
New splitting methods for convection-dominated diffusion

problems and Navier-Stokes equations

Feng Shi∗ Guoping Liang† Yubo Zhao‡ Jun Zou §

June 11, 2014

Abstract

We present a new splitting method for time-dependent convention-dominated diffusion
problems. The original convention diffusion system is split into two sub-systems: a pure
convection system and a diffusion system. At each time step, a convection problem and
a diffusion problem are solved successively. A few important features of the scheme lie in
the facts that the convection subproblem is solved explicitly and multistep techniques can
be used to essentially enlarge the stability region so that the resulting scheme behaves like
a unconditionally stable scheme; while the diffusion subproblem is always self-adjoint and
coercive so that they can be solved efficiently using many existing optimal preconditioned
iterative solvers. The scheme can be extended for solving the Navier-Stokes equations, where
the nonlinearity is resolved by a linear explicit multistep scheme at the convection step, while
only a generalized Stokes problem is needed to solve at the diffusion step and the major
stiffness matrix stays invariant in the time marching process. Numerical simulations are
presented to demonstrate the stability, convergence and performance of the single-step and
multistep variants of the new scheme.

Key Words. Convention-dominated diffusion problems, Navier-Stokes equations, operator
splitting, finite elements, multistep scheme.
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1 Introduction

In this work we shall first propose a new fully discrete splitting scheme for solving the convention-
dominated diffusion problems of the following general form

ut +∇ · (bu)−∇ · (ε∇u) + cu = F in Ω× (0, T ) (1)

∗School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen Graduate
School, Shenzhen 518055, China. The work of this author was partially supported by NSFC (Project 41104039),
by Guangdong Natural Science Foundation (Project S201204007760), and Tianyuan Fund for Mathematics of the
NSFC (Project 11226314). (feng.shi@siat.ac.cn).
†Beijing FEGEN Software Company, Beijing 100190, China.
‡Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. The

work of this author was partially supported by the Knowledge Innovation Program of the Chinese Academy
of Sciences (China) under KJCX2-EW-L01, and the international cooperation project of Guangdong provience
(China) under 2011B050400037. (yb.zhao@siat.ac.cn).
§Corresponding author. Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT,

Hong Kong. The work of this author was substantially supported by Hong Kong RGC grants (Projects 404611
and 405513). (zou@math.cuhk.edu.hk)

1



Feng Shi, Guoping Liang, Yubo Zhao and Jun Zou 2

with the boundary and initial conditions

u = ub on ∂Ω× (0, T ) ; u(0,x) = u0(x) in Ω (2)

where Ω is an open bounded polyhedral domain in Rd (d = 1, 2, 3) with boundary Γ = ∂Ω,
and [0, T ] is the time interval. Functions b and c in (1) are the convective field and reactive
coefficients respectively, and ε > 0 is a constant diffusion coefficient, while F , ub and u0 are the
specified source term, the boundary and initial data respectively. As we are mainly interested in
the construction of numerical schemes, we will not specify some detailed regularity conditions on
all these coefficients to ensure the well-posedness of the initial-boundary value problem (1)-(2).

Then the new fully discrete splitting scheme will be extended for solving the Navier-Stokes
equations {

ut + (u · ∇)u−Re−14u +∇p = F in Ω× (0, T )

∇ · u = 0 in Ω× (0, T )
(3)

with the boundary and initial conditions

u = ub on ∂Ω× (0, T ) ; u(0,x) = u0(x) in Ω (4)

where u, p, F and Re are respectively the velocity, the pressure, the body force and the Reynolds
number, while ub and u0 are the given boundary and initial data.

The numerical solution of a time-dependent problem requires a discretization in both time
and space, and possibly some linearization if the problem is nonlinear. A great variety of time
marching schemes are available in the literature, such as the classical methods like the forward
and backward Euler schemes, the Crank-Nicolson scheme, the Adams-Bashforth method etc.
Operator splitting is also a popular technique for time discretization, such as the Yanenko
method, the Peaceman-Rachford method, the Douglas-Rachford method and the θ scheme; see
[1, 2, 3] and references therein.

In solving the convection-dominated diffusion equations and the Navier-Stokes equations
with large Reynolds numbers, it is well known that standard finite element methods perform
poorly and may exhibit nonphysical oscillations. Many spatial stabilization techniques have been
proposed and studied. The streamline-upwind Petrov-Galerkin method was originally developed
in [4, 5] for convective transport problems, and its basic idea is to modify the standard Petrov-
Galerkin formulation by adding a streamline upwind perturbation, which acts only in the flow
direction and is solely defined in the interiors of elements. The Galerkin least-squares method
[6] is a conceptual simplification of the streamline-upwind Petrov-Galerkin method, and adds a
stabilization that involves an element-by-element weighted least-squares of the residual to the
original differential equation. The efficiency of these two stabilization techniques are affected
by the choices of stabilization parameters involved. There are still no precise general formulas
to help select optimal parameters in numerical simulations; see, e.g., [7, Remark 10.4]. These
stabilization parameters may depend possibly also on time step size for time-dependent problems,
so their choices become more tricky in practice as we have to balance between temporal and
spatial errors, which are usually given by the orders of the methods [8].

By changing the sign of the convective term in the weighted least-squares formulation, the
unusual stabilized finite element method (USFEM) can achieve the absolute stability for any
positive stabilization parameter involved in the scheme, but it is still a tricky and inconclusive
technical issue of how to choose this parameter in order to obtain good accuracy [9, 10, 11, 12].
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The variational multiscale method was developed based on the inherent multiscale structure
of the solutions [13, 14, 15, 16]. This method defines the large scales by a projection into
an appropriate subspace, but also involves the technical issue of how to select a stabilization
parameter to balance the stability and accuracy.

As it is known [5], explicit Galerkin solutions for flow problems could be quite under-diffusive,
effectively increasing the Peclet or Reynolds number. Furthermore, explicit methods are gener-
ally conditionally stable. But explicit schemes have their own advantages, e.g., they may not
need to solve systems of algebraic equations [17] or the resulting stiff matrices stay the same in
the time marching process.

The characteristic-based-split (CBS) method has been widely studied for fluid and solid
dynamic problems [18, 19, 20, 21], and we refer to the monograph [22] and the references therein
for its detailed introduction and various applications. This method is based on the splitting of
the convection and diffusion parts. The convection part is formally handled by the standard
characteristics method, where the numerical solutions at the current time are updated by the
approximations at the previous time. But the computed spatial points, which is determined
by characteristics, are likely no longer grid points of the spatial discretization. Therefore we
need to compute the solutions at those spatial points using the solutions and other quantities
at grid points. Two natural ways for the purpose are by updating the meshes and standard
interpolation. An alternative technique, used in the CBS method, is to approximate numerical
solutions at computed spatial points by the solutions and other quantities at grid points by
Taylor expansion. In addition, the CBS method needs to approximate the average convective
field, for which different treatments may lead to different schemes, such as fully explicit, semi-
implicit or implicit ones, and also different stabilization effects [22].

