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The identification of parameters in parabolic systems is formulated as a con-
strained minimization problem combining the output least squares and the equa-
tion error method. The minimization problem is then proved to be equivalent to
the saddle-point problem of an augmented Lagrangian. � 2001 Academic Press

1. INTRODUCTION

In this paper, we investigate a new approach for the identification of the
Ž .unknown coefficient q x in the following parabolic equation

� u
� � � q�u � f , in � � 0, T 1.1Ž . Ž Ž .

� t
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with the initial condition

u x , 0 � u x , in � 1.2Ž . Ž . Ž .0

and the Dirichlet boundary condition

u x , t � 0, on � � � 0, T . 1.3Ž . Ž Ž .

nŽ .Here � is a bounded domain in RR n � 3 with a piecewise smooth
Ž . Ž .boundary � �, and f x, t and u x are the given source function and the0

Ž . Ž .initial condition, respectively. The problem 1.1 � 1.3 may describe the
flow of a fluid through some medium with the permeability q, or the heat
transfer in a material with the conductivity q. In many practical applica-
tions, it is often easier to measure the solution u at various discrete points
in the medium and at certain time, than to measure the physical parameter

� � � �q itself; see Bank and Kunisch 2 and Engl et al. 7 and the references
therein. The inverse problem to be considered here is to recover the

Ž . Ž . Ž .conductivity q x in Eq. 1.1 , assuming that the observation data z x of
Ž . � Ž .4the terminal temperature u x, T or a set of the observation data z x, ti

Ž . � 4of the temperature u x, t at a set of discrete time points t in a smalli
� �time interval T � � , T are available. This problem is known to be highly

ill-posed and has been widely investigated in the last several decades,
although it remains still challenging due to the lack of efficiency and good
stability of the existing methods. For the references in this aspect, we refer

� � � � � � � �to Cannon 4 , Bank and Kunisch 2 , Chen and Zou 6 , Engl et al. 7 ,
� � � � � �Guenther et al. 9 , Gutman 10 , Ito and Kunisch 11 , Kunisch and White

� � � �14 , and Keung and Zou 13 .
Recently, a very stable and efficient approach was proposed by Ito and

� � Ž .Kunisch 11, 12 for the identification of the parameters q x in the
Ž . Ž . Ž .steady-state case of 1.1 time-independent case , when the q x are very

� �smooth. The method was then generalized by Chen and Zou 6 to treat
the non-smooth parameters in the steady-state system. The important
novelty of this method is to combine the output least squares and the
equation error method with the mathematical framework given by the
augmented Lagrangian technique, which was widely used earlier in nonlin-

� �ear constrained optimizations; see, e.g., Bertsekas 3 , and Glowinski and
� �Tallec 8 . This new approach has been proved to be very successful in the

recovery of the parameters in the elliptic problems due to its fast conver-
gence and nice stability. Unfortunately, people have still not found a
reasonable way to apply this method, in particular to justify its mathemati-

Ž .cal formulation, for the identification of the parameters q x in the
Ž . Ž .parabolic system 1.1 � 1.3 . In this paper we will make some efforts in this

direction, and this seems to be the first time to study and rigorously justify
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the augmented Lagrangian formulation for a time-dependent inverse
problem.

The paper is arranged as follows. In the next section, we establish some
a priori estimates which will be used in the forthcoming discussions. In
Section 3, we reformulate the parameter identifying problem as a nonlin-
ear constrained minimization problem and show the existence of the global
minimizers of the minimization system. In Section 4, we introduce an
augmented Lagrangian functional and prove that the minimization prob-
lem is equivalent to the saddle-point problem associated with the La-
grangian functional. The augmented Lagrangian functional is quadratic
and convex with respect to each of its variables, so it is much more
convenient than the original highly nonlinear optimization problem from
the viewpoint of the implementation of the identification process.

2. SOME A PRIORI ESTIMATES

In this section, we present some a priori estimates about the solution
Ž . Ž . Ž .u x, t of the parabolic system 1.1 � 1.3 . For the ease of notation, we will

use the following notations with any r � 0 and p � 1,

� � � � r � � � � r � � � � r , p� � � , � � � , � � � ,r H Ž� . r H Ž� . r , p W Ž� .

� � � � � � � � � r , � � � � � r , �� � � , � � � , � � � ,� L Ž� . r , � W Ž� . r , � W Ž� .

Ž . Ž . � � � � 22and the notation � , w � � , w and � � � .L Ž� .L Ž� .
With these notations, the weak formulation of the parabolic system

Ž . Ž .1.1 � 1.3 can be stated as follows.
2Ž 1Ž .. �Ž 2Ž ..Find u 	 L 0, T ; H � 
 L 0, T ; L � such that the following0

Ž �holds for a.e. t 	 0, T ,

� u�
² :, � � q�u , �� � f , � , 	� 	 V ,Ž .ž / � t 2.1Ž .�u x , 0 � u x , in � ,Ž . Ž .0

1Ž . ² :where V � H � and � , � denotes the duality pairing between V and0
�1Ž .V 
 � H � .

