
1|ξ1|H2(e1

j )
� h5/2

1 ‖ξ1‖1,∞,K j � h3/2
1 ‖ξ1‖1,K j . (4.4)

Squaring both sides of (4.4) and summing them over all curved elementsK j yield

‖ξ1 − Eh1ξ1‖2
L2(Γ )

� h3
1‖ξ1‖2

1,Ω1
.

Then by the trace theorem of Sobolev spaces (Grisvard, 1985) we know

|III 2| � ‖β1(x)∂nu1‖L2(Γ )‖ξ1 − Eh1ξ1‖L2(Γ ) � h3/2
1 ‖u1‖2,Ω1‖ξ1‖1,Ω1. (4.5)

Similarly, we can derive (notingh2 � h1)

|III 3| � ‖β1(x)∂nu1‖L2(Γ )‖ξ2 − Eh2ξ2‖L2(Γ )

� h3/2
2 ‖u1‖2,Ω1‖ξ2‖2,Ω2 � h3/2

1 ‖u1‖2,Ω1‖ξ2‖2,Ω2. (4.6)
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For III 1, noting the mortar conditionQh1(Eh1ξ1) = Qh1(Eh2ξ2), we have

III 1 =
∫
Γ

β1(x)∂nu1 (Eh1ξ1 − Qh1(Eh1ξ1)) ds

−
∫
Γ

β1(x)∂nu1 (Eh2ξ2 − Qh1(Eh2ξ2)) ds

=
∫
Γ

{(I − Qh1)(β1(x)∂nu1)}{(I − Qh1)(Eh1ξ1)} ds

−
∫
Γ

{(I − Qh1)(β1(x)∂nu1)}{(I − Qh1)(Eh2ξ2)} ds.

Hence, by (3.30) we find

|III 1| � ‖(I − Qh1)(β1(x)∂nu1)‖L2(Γ )

2∑
i=1

‖(I − Qh1)(Ehi ξi )‖L2(Γ )

� h1‖β1(x)∂nu1‖H1/2(Γ )

2∑
i=1

‖Ehi ξi‖H1/2(Γ )

� h1‖u1‖2,Ω1

2∑
i=1

‖Ehi ξi‖H1/2(Γ ). (4.7)

It remains to estimate the term‖Ehi ξ‖H1/2(Γ ) (i = 1, 2). Let Q̄hi be theL2-orthogonal
projection operator fromL2(Γ ) ontoWhi . By the standard argument (Xu, 1989), we have

‖v − Q̄hi v‖L2(Γ ) � hi‖v‖H1(Γ ), ∀v ∈ H1(Γ ).

and fors = 0, 1,

‖Q̄hi v‖Hs (Γ ) � ‖v‖Hs (Γ ), ∀ v ∈ Hs(Γ ) , (4.8)

which implies that (4.8) holds also fors = 1/2 by the Sobolev interpolation theory. This,
together with the inverse inequality and the trace inequality, yields

‖Ehi ξi‖H1/2(Γ ) � ‖Q̄hi ξi‖H1/2(Γ ) + ‖Q̄hi ξi − Ehi ξi‖H1/2(Γ )

� ‖ξi‖H1/2(Γ ) + h−1/2
i ‖Q̄hi ξi − Ehi ξi‖L2(Γ )

� ‖ξi‖H1/2(Γ ) + h−1/2
i (‖ξi − Q̄hi ξi‖L2(Γ ) + ‖ξi − Ehi ξi‖L2(Γ ))

� ‖ξi‖H1/2(Γ ) + ‖ξi‖1,Ωi � ‖ξi‖1,Ωi . (4.9)

It follows then from (4.3)–(4.9) that

|III | � (h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2)‖ξ‖1,Ω ,

which together with (4.1)–(4.2) leads to the following theorem.