In the derivation of our new scheme, we shall use the same operator splitting as the CBS
method did, to split the convection diffusion system into a purely convective part and a diffusion
part. The diffusion part is discretized by the standard backward scheme. But the central
difference from the CBS method lies in our new treatment of the convection part, which is
completely independent of the characteristic curves and any spatial grid points used, unlike the
CBS method.

Another novel idea of our new method is the flexibility in its special explicit treatment of the
convection part: we can recursively execute the explicit convection step up to a finite number
of times with smaller local time step size during one diffusion correction. This can essentially
improve the stability of the resulting scheme.

The rest of the paper is arranged as follows. The single-step scheme is first derived for the
convection diffusion equation in Section 2.1, and its multistep variant in Section 2.2. The new
scheme is then extended in Section 3 for the Navier-Stokes equations. Numerical experiments
are carried out in Section 4 to check the accuracy, stability and performance of the new schemes,
as well as to investigate how the stability condition can be improved by the multistep scheme
compared with the single-step one. At the end of this numerical section, the driven cavity flow
problem is tested with the new scheme and compared with the benchmark results to demonstrate
the validity of the new method. Some concluding remarks are given in Section 5.
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2 Derivation of algorithms

In this section we shall derive a new method for solving the convection-dominated diffusion
equation (1). For this we introduce some notations. We first partition the time interval [0, T ]:

0 = t0 < t1 < · · · < tN = T , with tn = n∆t and ∆t = T
N . We will use un and un+ 1

2 respectively
for the approximate values of u(·, t) at t = tn and tn + ∆t

2 . But when u(·, t) is given, un and

un+ 1
2 will stand for its exact values at t = tn and tn + ∆t

2 , e.g., fn = f(·, tn), and bn = b(·, tn).

2.1 Single-step scheme for the convection diffusion equation

We first adopt the standard operator splitting technique [3] and split the convection diffusion
equation (1) into a pure convection equation and a diffusion equation. Then we approximate
the two equations in time by the central difference and backward Euler schemes respectively to
obtain

un+1
∗ − un

∆t
+∇ · (bn+ 1

2 un+ 1
2 ) = f n+ 1

2 , (5)

un+1 − un+1
∗

∆t
−∇ · (ε∇un+1) + cn+1un+1 = gn+1, (6)

where f and g can be any functions such that F = f + g. However in order to have a unified
principle for the selection of the components f and g for both the convection diffusion equation
and Navier-Stokes equations, we will suggest some special selection of f and g later on; see
Remark 3.1.

We shall use finite element methods to solve (5) and (6) respectively for the solutions un+1
∗

and un+1. For this purpose we need the variational formulations of these two equations. It is
straightforward to derive the variational form of (6):

Find un+1 ∈ H1(Ω) such that un+1 = un+1
b on Γ and solves

(un+1, v) + ∆t(ε∇un+1,∇v) + ∆t(cn+1un+1, v) = (un+1
∗ , v) + ∆t(gn+1, v) ∀ v ∈ H1

0 (Ω) . (7)

On the other hand, the solution of the convection step (5) is more tricky. Clearly the scheme
is implicit and involves the solution of a linear convection equation. The main idea of this work
is to propose an explicit scheme to solve this linear convection equation. To do so, we apply the
Taylor’s expansion to compute un+ 1

2 by the values at previous times. We can write

un+ 1
2 ≈ u(x, tn +

∆t

2
) = u(x, tn) +

∆t

2
ut(x, tn) +O(∆t2),

then using the convection equation

ut +∇ · (bu) = f (8)

we deduce

un+ 1
2 ≈ un +

∆t

2
(fn −∇ · (bnun)) =: ξn . (9)

Using this relation, we can rewrite (5) as

un+1
∗ − un

∆t
+∇ ·

(
bn+ 1

2 ξn
)

= f n+ 1
2 . (10)
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Noting that (8) is a pure convective equation, only partial boundary condition on the inflow
boundary

Γ−t := {x ∈ Γ; b(x, t) · n(x) < 0} (11)

should be imposed. Accordingly we should set similar conditions on the inflow boundary asso-
ciated with the scheme (10). So for any positive integer n, we define

Γ−n := {x ∈ Γ; bn(x) · n(x) < 0} . (12)

As the exact solution is specified on the entire boundary (cf. (1)), it is natural for us to assume
the values for the solution un+1

∗ to (10) on the inflow boundary Γ−n+1:

un+1
∗ = un+1

b on Γ−n+1 . (13)

This induces the following test space for the scheme (10):

H1
Γ−n+1

(Ω) =
{
w ∈ H1(Ω); w = 0 on Γ−n+1

}
.

Now multiplying a test function v ∈ H1
Γ−n+1

(Ω) on both sides of (10), and integrating over Ω and

using the integration by parts we obtain

(un+1
∗ , v) = (un, v) + ∆t(f n+ 1

2 , v)

+ ∆t(ξn,bn+ 1
2 · ∇v)−∆t < ξn, vbn+ 1

2 · n >Γ\Γ−n+1

= (un, v) + ∆t(f n+ 1
2 , v)

+ ∆t

(
un +

∆t

2
(fn −∇ · (bnun)) ,bn+ 1

2 · ∇v
)

(14)

−∆t〈un +
∆t

2
(fn −∇ · (bnun)) , vbn+ 1

2 · n〉Γ\Γ−n+1
.

Now we move to the spatial discretization by some finite element method. Assume that Vh
is a finite element space approximating the Sobolev space H1(Ω), and Ih is the interpolation
operator of H1(Ω) into Vh. Then based on the variational formulations (14) and (7), we propose
the following single-step scheme for solving the convection-dominated diffusion problem (1).

Algorithm 1 (Single-step scheme).

Step 0. Compute the initial value u0
h = Ihu0. For each n = 0, 1, · · · , N − 1, do the following.

Step 1. Find un+1
h,∗ ∈ Vh such that un+1

h,∗ = Ihu
n+1
b on Γ−n+1 and solves

(un+1
h,∗ , vh) = (unh, vh) + ∆t(f n+ 1

2 , vh)

+ ∆t
(
unh +

∆t

2

(
fn −∇ · (bnunh)

)
, bn+ 1

2 · ∇vh
)

−∆t
〈
unh +

∆t

2

(
fn −∇ · (bnunh)

)
, vhb

n+ 1
2 · n

〉
Γ\Γ−n+1

∀ vh ∈ Vh ∩H1
Γ−n+1

(Ω) .