Ž .Physically, it is very reasonable to search the parameters q x among all
positive functions which are bounded below and above by two roughly
predicted fixed constants, say � and � . Therefore we will only consider1 2

Ž .the parameters q x which have the following bounds:

� � q x � � for a.e. x 	 � . 2.2Ž . Ž .1 2
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First of all, we know from the standard theory about the parabolic
2Ž . 2Ž �1Ž .. Ž .equation that if u 	 L � and f 	 L 0, T ; H � , then 2.1 has a0

unique solution u, which satisfies

� � 2 1 � � � 2 � � � � 2 �1u � u � c u � f . 2.3Ž .Ž .L Ž0 , T ; H Ž� .. L Ž0 , T ; L Ž� .. L Ž0 , T ; H Ž� ..0

Hereafter, c � 0 denotes a generic constant depending only on � , �1 2
and �.

Ž .About the solution of the parabolic system 2.1 , we have the following
further a priori estimates:

1Ž . 2Ž 2Ž ..LEMMA 2.1. If u 	 H � and f 	 L 0, T ; L � , then the solution0 0
Ž . Ž .u x, t of the system 2.1 has the following bounds

� � 2
� 1 � � 2

1 2 � � 2 � � 2
2 2u � u � c u � f .Ž .L Ž0 , T ; H Ž� .. H Ž0 , T ; L Ž� .. 1 L Ž0 , T ; L Ž� ..0

1, �Ž .If , in addition, q 	 W � , then

� � 2
2 2 � � 2 � � 2 � � 2

2 2�u � c T q � 1 u � f .Ž . Ž .L Ž0 , T ; L Ž� .. 1, � 1 L Ž0 , T ; L Ž� ..0

� u Ž .Proof. We first take � � in 2.1 to obtain that� t

2� u d 2� �� q�u , �u � f .Ž .
� t dt

Integrating the above inequality with respect to t, yields that

2� u 2 2 2
2 2� � � � � �� � u t � � u � f ,Ž . 1 1 L Ž0 , T ; L Ž� ..1 2 02 2Ž Ž ..� t L 0, T ; L �

for a.e. t 	 0, T .Ž
Therefore

� � 2
� 1 � � 2

1 2 � � 2 � � 2
2 2u � u � c u � f .Ž .L Ž0 , T ; H Ž� .. H Ž0 , T ; L Ž� .. 1 L Ž0 , T ; L Ž� ..0

1, �Ž . Ž .Next, let q 	 W � . We have from 2.1 that in the sense of distribu-
tions,

� u
� �q � �u � q�u � f , for a.e. t 	 0, T . 2.4Ž Ž .

� t

Ž .Multiplying both sides of 2.4 by ��u and integrating then over �, we
have

d � 212 2 2� � � � � � � �u � 2 q�u , �u � 2 �q � �u , �u � �u � f .Ž . Ž .1dt 2 �1
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� Ž . �Moreover, by the previous estimate for u t we have1

� 21 2 2 2� � � � � � � �2 �q � �u , �u � �u � q uŽ . 1, � 12 �1

�1 2 2 2 2
2 2� � � � � � � �� �u � c q u � f .Ž .1, � 1 L Ž0 , T : L Ž� ..02

Thus

d 22 2 2 2 2
2 2� � � � � � � � � �u � q�u , �u � c q u � f � f .Ž . Ž .1 1, � 1 L Ž0 , T : L Ž� ..0dt �1

Integrating the above inequality with respect to t, yields

t2 2 2 2 2
2 2� � � � � � � � � �u t � � �u s ds � ct q u � fŽ . Ž . Ž .1 H 1, � 1 L Ž0 , T ; L Ž� ..1 0

0

22 2
2 2� � � �� u � f ,1 L Ž0 , T , L Ž� ..0 �1

which implies the second result of Lemma 2.1.

Remark 2.1. In many practical applications, the boundary � � often
Ž . Ž . 1, 1satisfies one of the three conditions: i � � is convex; ii � � is of C ;

Ž . 2iii � � is piecewisely of C , and the neighbourhoods of all corners are
locally convex. Under either of these three conditions, we have the
estimate

� � � � � � 2u � c �u � u , 	u 	 H � .Ž . Ž .2

Ž . � � 2Then using the relation � u, �u � �u , and the Poincare inequality,
we have

c2 2 2� � � � � � � � � � � � � �u � �u u � c �u u �  u � �u1 1 1


� � � �for any  � 0. Let  be sufficiently small. Then u � c �u , and so1
� � � � � � 2 2u � c �u . In this situation, we can replace the norm �u2 L Ž0, T ; L Ž� ..