THEOREM 4.1 Letu be the solution to the interface problem (2.1) anduh be the solution
to the mortar finite element system (2.12), then we have the following optimalH1-norm
error estimate:

‖u − uh‖1,Ω � h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2. (4.10)
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REMARK 4.1 Theorem 4.1 still holds when the interfaceΓ is piecewiseC2-smooth
provided the true solutionu ∈ X . In this case the nonsmooth points ofΓ should be chosen
as the nodal points of the triangulationsTh1 andTh2.

We now proceed to give theL2-norm error estimate for the mortar finite element
method (2.12). Consider the auxiliary problem:

−∇ · (β∇φ) = Phu − uh in Ω ,

φ = 0 on∂Ω , (4.11)

[φ] = 0, [β∂nφ] = 0 acrossΓ .

Let φ1 = φ|Ω1, φ2 = φ|Ω2, then we have thea priori estimates by (1.5)

‖φ1‖2,Ω1 + ‖φ2‖2,Ω2 � ‖Phu − uh‖0,Ω . (4.12)

Moreover, letφh = (φh1, φh2) ∈ Vh be the mortar finite element solution ofφ through the
system (2.12) withf = Phu − uh andg = 0. From Theorem 4.1 we have

‖φ − φh‖1,Ω � h1‖φ1‖2,Ω1 + h2‖φ2‖2,Ω2 � (h1 + h2)‖Phu − uh‖0,Ω . (4.13)

By the definition ofφh we see

‖Phu − uh‖2
0,Ω = a(φh, Phu − uh)

= a(φh − φ, Phu − uh) + a(φ, Phu − u) + a(φ, u − uh)

≡ IV1 + IV2 + IV3. (4.14)

It follows from (4.13), Lemma 3.7 and Theorem 4.1 that

|IV1| � ‖φ − φh‖1,Ω‖Phu − uh‖1,Ω

� (h1 + h2)(h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2)‖Phu − uh‖0,Ω . (4.15)

On the other hand, by integration by parts we know

IV2 =
2∑

i=1

∫
Ωi

βi (x)∇φi · ∇(Phu − u) |Ωi dx

=
∫
Ω

(Phu − uh)(Phu − u) dx +
∫
Γ

[Phu]β1(x)∂nφ ds. (4.16)

Then by Lemmata 3.9–3.10, the trace theorem and (4.12) we obtain

|IV2| � ‖Phu − uh‖0,Ω‖u − Phu‖0,Ω + ‖[Phu]‖H−1/2(Γ )‖β1(x)∂nφ‖H1/2(Γ )

� (h2
1‖u1‖2,Ω1 + (h1h2 + h2

2)‖u2‖2,Ω2)‖Phu − uh‖0,Ω . (4.17)

Moreover, by integration by parts (see the deduction of III given above),

IV3 = a(φ − Phφ, u − uh) + a(Phφ, u − uh)

= a(φ − Phφ, u − uh) + a(Phφ, u) − ( f, Phφ) − 〈g, Phφ |Ω2〉
= a(φ − Phφ, u − uh) +

∫
Γ

β1(x)∂nu1 [Phφ] ds.
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Using Lemma 3.4, Lemma 3.10 and Theorem 4.1 we have (notingh1 � h2)

|IV3| � ‖u − uh‖1,Ω‖φ − Phφ‖1,Ω + ‖[Phφ]‖H−1/2(Γ )‖β1(x)∂nu1‖H1/2(Γ )

� {(h1 + h2)(h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2) + (h2
1 + h2

2)‖u1‖2,Ω1)}‖Phu − uh‖0,Ω

� (h2
1‖u1‖2,Ω1 + (h1h2 + h2

2)‖u2‖2,Ω2)‖Phu − uh‖0,Ω . (4.18)

From (4.14)–(4.18) we find

‖Phu − uh‖0,Ω � h2
1‖u1‖2,Ω1 + (h1h2 + h2

2)‖u2‖2,Ω2,

which together with Lemma 3.9 and the triangle inequality

‖u − uh‖0,Ω � ‖u − Phu‖0,Ω + ‖Phu − uh‖0,Ω

leads to the following theorem.