Step 2. Find un+1
h ∈ Vh such that un+1

h = Ihu
n+1
b on Γ and solves

(un+1
h , vh)+∆t(ε∇un+1

h ,∇vh)+∆t(cn+1un+1
h , vh) = (un+1

h,∗ , vh)+∆t(gn+1, vh) ∀ vh ∈ Vh∩H1
0 (Ω) .

Remark 2.1. By computing the term (un+1
h,∗ , vh) in Step 1 using the standard mass-lumping

technique [17], un+1
h,∗ can be computed explicitly without solving a linear system.
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2.2 Multistep scheme for the convection diffusion equation

As we are interested mainly in the convection-dominated case in the system (1), the single-step
scheme (Algorithm 1) may not be stable enough as it is explicit. To improve the stability, we
may execute the convection step (Step 1) a few times for each diffusion correction (Step 2) so
that we can use much smaller time step size for the convection part. To do so, we write the
result un+1

h,∗ of Step 1 formally as

un+1
h,∗ = FCDconv

(
∆t, fn, fn+1,bn,bn+1, unh, u

n+1
b

)
. (15)

Then the multistep scheme is to run this convection step m times with smaller time step size
∆t
m in order to get un+1

h,∗ , namely we compute

u
n+ i

m
h,∗ = FCDconv

(∆t

m
, fn+ i−1

m , fn+ i
m ,bn+ i−1

m ,bn+ i
m , u

n+ i−1
m

h,∗ , u
n+ i

m
b

)
, (16)

recursively for i = 1, 2, · · · ,m, with unh,∗ = unh.

We shall call δt = ∆t
m and ∆t as the local time step size and the global time step size

respectively. Replacing Step 1 by the multistep iteration (16), we propose the following multistep
scheme for the convection diffusion equation (1).

Algorithm 2 (Multistep scheme with index m).

Step 0. Compute the initial value u0
h = Ihu0. For each n = 0, 1, · · · , N − 1, do the following.

Step 1. Set unh,∗ = unh. For i = 1, 2, · · · ,m, compute u
n+ i

m
h,∗ ∈ Vh such that u

n+ i
m

h,∗ = Ihu
n+ i

m
b on

Γ−n+i/m and solves for all vh ∈ Vh ∩H1
Γ−
n+i/m

(Ω),

(u
n+ i

m
h,∗ , vh) = (u

n+ i−1
m

h,∗ , v) + δt(fn+ 2i−1
2m , vh)

+ δt

(
u
n+ i−1

m
h,∗ +

δt

2
(fn+ i−1

m −∇ · (bn+ i−1
m u

n+ i−1
m

h,∗ )),bn+ 2i−1
2m · ∇vh

)
− δt

〈
u
n+ i−1

m
h,∗ +

δt

2

(
fn+ i−1

m −∇ · (bn+ i−1
m u

n+ i−1
m

h,∗ )

)
, vhb

n+ 2i−1
2m · n

〉
Γ\Γ−

n+i/m

.

Step 2. Compute un+1
h ∈ Vh such that un+1

h = Ihu
n+1
b on Γ and solves for all vh ∈ Vh ∩H1

0 (Ω),

(un+1
h , vh) + ∆t(ε∇un+1

h ,∇vh) + ∆t(cn+1un+1
h , vh) = (un+1

h,∗ , vh) + ∆t(gn+1, vh) .

3 Single-step and multistep schemes for Navier-Stokes equa-
tions

We are now going to extend the new schemes proposed in sections 2.1-2.2 for the convection-
dominated diffusion equation to the Navier-Stokes equations (3). For the purpose, we split the
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system (3) into a pure convection system and a diffusion system (the generalized Stokes problem)
as follows:

un+1
∗ − un

∆t
+ (un+ 1

2 · ∇)un+ 1
2 = fn+ 1

2 , (17)

un+1 − un+1
∗

∆t
−Re−14un+1 +∇pn+1 = gn+1, (18)

∇ · un+1 = 0 . (19)

It is straightforward to derive the variational form of the generalized Stokes system (18)-(19):
Find un+1 ∈ H1(Ω)d and p ∈ L2

0(Ω) such that un+1 = un+1
b on Γ and solve

(∆t)−1(un+1,v) +Re−1(∇un+1,∇v)− (pn+1,∇ · v) = (∆t)−1(un+1
∗ ,v) + (gn+1,v) (20)

(∇ · un+1, q) = 0 (21)

for any v ∈ H1
0 (Ω)d and q ∈ L2

0(Ω).
Next we will do the same as we did in section 2.1 to propose an explicit scheme for solving

the convection system (17). To do so, we first handle the convection term involving un+ 1
2 . In

fact, combining the Taylor’s expansion

un+ 1
2 ≈ u(x, tn +

∆t

2
) = u(x, tn) +

∆t

2
ut(x, tn) +O(∆t2),

and the pure convection equation
ut + (u · ∇)u = f , (22)

we can obtain a similar approximation to (9) but in a vector-valued form:

un+ 1
2 ≈ un +

∆t

2
(fn − (un · ∇)un) =: ηn. (23)

We introduce the inflow boundary

Γ−n+1 =
{
x ∈ Ω; un+1

b · n(x) < 0
}
.

Then we can write by using integration by parts for any v ∈ H1(Ω) with v|Γ−n+1
= 0 that

((ηn · ∇)ηn,v) = 〈ηn, ηn · n v〉Γ\Γ−n+1
− (ηn,∇ · ηnv)− (ηn, (ηn · ∇)v) , (24)

using this relation and plugging (23) in (17) we derive the variational form of (17):

(un+1
∗ ,v) = (un,v) + ∆t(fn+ 1

2 ,v)

−∆t 〈ηn, ηn · n v〉Γ\Γ−n+1
+ ∆t (ηn,∇ · ηnv) + ∆t (ηn, (ηn · ∇)v) .

(25)

Remark 3.1. We observe from the formulation (25) that ∇ · fn is needed in the term ∇ · ηn,
hence it adds some extra regularity on the source component f . This suggests us to better choose
f ≡ 0 in the decomposition F = f + g for the Navier-Stokes equations so that the new scheme
does not need the evaluation of ∇ · fn. For the unification of the numerical schemes for both
the convection diffusion equation and Navier-Stokes equations, we shall always select f ≡ 0 in
Algorithms 1 and 2 from now on for the convection diffusion equation.
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Let Vh and Mh be two finite element spaces approximating the Sobolev space H1(Ω) and
L2

0(Ω) respectively and satisfy the standard inf-sup condition, and Ih be a interpolation operator
of H1(Ω) into Vh. By virtue of the variational formulations (25) and (20), we propose the
following single-step scheme for solving the Navier-Stokes equations (3).