� � 2 2by the norm u in the second result of Lemma 2.1.L Ž0, T ; H Ž� ..

2Ž . 1Ž .Remark 2.2. We know that L � and H � are reflexive spaces, and
1Ž . 4Ž . 2Ž .we have the embedding H � � L � � L � , and the injection

1Ž . 4Ž . � �H � � L � is compact. Thus by Lemma 5.1 of Lions 15 , for any
� � 0, there exists c depending on � such that�

� � 4 � � � �� � � � � c � . 2.5Ž .L Ž� . 1 �
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Then in the case of Remark 2.1, we have that

� 41 2 2 2
1, 4 4� � � � � � � �2 �q � �u , �u � �u � q �uŽ . W Ž� . L Ž� .4 �1

�1 2 2
1, 4� � � � � �� �u � C � , q u ,Ž .W Ž� . 112

Ž .where C  , � is a positive constant depending on  and �. By using this
fact and following the same line as in the proof of Lemma 2.1, we can
show that

� � 2
2 2 � � 1 , 4 � � 2 � � 2

2 2u � C � , q u � f .Ž . Ž .L Ž0 , T ; H Ž� .. W Ž� . 1 L Ž0 , T ; L Ž� ..1 0

In particular,

� � 2
2 2 � � � � 2 � � 2

2 2u � C � , q u � f .Ž . Ž .L Ž0 , T ; H Ž� .. 2 1 L Ž0 , T ; L Ž� ..1 0

3. THE MINIMIZATION FORMULATION

We now discuss how to formulate the identification problem of Section
1 into a minimization problem. In the following discussions we assume that

u 	 H 1 � , f 	 L2 0, T ; L2 � 3.1Ž . Ž . Ž .Ž .0 0

and � � satisfies one of the three conditions mentioned in Remark 2.1. Let

W � L2 0, T ; H 2 � 
 L� 0, T ; H 1 � 
 H 1 0, T ; L2 � ,Ž . Ž . Ž .Ž . Ž .Ž .0

K � � 	 H 2 � and � � � � � , a.e. in � .Ž .� 41 2

Ž . Ž .For any q, � 	 K � W, we define e q, � to be a function in W which
Ž . Ž . Ž .satisfies the initial condition e x, 0 � � x, 0 � u x and solves the equa-0

tion

� e � �
, � � �e, �� � , � � q�� , �� � f , � , 	� 	 V .Ž . Ž . Ž .ž / ž /� t � t

3.2Ž .

Ž . Ž . Ž .Note that for any q, � 	 K � W, we have by 2.5 that � � q�� 	
2Ž 2Ž ..L 0, T ; L � . This fact with Lemma 2.1, and Remarks 2.1�2.2 implies

Ž . Ž .that e q, � is well-defined. Moreover, e q, � � 0 means that � is the
Ž . Ž .unique solution of 2.1 corresponding to the heat conductivity q x .
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Ž . Ž .Now let z x, t be the observation data of u x, t for t in a small interval
� � ŽT � � , T near the terminal time t � T. We assume possibly after some

.interpolations of the discrete observation data that

z 	 L2 T � � , T ; H 2 � 
 L� T � � , T ; H 1 �Ž . Ž .Ž . Ž .0


 H 1 T � � , T ; L2 � .Ž .Ž .

Then we formulate the identification of the parameter q in the parabolic
Ž . Ž .system 1.1 � 1.3 as the following minimization problem,

minimize J q , �Ž .
21 �T 2� �� � t � z t � � � q� � t � z t dt � � qŽ . Ž . Ž . Ž .Ž . Ž .Ž .H 22 � tT��

3.3Ž .

Ž . Ž . � �subject to q, � 	 K � W and e q, � � 0 for a.e. t 	 0, T . The constant
Ž .� � 0 in 3.2 is called a regularization parameter.

Ž .About the existence of the minimizers of the problem 3.3 , we have the
following result:

Ž .THEOREM 3.1. There exists at least one minimizer to the problem 3.3 .

Proof. Let A be the admissible set

� �A � q , � 	 K � W ; e q , � � 0, for a.e. t 	 0, T . 3.4� 4Ž . Ž . Ž .