THEOREM 4.2 Letu be the solution to the interface problem (2.1) anduh be the solution
to the mortar finite element system (2.12), then we have the followingL2-norm error
estimate:

‖u − uh‖0,Ω � h2
1‖u1‖2,Ω1 + (h1h2 + h2

2)‖u2‖2,Ω2. (4.19)

REMARK 4.2 The cross termO(h1h2) in (4.19) is common to the error estimates for all
existing mortar finite element methods for elliptic problems even with smooth coefficients,
see, for example, Belgacem (1999); Bernardiet al. (1990a).

5. Effect of the numerical integration

So far all our convergence analyses have been carried out under the assumption that the
integrals involved in the the mortar finite element method (2.12), namelyah(uh, vh), ( f, v)

and〈g, vh2〉, were computed exactly. This may cause some technical difficulties in practice
for the evaluation of the integrals over those curved elements near the interfaceΓ . It would
make the numerical implementation much easier if we can replace these integrals over the
curved elements by the integrals over the corresponding straight elements. This section
aims to show that this replacement will not affect the convergence order of the mortar
element method (2.12).

To do so, we first replace the original bilinear forma(uh, vh) by the following
approximate one:

ah(uh, vh) = ah1(uh1, vh1) + ah2(uh2, vh2) (5.1)

with
ahi (uhi , vhi ) =

∑
K∈T̃hi

meas(K )βi (bK )∇uhi · ∇vhi , i = 1, 2

wherebK denotes the barycentre ofK , and we have used the conventional quadrature
scheme which is exact for polynomials of degree� 1 (Ciarlet, 1978). To treat the interface
integral〈g, vh2〉 for g ∈ C0(Γ ), we defineg̃h2 to be the continuous and piecewise linear
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function defined on the triangulatioñΓh2 = {ẽ2
j }m2

j=1 of Γ such thatgh2(P2
j ) = g(P2

j ),
j = 1, 2, . . . , m2. For vh2 ∈ Vh2, we let ṽh2 be the linear interpolation ofvh2 on the
triangulationT̃h2. Then the mortar finite element method with numerical integration for
solving (2.1) is: Findu∗

h ∈ Vh such that

ah(u∗
h, vh) =

2∑
i=1

∫
Ωi

f vhi dx +
∫
Γ̃h2

g̃h2ṽh2 ds, ∀vh = (vh1, vh2) ∈ Vh . (5.2)

Recall thatT̃hi (i = 1, 2) are the triangulations with straight triangular elements (no curved
elements included), and̃Γh2 is the triangulation ofΓ with piecewise line segments (no
curved segments included). So the major calculations in (5.2) (except for the term involving
f ) are carried out either on the straight triangular elements or on the line segments. Here,
for simplicity, we do not consider the numerical integration of the term involvingf in
(5.1); this can be done in a same manner as we treat the bilinear forma(uh, vh) and the
integral〈g, vh2〉.

Let u be the weak solution to the interface problem (2.1) andu∗
h be the finite element

solution to (5.2). The rest of this section establishes theH1-norm andL2-norm error
estimates ofu − u∗

h .
Consider an elementK ∈ Thi . If K is a straight triangle, by the standard scaling

argument (see Ciarlet (1978)) we have

∣∣∣∣
∫

K
βi (x) dx − meas(K )βi (bK )

∣∣∣∣ � h4
i ‖βi‖2,∞,K ; (5.3)

if K is a curved triangle, letK ′ ∈ T̃hi be the straight triangle with the same vertices asK ,
and we have

∣∣∣∣
∫

K
βi (x) dx − meas(K ′)βi (bK ′)

∣∣∣∣ � h3
i ‖βi‖2,∞,K . (5.4)

Using (5.3)–(5.4), we immediately obtain for anyvh ∈ Vh that

|a(vh, vh) − ah(vh, vh)| � (h1 + h2)a(vh, vh),

which implies

ah(vh, vh) =∼ a(vh, vh). (5.5)
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Now we chooseψh = (ψh1, ψh2) = Phu − u∗
h . Then from (5.5) we have