Algorithm 3 (Single-step scheme).

Step 0. Compute the initial value u0
h = Ihu0. For each n = 0, 1, · · · , N − 1, do the following.

Step 1. Compute ηnh = unh −
∆t
2 (unh · ∇)unh ;

Find un+1
h,∗ ∈ Vh such that un+1

h,∗ = Ihu
n+1
b on Γ−n+1 and solves

(un+1
h,∗ ,v) = (unh,vh)−∆t 〈ηnh , ηnh · n vh〉Γ\Γ−n+1

+ ∆t (ηnh ,∇ · ηnh vh) + ∆t (ηnh , (η
n
h · ∇)vh) ∀vh ∈ Vh ∩H1

Γ−n+1
(Ω) .

Step 2. Find un+1
h ∈ Vh and ph ∈Mh, such that un+1

h = Ihu
n+1
b on Γ and solves

(∆t)−1(un+1
h ,vh) +Re−1(∇un+1

h ,∇vh)− (pn+1
h ,∇ · vh) = (∆t)−1(un+1

h,∗ ,vh) + (gn+1,vh),

(∇ · un+1
h , qh) = 0,

for any vh ∈ Vh ∩H1
0(Ω) and qh ∈Mh.

We observe from Algorithm 3 that the nonlinear convection term (u · ∇)u in Navier-Stokes
equations has been treated explicitly in the time marching process, which may severely restrict
the time step size in order to ensure the stability of the scheme. To improve the stability, we
may apply Step 1 several times with a smaller time step size during one diffusion correction
(Step 2). For this purpose we write the result of Step 1 formally as

un+1
h,∗ = FNS

conv

(
∆t,unh,u

n+1
b

)
. (26)

Then a multistep variant of this scheme is to execute this Step 1 m times with a smaller time
step size ∆t

m to derive un+1
h,∗ :

u
n+ i

m
h,∗ = FNS

conv

(∆t

m
,u

n+ i−1
m

h,∗ ,u
n+ i

m
b

)
(27)

for i = 1, 2, · · · ,m, with unh,∗ = unh. This leads to the following multistep scheme for the
Navier-Stokes equations.

Algorithm 4 (Multistep scheme with index m).

Step 0. Compute the initial value u0
h = Ihu0. For each n = 0, 1, · · · , N − 1, do the following.

Step 1. Set unh,∗ = unh; For i = 1, 2, · · · ,m, calculate

η
n+ i−1

m
h,∗ = u

n+ i−1
m

h,∗ − ∆t

2
(u

n+ i−1
m

h,∗ · ∇)u
n+ i−1

m
h,∗ ,
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and compute u
n+ i

m
h,∗ ∈ Vh such that u

n+ i
m

h,∗ = Ihu
n+ i

m
b on Γ−n+i/m and solves

(u
n+ i

m
h,∗ ,v) = (u

n+ i−1
m

h,∗ ,vh)− δt
〈
η
n+ i−1

m
h,∗ , η

n+ i−1
m

h,∗ · n vh

〉
Γ\Γ−

n+i/m

+δt

(
η
n+ i−1

m
h,∗ ,∇ · ηn+ i−1

m
h,∗ vh

)
+ δt

(
η
n+ i−1

m
h,∗ , (η

n+ i−1
m

h,∗ · ∇)vh

)
.

Step 2. Compute (un+1
h , pn+1

h ) ∈ Vh ×Mh such that un+1
h = Ihu

n+1
b on Γ and solves

(∆t)−1(un+1
h ,vh) +Re−1(∇un+1

h ,∇vh)− (pn+1
h ,∇ · vh) = (∆t)−1(un+1

h,∗ ,vh) + (gn+1,vh),

(∇ · un+1
h , qh) = 0

for any (vh, qh) ∈ (Vh ∩H1
0(Ω))×Mh.

Remark 3.2. The second steps in Algorithms 3 and 4 can be replaced by the projection-type
methods so that the pair of finite element spaces for approximating the velocity and pressure does
not need to meet the LBB condition and only Poisson problems are needed to solve for updating
both the velocity and pressure. For the projection method, we refer to the pioneering work by
Chorin [23] and Temam [24].

Remark 3.3. The newly proposed Algorithms 1-4 are only first-order accurate in time. In order
to work out numerical schemes that are of similar nature to Algorithms 1-4 but with second-order
accuracy in time, we should combine our current derivations of the first-order algorithms with
the existing second-order time-marching schemes [25] [26] for the diffusion steps.

4 Numerical experiments

In this section we shall carry out two sets of numerical tests to check the actual convergence
orders of the single-step and multistep schemes proposed in the previous two sections and how
the multistep scheme improves the stability region of the single-step scheme.

Let Th be a regular triangulation of Ω, with hK = diam(K) forK ∈ Th, and h = maxK∈Th hK .
We shall use the following linear finite element space Vh ⊂ H1(Ω):

Vh = {wh ∈ H1(Ω); wh|K ∈ P1(K) ∀K ∈ Th} (28)

for the solution of the convection diffusion equation (1), and the following Taylor-Hood finite
element spaces [27] {

Vh = {vh ∈ H1(Ω)2; vh|K ∈ P2(K)2 ∀K ∈ Th},
Mh = {qh ∈ H1(Ω); qh|K ∈ P1(K) ∀K ∈ Th}

(29)

for the solution of the Navier-Stokes Equations (3).
We recall that we have used the central finite difference scheme for the convection diffu-

sion equation and the backward Euler scheme for the diffusion equation in time discretization.
Therefore it is natural for us to expect the following numerical convergence orders when the
finite element spaces in (28) and (29) are used:

‖uN − uNh ‖L2(Ω) ≤ C(h2 + ∆t)
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for the convection diffusion equation (1), and

‖uN − uNh ‖L2(Ω) ≤ C(h3 + ∆t) and ‖pN − pNh ‖L2(Ω) ≤ C(h2 + ∆t)

respectively for the velocity and pressure of the Navier-Stokes equations (3).
We remark that all the errors shown in this section are the L2-norm errors at the terminal

time t = T unless specified otherwise.

4.1 Tests for the convection diffusion equation

We first apply the new single-step and multistep schemes to the following two examples which
are taken from references [8] and [16].

Example 1. The coefficients and domain in equation (1) are taken to be the following:

d = 2, T = 1, ε = 10−8, b = (1,−1)T , c = 1 , Ω = (0, 1)2

with the exact solution given by u(x, y, t) = e2πt sin(2πx) sin(2πy).

This example is a slight modification of the one in [8], where esin(2πt) is used. Instead we use
e2πt, which makes the solution vary in a much larger range, namely in the interval [−e2π, e2π],
and have a much larger norm i.e., ‖u(·, 1)‖ = 1

2e
2π ≈ 267.7458.

Example 2. The coefficients and domain in equation (1) are taken to be the following:

d = 2, T = 1, ε = 10−8, b = (2,−1)T , c = 1 , Ω = (0, 1)2

with the exact solution given by u(x, y, t) = t2 cos(xy2) .

To compute the actual convergence orders of the numerical schemes, we shall use the uniform
triangulations of domain Ω with triangular elements in all our numerical simulations.

4.1.1 Convergence Tests for the single-step scheme

In order to find the actual convergence order of the single-step scheme (Algorithm 1) in time, we
choose a very small mesh size and then observe the changes of the errors when the time step size
is halved. Similarly we will do the other way around when we try to find the actual convergence
order of the single-step scheme (Algorithm 1) in space.

Tables 1 and 2 show the L2-norm errors with different mesh sizes when the time step size is
fixed for Examples 1 and 2 respectively. Clearly we see the second order spatial convergence of
the single-step scheme (Algorithm 1).

Now we fix the uniform mesh size at h = 1/128, and run the single-step scheme (Algorithm
1) for Examples 1 and 2 with the following sequence of time step sizes

∆t = 0.1/2k , k = −1, 0, 1, 2, · · · (30)

to find out the stability region of the numerical scheme. The numerical results are listed in Tables
3 and 4, from which we observe that Algorithm 1 does not converge till k = 6 and 7 respectively
for Examples 1 and 2, corresponding to two rather small time step sizes of ∆t = 1/640 and
1/1280. Such restrictions on time step size are natural, required by the stability condition for
the explicit time marching scheme we have used. As we shall see in the next subsection, the
new multistep scheme can essentially improve the stability condition.
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Table 1: Convergence results of Algorithm 1 for Example 1 with fixed ∆t = 1/216

h ‖u− uh‖ order

1/4 9.18526(+1) -
1/8 1.84780(+1) 2.3135
1/16 4.24054 2.1235
1/32 1.03466 2.0351
1/64 2.54797(-1) 2.0217
1/128 6.36669(-2) 2.0007

Table 2: Convergence results of Algorithm 1 for Example 2 with fixed ∆t = 1/216

h ‖u− uh‖ order

1/4 9.76826(-3) -
1/8 2.41756(-3) 2.0145
1/16 6.02478(-4) 2.0046
1/32 1.49729(-4) 2.0086
1/64 3.69132(-5) 2.0201
1/128 8.70186(-6) 1.9687

Table 3: Convergence results of Algorithm 1 for Example 1 with fixed h = 1/128

∆t ‖u− uh‖ order

0.1/25 divergence -
0.1/26 2.02151 -
0.1/27 1.01181 0.9985

Table 4: Convergence results of Algorithm 1 for Example 2 with fixed h = 1/128

∆t ‖u− uh‖ order

0.1/26 divergence -
0.1/27 1.71484(-4) -
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4.1.2 Stability improvement by the multistep scheme

We can observe from the previous subsection that the single-step scheme (Algorithm 1) may pro-
vide the expected convergence and preserve the accurate convergence orders when it converges.
However, this scheme requires sufficiently small time step size as shown in Tables 3 and 4, hence
may restrict its applications in practice. The multistep scheme (Algorithm 2) is proposed to
improve the stability of the single-step scheme. This section is to test how the multistep scheme
can improve the stability region.

We note that ∆t is the global time step size, which is used for the diffusion correction. As
we are interested mainly in the convection-dominated diffusion problems, the time step size
required for the convection is usually much smaller than the one for the diffusion.

In our numerical tests, for each fixed ∆t = 0.1/2k (k = −1, 0, 1, 2, · · · ), we run the multistep
scheme with index m = 1, 21, 22, · · · until we observe the convergence of the scheme, and then
record the corresponding index m; see Tables 5 and 6 for the recorded index m corresponding
to each fixed ∆t and the resulting relative L2-norm error of the approximate solution.

As we see from Table 5, when we take ∆t = 0.1, which is too large for the stability of the
explicit scheme involved in the convection step, but we can still achieve the convergence of the
multistep scheme with index m ≥ 64. Tables 5 and 6 have demonstrated that though the single-
step scheme does not converge for a fixed ∆t, the multistep scheme always converges when the
index m is appropriately large. So we can conclude that if we take an appropriately large index
m, say m = 30, the multistep scheme can be viewed as an unconditionally stable scheme.

Furthermore, we have also computed the convergence orders of the multistep scheme in
terms of the global time step size for Examples 1 and 2 with a fixed index m and mesh size
h. The results are shown in Tables 7 and 8. Combining these results with the ones for the
single-step scheme (cf. Table 3), we can clearly observe the first order temporal convergence for
both examples.

Table 5: Stability of Algorithm 2 for Example 1 with index m and fixed h = 1/128

∆t m ‖u−uh‖
‖u‖

0.1/26 1 7.55011(-3)
0.1/25 2 1.54379(-2)
0.1/24 4 3.15569(-2)
0.1/23 8 6.41671(-2)
0.1/22 16 1.30693(-1)
0.1/21 32 2.69788(-1)
0.1 64 5.68483(-1)
0.2 128 1.26837

Next, we carry out some numerical tests to check how the multistep scheme can improve the
stability region quantitatively. For each fixed mesh size h, we increase the index m gradually
and record the largest global time step size ∆t that can ensure the convergence of the entire
algorithm. And the largest time step size will be written as the critical time step size ∆tcrit
for the stability of the algorithm. The results are shown in Tables 9 and 10, from which we
can see that the stability region is nearly doubled when the index m of the multistep scheme is
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Table 6: Stability of Algorithm 2 for Example 2 with index m and fixed h = 1/128

∆t m ‖u−uh‖
‖u‖

0.1/27 1 1.65924(-4)
0.1/26 2 7.46950(-4)
0.1/25 4 1.96066(-3)
0.1/24 8 4.39337(-3)
0.1/23 16 9.28328(-3)
0.1/22 32 1.96240(-2)
0.1/21 64 4.11452(-2)
0.1 128 8.41251(-2)
0.2 256 1.70957(-1)

Table 7: Convergence order of Algorithm 2 for Example 1 with fixed index m = 64 and h = 1
128

∆t ‖u− uh‖ order

0.1 1.52209(+2) -
0.1/21 7.23099(+1) 1.0738
0.1/22 3.51127(+1) 1.0422
0.1/23 1.73718(+1) 1.0152
0.1/24 8.66679 1.0032
0.1/25 4.34772 0.9952
0.1/26 2.18766 0.9909

Table 8: Convergence order of Algorithm 2 for Example 2 with fixed index m = 128 and h = 1
128

∆t ‖u− uh‖ order

0.1 8.69440(-2) -
0.1/21 4.27948(-2) 1.0227
0.1/22 2.07747(-2) 1.0426
0.1/23 1.00067(-2) 1.0538
0.1/24 5.01775(-3) 0.9959
0.1/25 2.54242(-3) 0.9808
0.1/26 1.31725(-3) 0.9487
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doubled. So the multistep scheme can indeed clearly and essentially enlarge the stability of the
entire algorithm.