Ž .Clearly A � � and J q, � � 0 on A. Thus there exists a sequence
Ž .q , � 	 A such thatn n

lim J q , � � inf J q , � . 3.5Ž . Ž . Ž .n n
n�� Ž .q , � 	A

Ž . � �Since J q , � � c for all n � 0 we have q � c. On the other hand,2n n n
� � � �due to q 	 K , we have q � c. By Lemma 5.1 of Lions 15 , for anyn n

� � 0 there exists c depending on � such that�

� � � � � �� � � � � c � .1 2 �

� � 2Ž .Hence q � c. Using the compactness of the injection from H � to2n
�Ž . 1Ž . Ž .L � 
 H � , we can extract a subsequence, denoted still by q , � ,n n

�Ž . 1Ž .such that for certain q* 	 L � 
 H � ,

q � q*, in L� � 
 H 1 � . 3.6Ž . Ž . Ž .n
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Ž .Due to q 	 K , we also have q* 	 K. Next, by 3.2 and the fact thatn
Ž .e q , � � 0, we haven n

� �� n
, � � q �� , �� � f , � , 	� 	 V ,Ž . Ž .n nž / � t 3.7Ž .�� x , 0 � u x .Ž . Ž .n 0

By virtue of Lemma 2.1 and Remarks 2.1 and 2.2,

� � 2 2 � � � 1 � � 1 2� � � � � � c*, 3.8Ž .L Ž0 , T ; H Ž� .. L Ž0 , T ; H Ž� .. H Ž0 , T ; L Ž� ..n n n

where c* is a positive constant depending only on � , � , �, u , and f.1 2 0
� 4Thus there exists a subsequence, denoted still by q , � , such that forn n

Ž .certain q*, �* 	 K � W,

q � q* in L� � 
 H 1 � , q � q* in H 2 � ,Ž . Ž . Ž .n n
3.9Ž .

� � �* in L2 0, T ; H 1 � 
 L� 0, T ; L2 � , � � �* in W .Ž . Ž .Ž .Ž .n 0 n

Therefore it remains to prove that

e* � e q*, �* � 0 3.10Ž . Ž .
and

J q*, �* � inf J q , � . 3.11Ž . Ž . Ž .
Ž .q , � 	A

Ž . Ž .We first prove 3.10 . We have from 3.2 that

� e* � �*�
, � � �e*,�� � , � � q*��*, �� � f , � ,Ž . Ž . Ž .ž / ž /� t � t 3.12Ž .

	� 	 V , a.e. t 	 0, T ,Ž�e* x , 0 � �* x , 0 � u x .Ž . Ž . Ž .0

Ž . Ž . Ž . Ž .Thanks to � x, 0 � u x , we have e* x, 0 � 0. The combination of 3.7n 0
Ž .and 3.12 leads to

� e*
, � � �e*, �� � A � � A � , 	� 	 V , a.e. t 	 0, T ,Ž . Ž . Ž . Ž1 2ž /� t

3.13Ž .

where

� �* � �n
A � � � , � , A � � q*��* � q �� , �� .Ž . Ž . Ž .1 2 n nž /� t � t
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Ž .Obviously, A � � 0 as n � �. On the other hand,1

A � � q* � q �� , �� � q*� �* � � , �� .Ž . Ž . Ž .Ž . Ž .2 n n n

Consequently,
1 1
2 2

2 2� � � � � � � � � �A � � q* � q �� dx q* � q �� dxŽ . H H2 n n nž / ž /
� �

� �� q*� �* � � , �� .Ž .Ž .n

Ž . Ž .By 3.8 , 3.9 , and the Lebesque dominant convergence theorem, we
deduce that when n � �,

1 1
2 2

2 2� � � � � � � �q* � q �� dx q* � q �� dx � 0, for a.e. t 	 0, T .ŽH Hn n nž / ž /
� �

�Ž 1Ž .. �Ž .Since � � �* in L 0, T ; H � and q* 	 L � ,n

q*� �* � � , �� � 0, as n � �, for a.e. t 	 0, T .Ž . ŽŽ .n

� Ž . � Ž .Thus A � � 0 as n � �. Therefore we obtain from 3.13 that2

� e*
, � � �e*, �� � 0, for a.e. t 	 0, TŽ . Žž /� t

Ž .which implies 3.10 .
Ž . Ž .We next prove 3.11 . Due to e q , � � 0, we haven n

� �n � � � q �� � f , � � 0, for a.e. t 	 0, T ,Ž . Žn nž /� t

and so

� � � z � zn � � � � q � � � z , � � � � � � q �z � f , � ,Ž . Ž .Ž .n n nž / ž /� t � t � t

for a.e. t 	 0, T .Ž
Ž . Ž . � � 2Let J q, � � J q, � � � q . We have from the above equation that in20

the sense of distributions,

� � � z � zn � � � � q � � � z � � � � � q �z � f . 3.14Ž . Ž . Ž .Ž .n n n� t � t � t

Ž .Multiplying 3.14 by

� � � zn � � � � q �� � z ,Ž .Ž .n n� t � t
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and integrating the resulting equation from t � T � � to t � T , we obtain
that

J q , �Ž .0 n n

� z � � � zT n� � � � � q �z � f , � � � � q � � � z dt .Ž . Ž .Ž .H n n nž /� t � t � tT��

3.15Ž .