‖ψh‖2
1,Ω � ah(Phu − u∗

h, ψh)

= ah(Phu, ψh) −
∫
Ω

f ψh dx −
∫
Γ̃h2

g̃h2ψ̃h2 ds

= {ah(Phu, ψh) − a(Phu, ψh)} + a(Phu − u, ψh)

+
{

a(u, ψh) −
∫
Ω

f ψh dx −
∫
Γ

gψh2 ds

}

+
{∫

Γ
gψh2 ds −

∫
Γ̃h2

g̃h2ψ̃h2 ds

}
≡ V1 + V2 + V3 + V4. (5.6)

It follows directly from (5.3)–(5.4) and Lemma 3.7 that

|V1| � (h2
1|Phu|21,Ω1

+ h2
2|Phu|22,Ω2

)1/2|ψh |1,Ω

� (h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2)|ψh |1,Ω (5.7)

and

|V2| � |u − Phu|1,Ω |ψh |1,Ω � (h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2)|ψh |1,Ω . (5.8)

Repeating the same process as for deriving the estimate of III in Section 4 we obtain

|V3| � (h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2)|ψh |1,Ω . (5.9)

Moreover, following the same proof as for deriving Lemma 2.2 in Chen & Zou (1998) we
have

|V4| � h3/2
2 ‖g‖H2(Γ )‖ψh2‖1,Ω̃2

, (5.10)

whereΩ̃2 is the union of all curved elementsK ∈ Th2 with K̄ ∩ Γ �= ∅. Now it follows
from (5.6)–(5.10) that

‖ψh‖1,Ω � h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2 + h3/2
2 ‖g‖H2(Γ ),

which together with Lemma 3.7 leads to

‖u − u∗
h‖1,Ω � ‖u − Phu‖1,Ω + ‖ψh‖1,Ω

� h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2 + h3/2
2 ‖g‖H2(Γ ), (5.11)

thus we have proved the following theorem.

THEOREM 5.1 Letu be the solution to the interface problem (2.1) andu∗
h be the solution

to the mortar finite element system (5.2). Then ifg ∈ H2(Γ ), the following optimalH1-
norm error estimate holds:

‖u − u∗
h‖1,Ω � h1‖u1‖2,Ω1 + h2‖u2‖2,Ω2 + h3/2

2 ‖g‖H2(Γ ).
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Next, we use the duality argument to establish theL2-norm error estimate for the mortar
element method (5.2). To do so, we first introduce an auxiliary problem:

−∇ · (β∇φ) = ψh in Ω ,

φ = 0 on∂Ω , (5.12)

[φ] = 0, [β∂nφ] = 0 acrossΓ ,

whereψh = Phu − u∗
h . Denote byφh = (φh1, φh2) ∈ Vh the mortar finite element solution

of φ through (5.2) withf = ψh andgh2 = 0. We then have

‖ψh‖2
0,Ω = ah(φh, Phu − u∗

h)

= ah(φh, Phu) −
∫
Ω

f φh dx −
∫
Γ̃h2

g̃h2φ̃h2 ds

= {ah(φh, Phu) − a(φh, Phu)}
+{a(φh − φ, Phu − uh)} + a(φ, Phu − u) + a(u − uh, φ)

+
{∫

Γ
gφh2 ds −

∫
Γ̃h2

g̃h2φ̃h2 ds

}

≡ VI1 + VI2 + VI3 + VI4 + VI5. (5.13)