Table 9: Critical global time step size ∆tcrit of Algorithm 2 for Example 1 in terms of index m

m 1 2 10 20 40 80

h = 1/64
∆tcrit 0.0049 0.0093 0.046 0.093 0.18 0.37

h = 1/128
∆tcrit 0.0024 0.0045 0.022 0.045 0.091 0.18

Table 10: Critical global time step size ∆tcrit of Algorithm 2 for Example 2 in terms of index m

m 1 2 10 20 40 80

h = 1/64
∆tcrit 0.0032 0.0060 0.029 0.058 0.11 0.23

h = 1/128
∆tcrit 0.0015 0.0030 0.014 0.028 0.057 0.11

We remark that we have done many more numerical experiments for Examples 1 and 2, but
with the diffusion coefficients ε varying in a wide range, from 10−3 to 10−15, and many different
convective vectors b, and observed similar convergence and stability behaviors for the single-step
and multistep schemes as we have shown above.

4.2 Tests for the Navier-Stokes Equations

Now we will apply our new single-step and multistep schemes (Algorithms 3 and 4) to two
examples of Navier-Stokes equations with analytical solutions to check the actual convergence
orders of the schemes and how the multistep scheme improves the stability region of the single-
step scheme. Then we will apply these schemes to the benchmark problem of the lid-driven
cavity flow to verify their validity.

Example 3. Consider the Navier-Stokes equations (3) with the following parameters:

Ω = [0, 1]2, T = 1, Re = 5000 and 10000

with the exact solution (u, p) = (u1, u2, p) given by p = (x2 − y2) cos(t) and

u1 = 10x2(x− 1)2y(y − 1)(2y − 1) cos(t) , u2 = −10x(x− 1)(2x− 1)y2(y − 1)2 cos(t) .

Example 4. Consider the Navier-Stokes equation (3) with the same parameters as in Example 3,
but the exact solution (u, p) = (u1, u2, p) given by

u1 = t3y2 , u2 = t2x , p = tx+ y − (t+ 1)/2 .

This is an example where only a discretization error in time occurs [28].
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4.2.1 Convergence Tests for the single-step scheme

We first verify the convergence orders of the single-step scheme (Algorithm 3) in both space
and time for Example 3. Tables 11-12 present the convergence results in time for the Reynolds
numbers Re = 5000 and 10000 respectively, with a fixed uniform mesh of size h = 1/128, and
Tables 13-14 give the convergence results in space for the Reynolds numbers Re = 5000 and
10000 respectively, with a fixed ∆t = 10−6. From these tables we can clearly see the optimal
first order convergence of the single-step scheme in time and the optimal third and second order
convergence in space respectively for the velocity and pressure.

For Example 4, we have tested the single-step scheme (Algorithm 3) with the Reynolds
numbers Re = 5000 and 10000, and the uniform mesh of size h = 1/48 and 1/64, and the
sequence of time step sizes as listed in (30). The results have shown that the scheme converges
only when the time step size ∆t = 0.1/2k is sufficiently small, namely when k takes at least 4
(∆t = 1/160) and 5 (∆t = 1/320) respectively for h = 1/48 and 1/64. This test indicates that
the single-step scheme may require sufficiently small time step size to ensure its convergence. In
the next section 4.2.2 we will show the multistep scheme (Algorithm 4) can essentially improve
the stability of the single-step scheme.

Table 11: Convergence of Algorithm 3 for Example 3 with h = 1/128 and Re = 5000

∆t ‖u− uh‖ order ‖p− ph‖ order

0.2 3.28203(-3) - 1.00222(-4) -
0.1 1.65607(-3) 0.9868 4.79084(-5) 1.0648
0.1/21 8.31889(-4) 0.9933 2.35900(-5) 1.0221
0.1/22 4.16919(-4) 0.9966 1.20411(-5) 0.9702

Table 12: Convergence of Algorithm 3 for Example 3 with h = 1/128 and Re = 10000

∆t ‖u− uh‖ order ‖p− ph‖ order

0.2 3.29348(−3) - 9.98106(-5) -
0.1 1.66141(−3) 0.9872 4.77006(-5) 1.0652
0.1/21 8.34455(−4) 0.9935 2.34866(-5) 1.0222
0.1/22 4.18176(−4) 0.9967 1.19910(-5) 0.9699

4.2.2 Stability improvement by the multistep scheme

As shown in the previous subsection, the convergence of the single-step scheme (Algorithm 3)
for Example 4 requires a sufficiently small global time step size for a fixed mesh size h.

In order to improve this severe restriction on time step size by the single-step scheme, we
now show how we can achieve the convergence for large global time step size by the multistep
scheme. For each fixed ∆t = 0.1/2k (k = −1, 0, 1, 2, · · · ), we run the multistep scheme with
index m = 1, 21, 22, · · · until we observe the convergence of the scheme, and then record the
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Table 13: Convergence of Algorithm 3 for Example 3 with ∆t = 10−6, Re = 5000 and T = 0.2

h ‖u− uh‖ order ‖p− ph‖ order

1/4 1.31468(-3) - 6.45683(-3) -
1/8 1.81020(-4) 2.8607 1.61419(-3) 2.000016
1/16 2.38018(-5) 2.9270 4.03547(-4) 2.000002
1/32 3.00134(-6) 2.9874 1.00887(-4) 1.999996
1/48 8.71038(-7) 3.0511 4.48386(-5) 2.000004

Table 14: Convergence of Algorithm 3 for Example 3 with ∆t = 10−6, Re = 10000 and T = 0.2

h ‖u− uh‖ order ‖p− ph‖ order

1/4 1.31577(-3) - 6.45683(-3) -
1/8 1.81589(-4) 2.8572 1.61419(-3) 2.000016
1/16 2.42194(-5) 2.9064 4.03547(-4) 2.000002
1/32 3.20061(-6) 2.9197 1.00887(-4) 1.999996
1/48 9.28064(-7) 3.0533 4.48386(-5) 2.000004

corresponding index m; see Tables 15 and 16 for the recorded index m corresponding to each
fixed ∆t and the resulting relative L2-norm errors of the approximate solutions for the velocity
and pressure.

As we see from Table 15, when we take ∆t = 0.1, which is too large for the stability of
the explicit scheme involved in the convection step, but we can still achieve the convergence of
the multistep scheme with index m ≥ 32. Tables 15 and 16 have demonstrated that though
the single-step scheme does not converge for a fixed ∆t, the multistep scheme always converges
when the index m is appropriately large. So we can conclude that if we take an appropriately
large index m, say m = 30, the multistep scheme can be viewed as an unconditionally stable
scheme.

Next we have tested the actual convergence orders of the multistep scheme when the index
m is fixed at m = 64. Tables 17-18 have showed the computational results for Re = 5000 and
10000 with fixed h = 1/48 and 1/64 respectively. We can observe clearly the optimal first order
convergence for both velocity and pressure in terms of the global time step size.

The last test we have carried out is to check how the multistep scheme can improve the
stability region quantitatively. For each fixed mesh size h, we increase the index m gradually
and record the largest global time step size ∆t (the critical time step size ∆tcrit as we called
earlier) that can ensure the convergence of the entire algorithm. The results are shown in Table
19, from which we can see that the stability region is nearly doubled when the index m of the
multistep scheme is doubled. So the multistep scheme can indeed clearly and essentially enlarge
the stability of the entire algorithm.

We end this subsection with some concluding remarks on convergence and stability behaviors
of the single-step and multistep schemes, based on our observations from the numerical tests in
this and previous subsections.
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• The single-step scheme (Algorithm 3) is generally conditionally stable, and requires suffi-
ciently small time step size to ensure its convergence with a fixed mesh and larger Reynolds
number.

• The multistep scheme (Algorithm 4) can essentially relax the restriction of the time step
size (see Tables 15, 16 and 19).

• Comparing the results in Tables 15-16 with the ones in Tables 17-18, we can clearly see
the stability and robustness of the multistep scheme (Algorithm 4). For example, for the
global time step size ∆t = 0.1/24, the multistep scheme with a small index like m = 2 and
a large index like m = 64 provide about the same accuracies; see Tables 16 and 18.

Table 15: Stability of Algorithm 4 for Example 4 with index m and fixed h = 1/48, Re = 5000

∆t m ‖u− uh‖ ‖p− ph‖
0.1/24 1 1.61352(-3) 9.22561(-3)
0.1/23 4 3.15065(-3) 1.82083(-2)
0.1/22 8 6.32378(-3) 3.52747(-2)
0.1/21 16 1.34098(-2) 6.64021(-2)
0.1 32 2.70632(-2) 1.18921(-1)
0.2 64 5.60465(-2) 1.97385(-1)

Table 16: Stability of Algorithm 4 for Example 4 with index m and fixed h = 1/64, Re = 10000

∆t m ‖u− uh‖ ‖p− ph‖
0.1/25 1 8.13177(-4) 4.65014(-3)
0.1/24 2 1.61134(-3) 9.24510(-3)
0.1/23 4 3.46105(-3) 1.82018(-2)
0.1/22 16 6.37609(-3) 3.52913(-2)
0.1/21 32 1.29496(-2) 6.64033(-2)
0.1 64 2.67569(-2) 1.18926(-1)
0.2 128 5.67472(-2) 1.97454(-1)

4.2.3 The lid-driven cavity flow

As our final numerical example we test a popular benchmark problem, i.e., the lid-driven cavity
flow problem, where the fluid is enclosed in a unit square box, with an imposed velocity of unity
in the horizontal direction on the top boundary, and a no-slip condition on the remaining walls.
We shall compare our results with three benchmark results: Ghia et al. [29] with h = 1/128 for
Reynolds numbers Re = 100, 400, 1000 and 3200; Erturk et al. [30] with h = 1/128 for Reynolds
number Re = 1000; Botella et al. [31] for the Reynolds number Re = 1000.
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Table 17: Convergence order of Algorithm 4 for Example 4 with fixed h = 1/48, Re = 5000 and
fixed index m = 64

∆t ‖u− uh‖ order ‖p− ph‖ order

0.2 5.60465(-2) - 1.97385(-1) -
0.1 2.64298(-2) 1.0845 1.18888(-1) 0.7314
0.1/21 1.28200(-2) 1.0438 6.63946(-2) 0.8405
0.1/22 6.33073(-3) 1.0180 3.52954(-2) 0.9116
0.1/23 3.17694(-3) 0.9947 1.82354(-2) 0.9527
0.1/24 1.60997(-3) 0.9806 9.27332(-3) 0.9756
0.1/25 8.20838(-4) 0.9719 4.67745(-3) 0.9874

Table 18: Convergence order of Algorithm 4 for Example 4 with fixed h = 1/64, Re = 10000
and fixed index m = 64

∆t ‖u− uh‖ order ‖p− ph‖ order

0.1 2.67569(-2) - 1.18926(-1) -
0.1/21 1.29252(-2) 1.0497 6.64054(-2) 0.8407
0.1/22 6.35955(-3) 1.0232 3.52978(-2) 0.9117
0.1/23 3.17773(-3) 1.0009 1.82330(-2) 0.9530
0.1/24 1.60477(-3) 0.9856 9.27095(-3) 0.9758
0.1/25 8.16528(-4) 0.9748 4.67451(-3) 0.9879

Table 19: Critical global time step size ∆tcrit of Algorithm 4 for Example 4 in terms of index m

m 1 5 10 20 40 80

Re = 10000, h = 1/64
∆tcrit 0.0039 0.018 0.024 0.048 0.089 0.18
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In all our computations for this example, we use the uniform mesh of size h = 1/128 and the
Taylor-Hood element (29), and have tested the cases with Reynolds numbers Re = 100, 400, 1000
and 3200, and the global time step size ∆t = 0.005. The stoping condition for time advancing,
which is considered as the criterion of capturing the steady state solution, is chosen as

‖un+1
h − unh‖
‖un+1

h ‖
≤ 10−5 ,

where unh is the finite element solution at time t = tn. We have observed from our numerical
results that the single-step scheme (Algorithm 3) works when the Reynolds number is relatively
small, e.g., Re = 100, 400 and 1000, but it is unstable when Re is large, e.g., Re ≥ 3200. But
the multistep scheme may still work for larger Reynolds number, e.g., Re = 3200.

Tables 20-21 present the streamfunction values and the locations of the primary and sec-
ondary vortices for various Reynolds numbers. Figures 1, 2 and 3 show the computed velocity
components and vorticity profiles along the horizonal and vertical lines compared with the re-
sults of Ghia et al. [29] and Botella et al. [31]. As one can see that the results by the new schemes
confirm very well the ones by the benchmark schemes.

Table 20: Streamfunction values Ψmin, Ψmax and locations of the primary and secondary vortices

Vortex property Re=1000 Re=1000 Re=1000
Single-step scheme Ghia et al. [29] Erturk et al. [30]

Primary Ψmin -0.114722 -0.117929 -0.118781
Location (x, y) (0.5313, 0.5625) (0.5313, 0.5625) (0.5300, 0.5650)

First BL Ψmax 2.12504E-4 2.31129E-4 2.3261E-4
Location (x, y) (0.0781, 0.0781) (0.0859, 0.0781) (0.0833, 0.0783)

First BR Ψmax 1.67313E-3 1.75102E-3 1.7281E-3
Location (x, y) (0.8672, 0.1094) (0.8594,0.1094) (0.8633, 0.1117)

Second BR Ψmin -4.815059E-8 -9.31929E-8 5.4962E-8
Location (x, y) (0.9922, 0.0078) (0.9922, 0.0078) (0.9917, 0.0067)

5 Concluding remarks

We have proposed a new splitting method for solving the general time-dependent convection-
dominated diffusion problem and the Navier-Stokes equations. A pure convection problem and a
pure diffusion problem are solved successively at each iteration of the method. Explicit schemes
are proposed for the time discretization of the convective problem. The explicitness of the scheme
may cause a severe restriction on the time step sizes, which can be essentially improved by an
explicit multistep scheme with smaller time step sizes so that the resulting method behaves
like an unconditionally stable method. The diffusion problem involved at each iteration is
always self-adjoint and coercive so that it can be solved efficiently using many existing optimal
preconditioned iterative solvers. The optimal convergence orders have been confirmed by several
numerical examples with smooth solutions. The schemes are then extended for the Navier-
Stokes equations, where the nonlinearity is resolved by a linear explicit multistep scheme at
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Table 21: Streamfunction values Ψmin, Ψmax and locations of the primary and secondary vortices

Number property Re=3200 Re=3200
Multistep scheme with index m = 2 Ghia et al. [29]

Primary Ψmin -0.109962 -0.120377
Location, x, y (0.5156,0.5391) (0.5165,0.5469)

First T Ψmax 5.759079E-4 7.27682E-4
Location (x, y) (0.0469,0.8984) (0.0547,0.8984)

First BL Ψmax 1.09512E-3 9.7823E-4
Location (x, y) (0.0781,0.1250) (0.0859,0.1094)

First BR Ψmax 2.70425E-3 3.13955E-3
Location (x, y) (0.8281,0.0859) (0.8125,0.0859)

Second BL Ψmin -1.04040E-8 -6.33001E-8
Location (x, y) (0.0078,0.0078) (0.0078,0.0078)

Second BR Ψmin -1.36461E-7 -2.51648E-7
Location (x, y) (0.9844,0.0078) (0.9844,0.0078)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
x

y

 

 

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
x

y

 

 

(a) Re = 1000 (b) Re = 3200

Figure 1: Velocity (ux) profiles along the vertical line passing through the geometric center of
the cavity. Black solid lines: (a) single-step scheme, (b) multistep scheme with index m = 2;
Blue circle lines: Ghia et al. [29]
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Figure 2: Velocity (uy) profiles along the horizontal line passing through the geometric center
of the cavity. Black solid lines: (a) single-step scheme, (b) multistep scheme with index m = 2;
Blue circle lines: Ghia et al. [29]
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Figure 3: Vorticity values along the vertical line x = 0.5 (left) and the horizontal line y = 0.5
(right) passing through the geometric center of the cavity with Re = 1000. Black solid lines:
single-step scheme; Blue circle lines: Botella et al. [31]



Feng Shi, Guoping Liang, Yubo Zhao and Jun Zou 22

the convection step, while only a generalized Stokes problem is needed to solve at the diffusion
step and the major stiffness matrix stays invariant in the time marching process. Numerical
simulations are presented to demonstrate the stability, convergence and performance of the
single-step and multistep variants of the new schemes. The effectiveness and robustness of the
new schemes are finally well demonstrated by the benchmark lid-driven cavity flow problem.

References

[1] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,
Springer-Verlag, Berlin, 1994.

[2] J. Donea and A. Huerta, Finite Element Methods for Flow Problems, Wiley, New York,
2003.

[3] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods
in Nonlinear Mechanics, SIAM, Philadelphia, 1989.

[4] T.J.R. Hughes and A.N. Brooks, A multidimensional upwind scheme with no crosswind
diffusion, In T.J.R. Hughes (ed.) Finite Element Methods for Convection Dominated Flows
(ASME, New York, 1979) 19-35.

[5] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier-Stokes equa-
tions, Comput. Methods Appl. Mech. Engrg. 32 (1982) 199-259.

[6] T.J.R. Hughes, L. P. Franca and G.M. Hulbert, A new finite element formulation for com-
putational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive
equations, Comput. Methods Appl. Mech. Engrg. 73 (1989) 173-189.

[7] M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14 (2005) 445-508.

[8] V. John and J. Novo, Error Analysis of the SUPG Finite Element Discretization of Evolution-
ary Convection-Diffusion-Reaction Equations, SIAM J. Numer. Anal. 49 (2011) 1149-1176.

[9] L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application
to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg. 96 (1992) 253-276.

[10] L.P. Franca and S.L. Frey, Stabilized finite element methods: II. The incompressible Navier-
Stokes equations, Comput. Methods Appl. Mech. Engrg. 99 (1992) 209-233.

[11] L.P. Franca and C. Farhatb, Bubble functions prompt unusual stabilized finite element meth-
ods, Comput. Methods Appl. Mech. Engrg. 123 (1995) 299-308.

[12] L.P. Franca and F. Valentin, On an improved unusual stabilized finite element method for
the advective-reactive-diffusive equation, Comput. Methods Appl. Mech. Engrg. 190 (2000)
1785-1800.

[13] T.J.R. Hughes, Multiscale phenomena: Greens functions, the Dirichlet-to-Neumann formu-
lation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. Methods
Appl. Mech. Engrg. 127 (1992) 387-401.



Feng Shi, Guoping Liang, Yubo Zhao and Jun Zou 23
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