Similarly,

J q*, �*Ž .0

� z � �* � zT
� � � � � q*�z � f , � � � � q*� �* � z dt .Ž . Ž .Ž .H ž /� t � t � tT��

3.16Ž .

Ž .By 3.9 ,

� � � �*T Tn
, � � q �z dt � , � � q*�z dt . 3.17Ž . Ž . Ž .H Hnž / ž /� t � tT�� T��

Next,

� � q �z , � � q �� � �q � �z , �q � �� � q � z , �q � ��Ž . Ž . Ž . Ž .Ž .n n n n n n n n n

� �q � �z , q �� � q � z , q �� .Ž . Ž .n n n n n n

3.18Ž .

Ž . Ž .2 Ž .2 2Ž .By 3.9 and the imbedding theory, we have �q � �q* in L � andn
2Ž 2Ž ..�� � ��* in L 0, T ; L � . Thusn

T T
�q � �z , �q � �� dt � �q* � �z , �q* � ��* dt . 3.19Ž . Ž . Ž .H Hn n n

T�� T��

Ž . 2Ž . 2Ž 2Ž ..Also by 3.9 , q �q � q*�q* in L � and �� � ��* in L 0, T ; L � .n n n
So

T T
�q � �z , q �� dt � q* � �z , q*��* dt .Ž . Ž .H Hn n n

T�� T��

Ž .We can pass the limits in the other terms of 3.18 . Consequently

T T
� � q �z , � � q �� dt � � � q*�z , � � q*��* dt .Ž . Ž . Ž . Ž .Ž .Ž .H Hn n n

T�� T��
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Ž .In the same manner, we can prove that the other terms in 3.15 tend to
Ž .the corresponding terms in 3.16 , respectively. Therefore

J q*, �* � lim J q , � . 3.20Ž . Ž . Ž .0 0 n n
n��

� �On the other hand, q is a convex function of q, and so by the2n
semi-continuity of convex functions,

� � 2 � � 2q* � lim inf q . 3.21Ž .2 2n
2

Ž . Ž .Then the combination of 3.20 and 3.21 implies that

J q*, �* � lim inf J q , � � inf J q , � .Ž . Ž . Ž .n n
n�� Ž .q , � 	A

This completes the proof.

4. THE AUGMENTED LAGRANGIAN FORMULATION

In this section, we propose a new approach for solving the constrained
Ž . Ž .minimization problem 3.3 , namely transforming the problem 3.3 , which

is highly nonlinear and not convex, into an equivalent saddle-point prob-
lem for an augmented Lagrange functional. The saddle-point problem is
much more convenient and easier to solve than the minimization problem
Ž .3.3 due to the fact that the augmented Lagrange functional is quadratic
and convex with respect to each variable. This seems to be the first time to
study and justify the mathematical formulation of the augmented La-
grangian method for recovering the parameters in a time-dependent
system. The augmented Lagrangian method for the parameter identifica-

� �tion in some elliptic systems was studied earlier by Ito and Kunisch 11
� �and Chen and Zou 6 .

Now, let

˜ ˜ 2 2W � � 	 W ; � x , 0 � u x , H � L 0, T ; L � ,� 4Ž . Ž . Ž .Ž .0

˜and for any r � 0, we define the augmented functional LL : K � W �r
H̃ � RR by

�T
LL q , � ; � � J q , � � e q , � � �e q , � , � dtŽ . Ž . Ž . Ž .Hr ž /� t0

r T 2� �� �e q , � dt . 4.1Ž . Ž .H2 0

Ž . Ž .It is easy to see that for any e q, � 	 W, LL q, � ; � is finite.r
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The rest of this section is to establish the relation between the mini-
Ž .mization problem 3.3 and the saddle-point problem of the augmented

Lagrange functional LL . The key point for this is to apply the Hahn�Banachr
� �theorem stated below; see, e.g., Balakrishnan 1 .

LEMMA 4.1. Let B and B be two con�ex subsets of Hilbert space HH with1 2
Ž .the inner product �, � . If B 
 B � �, and B or B contains at least oneHH 1 2 1 2

interior point, then there exists an element z 	 HH, z � 0 such that

sup z , y � inf z , y .Ž . Ž .HH HH
y	B2y	B1

In the following we will make some efforts so that we can apply Lemma
Ž .4.1 to our identification problem 3.3 . For this purpose, we first define two
Ž . Ž .convex subsets B and B . Let q*, �* be a minimizer of 3.3 . Then B1 2 1

and B are defined as2

˜B � � , 0 	 RR � H , � � 0 , 4.2Ž . Ž .� 41

�
B � J q , � � J q*, �* � s, e q , � � �e q , �Ž . Ž . Ž . Ž .2 ½ ž /� t

˜ ˜	 RR � H , q , � 	 K � W , s � 0 . 4.3Ž . Ž .5
The following three lemmas are to verify the conditions of Lemma 4.1.