Using (5.3)–(5.4), Lemma 3.7 and Theorem 5.1, and a careful analysis we can derive

|VI1| �
2∑

i=1

{
hi

∫
Ω̃i

βi (x)|∇φh ||∇ Phu| dx + h2
i

∫
Ωi \Ω̃i

βi (x)|∇φh ||∇ Phu| dx

}

�
2∑

i=1

{hi‖φh‖1,Ω̃i
‖Phu‖1,Ω̃i

+ h2
i ‖φh‖1,Ωi ‖Phu‖1,Ωi }

� (h2
1‖u1‖2,Ω1 + (h2

2 + h1h2)‖u2‖2,Ω2)‖ψh‖0,Ω (5.14)

whereΩ̃i (i = 1, 2) is the union of all the curved elementsK ∈ Thi . We can easily obtain
the estimate for VI2 as follows:

|VI2| � ‖φh − φ‖1,Ω‖Phu − uh‖1,Ω

� (h2
1‖u1‖2,Ω1 + (h2

2 + h1h2)‖u2‖2,Ω2 + h1h3/2
2 ‖g‖H2(Γ ))‖ψh‖0,Ω . (5.15)

In the same manner as for estimating IV2 in Section 4 we obtain

|VI3| � (h2
1‖u1‖2,Ω1 + (h2

2 + h1h2)‖u2‖2,Ω2)‖ψh‖0,Ω , (5.16)

while in the same manner as for estimating IV3 in Section 4 we obtain

|VI4| � (h2
1‖u1‖2,Ω1 + (h2

2 + h1h2)‖u2‖2,Ω2 + h1h3/2
2 ‖g‖H2(Γ ))‖ψh‖0,Ω . (5.17)

Using (5.10) we know

|VI5| � h3/2
2 ‖g‖H2(Γ )‖φh2‖1,Ω̃2

,
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where

‖φh2‖1,Ω̃2
� ‖φ − φh2‖1,Ω̃2

+ ‖φ‖1,Ω̃2
� (h1 + h2 + h1/2

2 )‖ψh‖0,Ω ,

hence

|VI5| � (h1h3/2
2 + h2

2)‖g‖H2(Γ )‖ψh‖0,Ω . (5.18)

Now it follows from (5.13)–(5.18) that

‖ψh‖0,Ω � h2
1‖u1‖2,Ω1 + (h2

2 + h1h2)‖u2‖2,Ω2 + h1h3/2
2 ‖g‖H2(Γ ),

which together with the triangle inequality

‖u − u∗
h‖0,Ω � ‖u − Phu‖0,Ω + ‖ψh‖0,Ω

and Lemma 3.9 yields the following theorem.

THEOREM 5.2 Letu be the solution to the interface problem (2.1) andu∗
h be the solution

to the mortar finite element system (5.2). Then ifg ∈ H2(Γ ), the followingL2-norm error
estimate holds:

‖u − u∗
h‖0,Ω � h2

1‖u1‖2,Ω1 + (h2
2 + h1h2)‖u2‖2,Ω2 + h1h3/2

2 ‖g‖H2(Γ ).

REMARK 5.1 With a more detailed analysis, the regularity requirement on the interface
functiong in Theorems 5.1 and 5.2 can be made much weaker (Chen & Zou, 1998).
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Appendix

Proof of Lemma 3.5. The first result of (3.18) is a generalization of the conventional
extension theorems for finite element spaces to the current domain with a curved boundary
(Xu & Zou, 1998). Note thatαh1 can be viewed as the interpolation of(Fh1αh1)|Γ
associated with the spaceWh1, thus we have

‖Fh1αh1 − αh1‖H1/2(Γ ) � h1/2
1 |Fh1αh1|H1(Γ ) = h1/2

1

{
m1∑
j=1

|Fh1αh1|2H1(e1
j )

}1/2

. (A.1)

Let K j ∈ Th1 be a curved element withe1
j being one of its edges. Then it follows from the

inverse inequality that

|Fh1αh1|H1(e1
j )

� h1/2
1 |Fh1αh1|1,∞,K j � h−1/2

1 |Fh1αh1|1,K j ,

which together with (A.1) yields

‖Fh1αh1 − αh1‖H1/2(Γ ) � ‖Fh1αh1‖1,Ω1.

Thus by the trace theorem we immediately have

‖αh1‖H1/2(Γ ) � ‖Fh1αh1 − αh1‖H1/2(Γ ) + ‖Fh1αh1‖H1/2(Γ )

� ‖Fh1αh1‖1,Ω1. (A.2)

On the other hand,Fh1αh1 can be viewed as the finite element approximation of the solution
φ to the elliptic problem (3.1) withg1 replaced byαh1. Note thatαh1 ∈ Wh1, and so
αh1 ∈ H1+ε(Γ ) for anyε ∈ (0, 1/2) (see Xu (1989)). So the solutionφ has the regularity
φ ∈ H3/2+ε(Ω1) and meets the estimate (3.3). Following the derivation of (5.5) in Scott
(1975), we have

‖φ − Fh1αh1‖1,Ω1 � ‖φ − Ih1φ‖1,Ω1 +
(

sup
v1∈V 0

h1

‖v1‖H1/2−ε (Γ )

‖v1‖1,Ω1

)
‖φ‖3/2+ε,Ω1, (A.3)

while using Lemma 1 of Scott (1975) withk = 2, we have

sup
v1∈V 0

h1

‖v1‖H1/2−ε (Γ )

‖v1‖1,Ω1

� h1+ε
1 ,

which together with (3.3) and (A.3), Lemma 3.2 and the inverse inequality yields

‖φ − Fh1αh1‖1,Ω1 � h1/2+ε

1 ‖φ‖3/2+ε,Ω1 + h1+ε
1 ‖φ‖3/2+ε,Ω1

� h1/2+ε

1 ‖αh1‖H1+ε (Γ ) � ‖αh1‖H1/2(Γ ). (A.4)

Then, by Lemma 3.1 we have

‖Fh1αh1‖1,Ω1 � ‖φ‖1,Ω1 + ‖φ − Fh1αh1‖1,Ω1

� ‖αh1‖H1/2(Γ ), (A.5)
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with which, and (A.2), we have proved the first relation in (3.18).
We now use the duality argument to show the second relation in (3.18). For anyψ ∈

L2(Ω1), introduce an auxiliary problem:

−∆z + z = ψ in Ω1; z = 0 onΓ . (A.6)

By integration by parts and the fact thatFh1αh1 satisfies (3.17) we have

(φ − Fh1αh1, ψ)0,Ω1 = (φ − Fh1αh1, −∆z + z)0,Ω1

= (φ − Fh1αh1, z − Ih1z)1,Ω1 +
{ ∫

Γ
∂nφ Ih1z dx

}

+
{
−

∫
Γ

(φ − Fh1αh1)∂nz ds

}
≡ I1 + I2 + I3. (A.7)

It follows from (A.4) and Lemma 3.2 that

|I1| � ‖φ − Fh1αh1‖1,Ω1‖z − Ih1z‖1,Ω1 � h1‖αh1‖H1/2(Γ )‖z‖2,Ω1, (A.8)

and we obtain from Lemma 3.3, the trace theorem and (3.3) that

|I2| � ‖Ih1z‖L2(Γ )‖∂nφ‖L2(Γ )

� h2
1‖z‖2,Ω1‖φ‖3/2,Ω1 � h2

1‖z‖2,Ω1‖αh1‖H1(Γ ). (A.9)

For I3, we have

|I3| � ‖φ − Fh1αh1‖H−1/2(Γ )‖∂nz‖H1/2(Γ ) � ‖φ − Fh1αh1‖H−1/2(Γ )‖z‖2,Ω1. (A.10)

By the triangle inequality,

‖φ − Fh1αh1‖H−1/2(Γ ) � ‖φ − Ih1φ‖H−1/2(Γ ) + ‖Ih1φ − Fh1αh1‖H−1/2(Γ ). (A.11)

Note thatIh1φ − Fh1αh1 ∈ V 0
h1

. Again using Lemma 1 of Scott (1975) withk = 2 we have

‖Ih1φ − Fh1αh1‖H−1/2(Γ ) �‖Ih1φ − Fh1αh1‖L2(Γ )