˜LEMMA 4.2. B and B are two con�ex subsets in RR � H.1 2

˜Proof. Clearly, B is a convex subset in RR � H. We now check the1
convexity of B . Let Q and Q be any two points in B , namely for2 1 2 2
i � 1, 2 we have

� ˜Q � J q , � � J q*, �* � s , e q , � � �e q , � 	 RR � H ,Ž . Ž . Ž . Ž .i i i i i i i iž /� t

s � 0.i

Ž . � �Let  �  ,  with  	 0, 1 and  �  � 1. We have to prove that1 2 i 1 2

Q �  Q �  Q � p , w 	 B , 4.4Ž . Ž . 1 1 2 2   2

where

p �  J q , � �  J q , � � J q*, �* �  s �  s , 4.5Ž . Ž . Ž . Ž . 1 1 1 2 2 2 1 1 2 2

� �
w �  e q , � � �e q , � �  e q , � � �e q , � .Ž . Ž . Ž . Ž . 1 1 1 1 1 2 2 2 2 2ž / ž /� t � t

4.6Ž .
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Ž .For simplicity, we will write e q , � as e . We now take q �  q �  qi i i  1 1 2 2
	 K and � 	 W as the solution of the variational problem

� � � � � ��  1 2
, � � q �� , �� �  �  , �Ž .  1 2ž / ž /� t � t � t 4.7Ž .�  q �� �  q �� , �� , 	� 	 V , a.e. t 	 0, T ,Ž . Ž1 1 1 2 2 2�� x , 0 �  � x , 0 �  � x , 0 .Ž . Ž . Ž . 1 1 2 2

Ž . Ž . Ž .Clearly, � is well-defined. Let e � e q , � . We have by 3.2 and 4.7   

that

� e
, � � �e , ��Ž .ž /� t

� �� , � � q , �� , �� � f , �Ž . Ž . ž /� t

� � � �1 2�  �  , � �  q �� �  q �� , �� � f , �Ž . Ž .1 2 1 1 1 2 2 2ž /� t � t

�
�  e �  e , � � �  e �  e , �� , 4.8Ž . Ž . Ž .Ž .1 1 2 2 1 1 2 2ž /� t

and

e x , 0 �  � x , 0 �  � x , 0 � u x �  e x , 0 �  e x , 0 .Ž . Ž . Ž . Ž . Ž . Ž . 1 1 2 2 0 1 1 2 2

4.9Ž .

This implies
e �  e �  e . 1 1 2 2

Ž . Ž . Ž .Moreover, by using 4.6 , 4.9 , and integrating the right hand side of 4.8
by parts, we assert that

�
w � e q , � � �e q , � .Ž . Ž .    � t

Ž .On the other hand, noting the fact q �  q �  q 	 K and 4.7 , 1 1 2 2

�
� � z � � � q � � � z , �Ž . Ž .Ž .  ž /� t

�
�  � � z � � � q � � � z , �Ž . Ž .Ž .1 1 1 1ž /� t

�
�  � � z � � � q � � � z , � .Ž . Ž .Ž .2 2 2 2ž /� t
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Thus in the sense of distributions we have

�
� � z � � � q � � � zŽ . Ž .Ž .  � t

�
�  � � z � � � q � � � zŽ . Ž .Ž .1 1 1 1ž /� t

�
�  � � z � � � q � � � z .Ž . Ž .Ž .2 2 2 2ž /� t

� �Using the convexity of the norm � , we obtain

2�
� � z � � � q � � � zŽ . Ž .Ž .  � t

2�
�  � � z � � � q � � � zŽ . Ž .Ž .1 1 1 1� t

2�
�  � � z � � � q � � � z .Ž . Ž .Ž .2 2 2 2� t

� �This, combined with the convexity of the semi-norm q , leads to2

J q , � �  J q , � �  J q , � .Ž . Ž . Ž .  1 1 1 2 2 2

Ž .Hence by 4.5 ,

p � J q , � � J q*, �* � s ,Ž . Ž .   

where

s �  J q , � �  J q , � � J q , � �  s �  s � 0.Ž . Ž . Ž . 1 1 1 2 2 2   1 1 2 2

Ž .This proves 4.4 and completes the proof of Lemma 4.2.

LEMMA 4.3. B 
 B � �.1 2

Ž .Proof. Let Q � p, w 	 B . Then2

�
p � J q , � � J q*, �* � s, s � 0; w � e q , � � �e q , � .Ž . Ž . Ž . Ž .

� t

Ž . Ž .If Q also belongs to B , then w � 0, and so e q, � � 0. Hence q, � 	 A,1
which implies p � s � 0. But it follows from Q 	 B that p � 0. So we1
have a contradiction.

LEMMA 4.4. The subset B has at least one interior point.2
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Ž . Ž .Proof. Take q � q*, � � �*, and s � s � 0 in 4.3 . Then Q � s , 00 0 0
	 B . We shall show that Q is an interior point of B . To do this, let2 0 2

Ž . Ž . Ž .� 	 0, 1 and s, w be an arbitrary point of the �-neighborhood of s , 00
˜ � �in RR � H. Then for all t 	 0, T , we have

T2 2 2� � � �s � s � w t dt � � . 4.10Ž . Ž .H0
0

Let � be the solution of the problem

� � �
, � � q*�� , �� � w � f , � , 	� 	 V , a.e. t 	 0, T ,Ž . Ž . Ž ž /� t�� x , 0 � u x .Ž . Ž .0

4.11Ž .

By Lemma 2.1 and Remarks 2.1 and 2.2,

2 2 � 1 1 2� �� � c*. 4.12Ž .L Ž0 , T ; H Ž� ..
 L Ž0 , T ; H Ž� ..
 H Ž0 , T ; L Ž� ..

Next we rewrite s as

s � J q*, � � J q*, �* � s,Ž . Ž .
where

s � J q*, �* � J q*, � � s.Ž . Ž .
Ž .Due to e q*, �* � 0, we have that

�
�*, � � q*��*, �� � f , � , 	� 	 V .Ž . Ž .ž /� t

Ž .Subtracting this from 4.11 yields

��
� � �* , � � q*� � � �* , �� � w , � , 	� 	 V ,Ž . Ž . Ž .Ž . ž /� t�� x , 0 � �* x , 0 � 0.Ž . Ž .

Ž .By virtue of 4.10 , Lemma 2.1, and Remarks 2.1 and 2.2,

2 22 2 � 1 1 2� �� � �* � c� . 4.13Ž .L Ž0 , T ; H Ž� ..
 L Ž0 , T ; H Ž� ..
 H Ž0 , T ; L Ž� ..

By some careful calculations, we can write

181 T
J q*, �* � J q*, � � G s ds, 4.14Ž . Ž . Ž . Ž .Ý H i2 T��i�1
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where

� � � � z
G � �* � � , �* � � , G � �2 �* � � , ,Ž . Ž . Ž .1 2ž / ž /� t � t � t � t

G � �q* � � �* � � , �q* � � �* � � ,Ž . Ž .Ž .3

G � �2 �q* � � �* � � , �q* � �z ,Ž .Ž .4

2 2G � q* � �* � � , � �* � � , G � �2 q* � �* � � , � z ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .5 6

G � 2 �q* � � �* � � , q*��* , G � 2 �q* � �� , q*� �* � � ,Ž . Ž .Ž . Ž .7 8

G � �2 �q* � �z , q*� �* � � , G � �2 �q* � � �* � � , q*� z ,Ž . Ž .Ž . Ž .9 10

� � �
G � �2 �* � � , q*��* , G � �2 , q*� �* � � ,Ž . Ž .11 12ž / ž /� t � t

� z �
G � 2 , q*� �* � � , G � 2 �* � � , q*z ,Ž . Ž .13 14ž / ž /� t � t

� � �
G � �2 �* � � , �q* � ��* , G � �2 , �q* � �* � � ,Ž . Ž .15 16ž / ž /� t � t

� z �
G � 2 , �q* � � �* � � , G � 2 �* � � , �q* � �z .Ž . Ž .17 18ž / ž /� t � t

Ž .All the terms G 1 � i � 18 above can be bounded by a factor of � . Fori
Ž . Ž .instance, by 4.12 , 4.13 , and the imbedding theory we can derive

1 1
2 2T T T2 2 2� � � � � � � �G s ds � c q* �* � � ds �* � � dsŽ .H 1, 4 H 1, 4 H 1, 43 ½ 5 ½ 5

T�� T�� T��

1 1
2 2T T2 2 2� � � � � �� c q* �* � � ds �* � � ds � b*� ,2 H 2 H 2½ 5 ½ 5

T�� T��

1 1
2 2T T T2 22� � � � � �G s ds � c� � u* � � ds � u* � � dsŽ . Ž . Ž .H H H5 2 ½ 5 ½ 5

T�� T�� T��

� b*� ,
1

122
2�T T T 22� � � �G s ds � c� �* � � ds �u* ds � b*� ,Ž . Ž .H H H11 2 ½ 5½ 5� tT�� T�� T��

where b* is a positive constant depending on the norms of �* and � in the
Ž .space W. Thus s � 0, if � is sufficiently small. That implies s, w 	 B .2
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We are now in a position to state the main result of this section.

Ž . Ž .THEOREM 4.1. q*, �* 	 K � W is a minimizer of the problem 3.3 if
˜ ˜ ˜Ž .and only if there exists a �* 	 H such that q*, �*, �* 	 K � W � H is a

Ž .saddle-point of the augmented Lagrangian functional LL q, � ; � , namely,r

LL q*, �*; � � LL q*, �*; �* � LL q , � ; �* ,Ž . Ž . Ž .r r r

˜ ˜	 q , � , � 	 K � W � H . 4.15Ž . Ž .

Ž . Ž .Proof. We first show that if q*, �*, �* is a saddle-point, then q*, �*
Ž . Ž .is a minimizer to the problem 3.3 . Indeed, by the first inequality of 4.15

˜we have for any � 	 H,

�T
e q*, �* � �e q*, �* , � dtŽ . Ž .H ž /� t0

�T
� e q*, �* � �e q*, �* , �* dt . 4.16Ž . Ž . Ž .H ž /� t0

Let
� ˜� � e q*, �* � �e q*, �* 	 H .Ž . Ž .
� t

Then

�T
e q*, �* � �e q*, �* , �* dt � 0.Ž . Ž .H ž /� t0

Ž .On the other hand, if we take � � 2�* in 4.16 , then

�T
e q*, �* � �e q*, �* , �* dt � 0.Ž . Ž .H ž /� t0

Therefore

�T
e q*, �* � �e q*, �* , �* dt � 0.Ž . Ž .H ž /� t0

This yields

r T 2� �LL q*, �*; �* � J q*, �* � � q*, �* dt . 4.17Ž . Ž . Ž . Ž .Hr 2 0

Ž . Ž .Furthermore, by the second inequality of 4.15 and 4.17 , we have for any
Ž .q, � 	 A,

r T 2� �J q*, �* � � q*, �* dt � LL q , � ; �* � J q , � . 4.18Ž . Ž . Ž . Ž . Ž .H r2 0
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Ž . Ž . Ž . Ž . Ž .Thus J q*, �* � J q, � . Finally, taking q, � � q*, �* in 4.18 , we
Ž . Ž .obtain e q*, �* � 0 and so q*, �* 	 A. This completes the proof of the

first part.
Ž . Ž .Now, assume that q*, �* is a minimizer to the problem 3.3 ; that is, for

Ž .all q, � 	 A, we have

J q*, �* � J q , � . 4.19Ž . Ž . Ž .
˜We need to prove that there is a Lagrange multiplier �* 	 H such that

Ž .4.15 is fulfilled. According to Lemmas 4.2�4.4, we can use Lemma 4.1
˜ ˜Ž . Ž . Ž .with HH � H. So there exists a pair  , � 	 RR � H with  , � � 0, 00 0 0 0

such that

 J q , � � J q*, �* � sŽ . Ž .Ž .0

�T
� e q , � � �e q , � , � dt �  � , � � 0. 4.20Ž . Ž . Ž .H 0 0ž /� t0

Ž . Ž . Ž .Taking q, � � q*, �* , s � 1, and � � �1 in 4.20 , we get  � 0.0
While taking s � 0 and letting � � 0�, we obtain that

�T
 J q , � � J q*, �* � e q , � � �e q , � , � dt � 0,Ž . Ž . Ž . Ž .Ž . H0 0ž /� t0

˜	 q , � 	 K � W . 4.21Ž . Ž .

Ž .We now claim that  � 0. Otherwise if  � 0, then it follows from 4.210 0
that

�T ˜e q , � � �e q , � , � dt � 0, 	 q , � 	 K � W . 4.22Ž . Ž . Ž . Ž .H 0ž /� t0

Ž .But by 3.2 we know in the sense of distributions that

� �
e q , � � �e q , � � � � � � q�� � f .Ž . Ž . Ž .

� t � t

Ž .This with 4.22 leads to

�T ˜� � � � q�� � f , � dt � 0, 	 q , � 	 K � W . 4.23Ž . Ž . Ž .H 0ž /� t0

Now take q � q* 	 K and let � 	 W be the solution of the problem

� �
, � � q*�� , �� � f � � , � , 	� 	 V and for a.e. t 	 0, T .Ž . Ž . Ž .0ž /� t
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Then in the sense of distributions,

�
� � � � q*�� � f � �� .Ž . 0� t

Ž .Accordingly we obtain from 4.23 with q � q* that

T 2� �� � ds � 0.H 0
0

Ž . Ž .This leads to  , � � 0, 0 , which is a contradiction. Therefore  � 0.0 0 0
Ž .Taking �* � � � in 4.21 , we obtain0 0

�T
J q*, �* � J q , � � e q , � � �e q , � , �* dt � LL q , � ; �* .Ž . Ž . Ž . Ž . Ž .H rž /� t0

4.24Ž .

Ž . Ž .Moreover, since q*, �* is a solution of 3.3 , we have

LL q*, �*; � � J q*, �* � LL q*, �*; �* .Ž . Ž . Ž .r r

Ž .This fact with 4.24 completes the proof of the second part of Theo-
rem 4.1.
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