�h3/2
1 ‖Ih1φ − Fh1αh1‖1,Ω1. (A.12)

From (3.3), (A.4) and the inverse inequality we know

‖Ih1φ − Fh1αh1‖1,Ω1 �‖φ − Ih1φ‖1,Ω1 + ‖φ − Fh1αh1‖1,Ω1

�h1/2+ε

1 ‖φ‖3/2+ε,Ω1 + ‖αh1‖H1/2(Γ ) � ‖αh1‖H1/2(Γ ). (A.13)

It remains to estimate the term‖φ − Ih1φ‖H−1/2(Γ ) in (A.11). Consider a general curved
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segmente1
j ∈ Γh1. Foranyξ j ∈ H1/2(e1

j ), using the local coordinates we have

∫
e1

j

(φ − Ih1φ)ξ j (s) ds =
∫ s

h1
j

0
{φ(x j

1, φ1
j (x j

1)) − (Ih1φ)(x j
1, φ1

j (x j
1))}ξ j (σ

1
j (x j

1))σ̇ 1
j (x j

1) dx j
1

=
∫ s

h1
j

0
{(Ih1φ)(x j

1, 0) − (Ih1φ)(x j
1, φ1

j (x j
1))}ξ j (σ

1
j (x j

1))σ̇ 1
j (x j

1) dx j
1

+
∫ s

h1
j

0
{φ(x j

1, φ1
j (x j

1)) − (Ih1φ)(x j
1, 0)}ξ j (σ

1
j (x j

1))σ̇ 1
j (x j

1) dx j
1

≡II 1 + II 2 (A.14)

whereσ 1
j (x j

1) = ∫ x j
1

0

√
1 + (φ̇1

j (x j
1))2 dx j

1. By (2.3)–(2.4) and the inverse inequality we
obtain

|II 1| � h2
1|Ih1φ|1,∞,K 1

j

∫ s
h1
j

0
|ξ j (σ

1
j (x j

1))|σ̇ 1
j (x j

1) dx j
1

� h3/2
1 |Ih1φ|1,K 1

j
‖ξ j‖0,e1

j
, (A.15)

whereK 1
j is the curved element withe1

j as one of its edges.
On the other hand, noting thatφ|Γ = αh1 ∈ Wh1, we see

φ(s)|
s=σ1

j (s
h1
j )/2

= 1
2(φ(P1

j ) + φ(P1
j+1)) = (Ih1φ)(sh1

j /2, 0),

which yields

II2 =
∫

e1
j

{φ(s) − φ(t j )}ξ j (s) ds −
∫ s

h1
j

0
{(Ih1φ)(x j

1, 0) − (Ih1φ)(sh1
j /2, 0)}ξ j (σ

1
j (x j

1))

σ̇ 1
j (x j

1) dx j
1

wheret j = σ 1
j (s

h1
j )/2. Moreover, we easily see that

φ(t j ) = 1

|e1
j |

∫
e1

j

φ(s) ds, (Ih1φ)(sh1
j /2, 0) = 1

|ẽ1
j |

∫
ẽ1

j

(Ih1φ)(x j
1, 0) dx j

1,

and thus we have the following standard estimates (Brenner & Scott, 1994):

‖φ(s) − φ(t j )‖H−1/2(e1
j )

� h1|φ|H1/2(e1
j )

and

‖(Ih1φ)(x j
1, 0) − (Ih1φ)(sh1

j /2, 0)‖
H−1/2(0,s

h1
j )

� h1|(Ih1φ)(x j
1, 0)|

H1/2(0,s
h1
j )

.
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With these estimates, we obtain

|II 2| � h1(|φ|H1/2(e1
j )

+ |(Ih1φ)(x j
1, 0)|

H1/2(0,s
h1
j )

)‖ξ j‖H1/2(e1
j )

� h1(|φ|1,K 1
j
+ |Ih1φ|1,K 1

j
)‖ξ j‖H1/2(e1

j )
. (A.16)

Summing both sides of (A.14) overe1
j ∈ Γh1, using (A.15)–(A.16), Lemma 3.2 and the

definition of the norm inH−1/2(Γ ), we have

‖φ − Ih1φ‖2
H−1/2(Γ )

� h3
1

m1∑
j=1

|Ih1φ|2
1,K 1

j
+ h2

1

m1∑
j=1

{|φ|2
1,K 1

j
+ |Ih1φ|2

1,K 1
j
}

� h2
1(|φ|21,Ω1

+ |φ − Ih1φ|21,Ω1
)

� h2
1(‖αh1‖2

H1/2(Γ )
+ h1+2ε

1 ‖φ‖2
H3/2+ε (Ω1)

) (A.17)

� ‖αh1‖2
H−1/2(Γ )

. (A.18)

Summarizing (A.7)–(A.13) and (A.18) we finally come to

|(φ − Fh1φ, ψ)0,Ω1| � (h1‖αh1‖H1/2(Γ ) + h2
1‖αh1‖H1+ε (Γ ) + h3/2

1 ‖αh1‖H1/2(Γ ))‖ψ‖0,Ω1,

which, together with Lemma 3.1 and the inverse inequalities, implies

‖Fh1αh1‖0,Ω1 � ‖φ − Fh1αh1‖0,Ω1 + ‖φ‖0,Ω1 � ‖αh1‖H−1/2(Γ ).

This completes the proof of the second relation of (3.18). �

Proof of Lemma 3.10. By the definition of (3.20) and the fact thatv1 = v2 onΓ we have

[Phv] = Ph1v1 − v1 + v2 − Ph2v2 + Fh1αh1

whereαh1 = Gh1(Eh2 Ph2v2 − Eh1 Ph1v1). From Lemma 3.4 we have

‖[Phv]‖H−1/2(Γ ) �
2∑

i=1

‖vi − Phi vi‖H−1/2(Γ ) + ‖Fh1αh1‖H−1/2(Γ )

�
2∑

i=1

h2
i ‖vi‖2,Ωi + ‖Fh1αh1‖H−1/2(Γ ). (A.19)

Noting thatαh1 = Eh1(Fh1αh1), using the techniques employed in deriving (3.36)–(3.37),
we obtain

‖Fh1αh1‖H−1/2(Γ ) � ‖αh1‖H−1/2(Γ ) + ‖αh1 − Fh1αh1‖H−1/2(Γ )

� ‖αh1‖H−1/2(Γ ) + h3/2
1 ‖Fh1αh1‖1,Ω̃1

. (A.20)

Let φ ∈ H3/2+ε(Ω1) be the solution of the auxiliary problem (3.1) withg1 replaced by
αh1. Then using (A.4) and the inverse inequality yields

‖φ − Fh1αh1‖1,Ω̃1
� ‖φ − Fh1αh1‖1,Ω1 � ‖αh1‖H1/2(Γ ) � h−1

1 ‖αh1‖H−1/2(Γ ). (A.21)
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On the other hand, using (3.13) and the interpolation theory of Sobolev spaces (Bergh &
Löfstrom, 1976), the regularity estimate (3.3 ) and the inverse inequality we know

‖φ‖1,Ω̃1
� h1/4

1 ‖φ‖3/2,Ω1 � h1/4
1 ‖αh1‖H1(Γ ) � h−5/4

1 ‖αh1‖H−1/2(Γ ),

which together with (A.20)–(A.21) leads to

‖Fh1αh1‖H−1/2(Γ ) � ‖αh1‖H−1/2(Γ ). (A.22)

Following the proof of Lemma 3.9 we have

‖αh1‖H−1/2(Γ ) � h2
1‖v1‖2,Ω1 + (h1h2 + h2

2)‖v2‖2,Ω2

which combining with (A.19) gives the desired result. �


