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a b s t r a c t

We shall propose several block triangular preconditioners for a PML system of an electro-
magnetic wave scattering problem and analyze the spectral behavior of the preconditioned
systems. When the PML system is discretized by edge element methods, it results in a
discrete system with its stiffness matrix being complex, symmetric but indefinite, which
can be formulated into a real symmetric but indefinite saddle-point system. In order to pre-
serve the symmetry of the coefficient matrix, we present block triangular preconditioners
with two-sided preconditioning for the discrete PML system. We will estimate the lower
and upper bounds of positive and negative eigenvalues of the preconditioned matrices,
respectively. On the other hand, one may also like to apply some iteration methods for
nonsymmetric linear systems in applications although the discrete systems are symmetric.
To this end, we propose a block triangular preconditioner to precondition the systems only
from one side and analyze the spectrum of the preconditioned systems. In addition, we
have also established a spectral estimate of the preconditioned system by an effective
preconditioner that was recently developed in literature. Numerical experiments are
presented to demonstrate the effectiveness and robustness of these new preconditioners
and our theoretical predictions on the spectral bounds of the preconditioned systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω0 ⊂ R2 be a bounded domain containing the origin with a boundary Γ0, and Ωc
0 be the complement of its closure.

In this work, we consider the following electromagnetic wave scattering problem by the impenetrable scatterer Ω0 [1,2]:{
∇ × (µ−1

∇ × u) − k2εu = 0 in Ωc
0,

u · τ = g · τ on Γ0,
(1.1)

where two operators ∇× and ∇× are defined as

∇ × w =

(∂w

∂y
, −

∂w

∂x

)T
, ∇ × v =

∂v2

∂x
−

∂v1

∂y
,

with a scalar functionw and a vector-valued function v = (v1, v2)T , respectively, τ is unit tangential vector onΓ0,µ and ε are
the magnetic permeability and the electric permittivity, respectively, k is the wave number and g is the trace of a function
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g̃ ∈ Hloc(curl; Ωc) onΓ0, whereHloc(curl; Ωc) is the set consisting of all functions onΩc whose restrictions toΩc
∩D belong

to H(curl; Ωc
∩ D) for any bounded domain D.

PML is a popular and effective technique developed first by Bérenger [3] to transform a PDE on an unbounded domain
to another PDE on a bounded domain so that the approximate solution obtained on the bounded domain converges to the
original solution exponentially in terms of some damping parameters. The PML has been extensively studied in the past
two decades, see, e.g., [2,4–8]. The convergence of the PML scattering system for the time-dependent scattering problem
(1.1) was established in [2], and the edge element discretized system of the PML system was studied in [1] and an effective
preconditionerwas proposed and analyzed there. Following the edge element discretization of the PML system of (1.1) in [1],
we come to the following generalized saddle-point system:

Mz ≡

(
A B
B −A

)(
x
y

)
=

(
f
g

)
≡ b, (1.2)

where A ∈ Rn×n and B ∈ Rn×n are symmetric but indefinite. However, little study can be found in literature on fast solvers
for a generalized saddle-point system of form (1.2) when both matrices A and B are symmetric but indefinite. This is exactly
our current case when the system (1.2) arises from the edge element discretization of a PML system of the electromagnetic
wave scattering problem (1.1), and will be the major focus of this work. In most applications, the matrix A in a generalized
saddle-point problem of form (1.2) corresponds to a second order differential operator and B to a first order differential
operator, e.g., the problems from the discretization of Navier–Stokes andMaxwell equations [9–11]. But an important feature
of the system (1.2) we shall investigate here is that the matrices A and B are obtained both from the discretization of second
order differential operators respectively. Nearly no studies on preconditioningmethods and their preconditioning effects for
such generalized saddle-point systems are available. It was suggested in [12] to solve the finite-element PML system by the
GMRES solver coupled with a strong approximate inverse preconditioner, and some optimal choices of the PML parameters
were proposed and tested [13]. A moving PML sweeping preconditioner was introduced in [14] for solving the Helmholtz
equation on a Cartesian finite difference grid, and it can dramatically reduce the number of GMRES iterations. Based on a
crucial observation to its Schur complement, a symmetric positive definite block diagonal preconditioner Ps of the form

Ps =

(
Â 0
0 Ŝ

)
(1.3)

was proposed in [1] for the system (1.2), where Â and Ŝ are two symmetric positive definite approximations of A and
S = A + BA−1B, respectively. This seems to be the only work in literature where preconditioning effects were analyzed
mathematically for a PML edge finite element system. The preconditioning effects was analyzed in [1] under several general
assumptions, and it is still rather difficult to verify all these abstract assumptions rigorously. In this work, we shall derive

some explicit bounds for the positive and negative eigenvalues of the preconditioned systemP
−

1
2

s MP
−

1
2

s , following a purely
algebraic argument.

The symmetry of the coefficient matrix M in (1.2) motivates us to solve the system (1.2) by the MINRES. Nevertheless,
the common bounds on the convergence rate of this method depend on the bounds on the eigenvalues of M, including the
lower bound of positive eigenvalues, and the upper bound of negative eigenvalues; e.g., see [15,16]. In order to preserve the
symmetry of the coefficient matrix, we shall present some block triangular preconditioners with two-sided preconditioning
for the system (1.2). And we estimate the lower and upper bound of positive and negative eigenvalues of the preconditioned
matrices, respectively. On the other hand, one may also like to apply some iteration methods for nonsymmetric systems in
applications, see, e.g., [17–23], although the discrete systems are symmetric. To this end,we propose another block triangular
preconditioner to precondition the systems only from one side and analyze the spectrum of the preconditioned systems.

The organization of this paper is as follows.We give a brief description of how the generalized saddle-point system arises
from the PML scattering problem in Section 2. In Section 3, we present block triangular preconditioners with symmetric
preconditioning and estimate the lower and upper bounds of positive and negative eigenvalues of the preconditioned
matrices, respectively. In Section 4, we establish another block triangular preconditioner with one-side preconditioning for
theproblem (1.2). In addition,wederive in Section5 someexplicit and sharpbounds for thepositive andnegative eigenvalues

of the preconditioned system P
−

1
2

s MP
−

1
2

s . Numerical experiments are presented in Section 6 to show the effectiveness
and robustness of these new preconditioners and our theoretical predictions on the spectral bounds of the preconditioned
systems.

Throughout this paper, we use the following notation: for H ∈ Rn×n, we write H > 0 (H ≥ 0) if H is symmetric positive
definite (or semi-definite), and sp(H) for the spectrum of H . For λ ∈ C, Re(λ) and Im(λ) denote the real and imaginary parts
of λ, respectively. I is often used for a general identity matrix. As a matter of convenience, we introduce some basic spectral
notations. For any symmetric indefinitematrixH , we assume sp(H) ⊂ [−λH , −γH ]∪[ΓH , ΛH ], with λH , γH ,ΓH andΛH being
positive constants.

2. Generalized saddle-point system from the PML scattering problem

In [1,2], the authors have discussed the approximation of the electromagnetic wave scattering problem (1.1) on
unbounded domain by PML technique, and the discretization of the PML variational system by the edge element method. In
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this section, we will give a brief description of how the generalized saddle-point system (1.2) arises from the PML scattering
problem.

The electromagnetic wave scattering problem (1.1) is defined on the unbounded domain Ωc
0 . The PML technique is an

effective strategy to approximate Eq. (1.1) by a PML equation on a bounded domain. To this end, we define three domains
with a sufficiently large positive constant L:

Ω1 = (−a, a)2 \ Ω̄0, Ω2 = (−b, b)2 \ [−a, a]2, Ω3 = (−L, L)2 \ [−b, b]2,

and set ΩL = Ω1 ∪ Ω2 ∪ Ω3 with ΓL being its boundary. Then we introduce

Hg (curl; ΩL) = {u = ur + i ui : ur ∈ Hgr (curl; ΩL), ui ∈ Hgi (curl; ΩL)},

where gr and gi are the real and imaginary parts of function g , respectively, and (with l = r or i)

Hgl (curl; ΩL) = {v : v ∈ H(curl; ΩL), v · τ|ΓL
= 0, v · τ|Γ0

= gl · τ|Γ0
}.

With the above preparations, the solution of the scattering problem (1.1) can be approximated by the PML solution uL ∈

Hg (curl; ΩL) of the following system [1,2]∫
ΩL

(α + iβ)(∇ × uL)(∇ × ψ)dx −

∫
ΩL

k2((D + iE)uL) · ψdx = 0 ∀ψ ∈ H0(curl; ΩL)

where α and β are two given real constants, D and E are both two-by-two real diagonal matrices related to PML
parameters [2]. By writing uL = ur + iui in the above equation, we come to

a(ur , ui; ψr , −ψi) = 0 ∀ ψr ,ψi ∈ H0(curl; ΩL), (2.1)

where the bilinear form a(ur , ui; ψr , −ψi) is given by

a(ur , ui; ψr , −ψi) =

∫
ΩL

α[(∇ × ur )(∇ × ψr ) − (∇ × ui)(∇ × ψi)]dx

−

∫
ΩL

β[(∇ × ui)(∇ × ψr ) + (∇ × ur )(∇ × ψi)]dx

−

∫
ΩL

k2(uT
r Dψr − uT

i Dψi)dx +

∫
ΩL

k2(uT
i Eψr + uT

r Eψi)dx.

Next, we shall introduce the edge element discretization of the PML variational equation (2.1). Assume thatΩL is covered
by a quasi-uniform triangulation Th of triangular elements, with h being the maximum diameter among all the triangles in
Th. Let Eh be the set of all edges in the triangulation Th. Define

Vh,gl (ΩL) =

{
v : v ∈ H(curl; ΩL), v|K ∈ R1, ∀ K ∈ Th;

v · τ|e = 0, ∀ e ∈ Eh ∩ ΓL; v · τ|e = gl · τ|e, ∀ e ∈ Eh ∩ Γ0

}
,

with l = r or i, and R1 being the space of linear polynomials as follows:

R1 = (P0)2 ⊕ {p ∈ (P̃1)2 : x · p = 0},

where P0 and P̃1 are the space of constants and the space of homogeneous linear polynomials, respectively. Similarly, we
can define Vh,0(ΩL). Then the edge element approximation of the variational equation (2.1) can be formulated as follows:

Find ur,h ∈ Vh,gr (ΩL) and ui,h ∈ Vh,gi (ΩL) such that

a(ur,h, ui,h;ψr,h, −ψi,h) = 0 ∀ ψr,h,ψi,h ∈ Vh,0(ΩL). (2.2)

The major task of this work is to propose some effective preconditioners for the use in an iterative method for solving
the edge element system (2.2). For the purpose, we write the system in a matrix–vector form. Let m0

h be the number of all
the edges in the triangulation Th lying inside ΩL and (mh −m0

h) be the number of all the edges in Th lying on ∂ΩL. Let {φ
j
h}

mh
j=1

be the edge element basis functions of space Vh(ΩL), then there exist x = (x1, x2, . . . , xmh )
T and y = (y1, y2, . . . , ymh )

T such
that

ur,h =

mh∑
j=1

xjφ
j
h, ui,h =

mh∑
j=1

yjφ
j
h.

Now by substituting ur,h and ui,h above into Eq. (2.2), then keeping all the terms involving the firstm0
h components of x and

y on the left-hand side and moving the other terms to the right-hand side, we can rewrite equation (2.2) to the saddle-point
system (1.2).
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3. Block triangular preconditioners for symmetric preconditioning

As it is known, the convergence rate of the Krylov subspacemethods, such asMINRES and GMRES, is closely related to the
eigenvalues and the eigenvectors of the coefficient matrix in the concerned linear system [15–17,24]. But the eigenvalues of
the matrices arising frommany applications (like the matrixM in (1.2)) are not clustered. Therefore, many preconditioners
have been developed, e.g., see [25–34], among which block triangular preconditioners are considered as one of the most
popular ones. Block triangular preconditioners were applied for the solution of the Stokes problem, e.g., see [35–38], and
their theoretical properties were studied in [39]. In this section, we propose and study the block triangular preconditioners
of the following form for the more challenging system (1.2) arising from the PML system for electromagnetic scattering
problems (see Section 2):

P =

(
L̂ 0
ηL̂ L̂

)
(3.1)

where L̂ is a nonsingular matrix such that Â =: L̂L̂T is an approximation of A and η is a given constant. If we apply the Krylov
subspace methods (like SYMMLQ or MINRES) to solve the system (1.2), we may not like to transform the original symmetric
problem (1.2) into a nonsymmetric one. Therefore we shall consider the following preconditioned system:

P−1MP−T ẑ = P−1b, ẑ = PT z.

As the preconditioner P is a block triangular matrix, the system ẑ = PT z can be solved relatively easily. In addition, for
judging the effectiveness of our new preconditionersP , we shall derive the bounds for the eigenvalues of the preconditioned
matrix P−1MP−T , including the lower bound of the positive eigenvalues and the upper bound of the negative eigenvalues;
e.g., see [15,16]. For this purpose, we introduce three matrices

Ã = L̂−1AL̂−T , B̃ = L̂−1BL̂−T , S̃ = L̂−1SL̂−T
= Ã + B̃Ã−1B̃.

Although the preconditioned system P−1MP−T is symmetric, the indefiniteness of the matrices A and B bring the great
difficulty in the estimates of bounds on the spectra of P−1MP−T . The most existing studies for the generalized saddle-
point system (1.2) were carried out only for the cases where matrix A or B is symmetric positive definite, and those analysis
techniques do not apply to our current case.We shall introduce some new analysis techniques. To better follow andmotivate
our subsequent analysis, we first outline the basic steps, and introduce

A =:

(
L̂ 0
0 L̂

)
. (3.2)

Then we can write
zTP−1MP−T z

zT z
=

zTP−1A(A−1MA−T )ATP−T z
zTP−1AATP−T z

zT ((A−1P)TA−1P)−1z
zT z

, (3.3)

from which we clearly see that some careful and sharp spectral estimates for the matrices (A−1P)TA−1P and A−1MA−T

should be achieved in order to establish desired spectral estimates of the preconditioned matrix P−1MP−T . As it is seen, it
is quite surprising that the eigenvalues of (A−1P)TA−1P can be explicitly expressed, after some detailed analysis by taking
full advantage of its special structure. But the spectral analysis on the matrixA−1MA−T is muchmore complicated. Instead,
for a general eigenvector (x, y) of A−1MA−T in the same block form as in (1.2), we choose to consider directly the eigen-
equations satisfied by x and y. We thenwrite variable x in terms of variable y from the first equation and substitute x into the
second one. Then after some technical and delicate derivations, we can establish a quadratic inequality for the corresponding
eigenvalue, which enables us to get the desired estimate of the upper and lower bounds of the eigenvalues by solving the
quadratic inequality.

It remains to establish the lower bound of the positive eigenvalues and the upper bound of the negative eigenvalue of
the preconditioned system P−1MP−T . For this aim, by using the relation (3.3) and the explicit bounds of eigenvalues of the
system (A−1P)TA−1P , we need only to consider the extreme spectral bounds for the inverse of A−1MA−T . By Sherman–
Morrison–Woodbury formula, we can find that (A−1MA−T )−1 has the same form asA−1MA−T . Thereby we can derive the
lower and the upper bounds of the eigenvalues of (A−1MA−T )−1 in a similar argument as we did for A−1MA−T earlier.

3.1. Spectral estimates of matrices (A−1P)TA−1P and A−1MA−T

In this subsection, we first work out the explicit formula for the eigenvalues of (A−1P)TA−1P and the spectral estimate
of A−1MA−T as it was motivated above. It follows from (3.2) that

(A−1P)TA−1P =

(
(1 + η2)I ηI

ηI I

)
,

which is similar to the block diagonal matrix

diag
{(

1 + η2σ 2
1 ησ1

ησ1 1

)
,

(
1 + η2σ 2

2 ησ2
ησ2 1

)
, . . . ,

(
1 + η2σ 2

n ησn
ησn 1

)}
,
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whose eigenvalues can be given explicitly by

2 + η2
±
√
4η2 + η4

2
.

Then we come to the following conclusion from the above analysis.

Lemma 3.1. The matrix (A−1P)TA−1P has only two distinct eigenvalues 1
2 (2+ η2

+
√
4η2 + η4) and 1

2 (2+ η2
−
√
4η2 + η4).

In the following, we deduce the spectral estimate of the matrix A−1MA−T . To do so, we first derive the spectral bounds
for a matrix of the following specific structure:

R =

(
W T
T T

−W

)
, (3.4)

whereW ∈ Rn×n is a symmetric indefinite matrix, and T ∈ Rn×n.

Lemma 3.2. The eigenvalues of the matrix R in (3.4) lie in the following range:

[
−

ΛW + λW +

√
(ΛW − λW )2 + 4∥T∥

2
2

2
,

ΛW + λW +

√
(ΛW − λW )2 + 4∥T∥

2
2

2

]
.

Proof. Let λ and (xT , yT )T be the eigenvalue and eigenvector of matrix R, then we can write

Wx + Ty = λx, T T x − Wy = λy. (3.5)

If y = 0, we see that T T x = 0 andWx = λx, which imply λ ∈ [−λW , ΛW ]. This suggests us to consider only λ ̸∈ [−λW , ΛW ]

for y ̸= 0. Clearly λI − W is nonsingular, and it follows from the first equality of (3.5) that

x = (λI − W )−1Ty.

Substituting into the second equality in (3.5), we obtain

T T (λI − W )−1Ty − Wy = λy,

then it follows by multiplying the above equality from the left by yT/yTy that

λ =
yTT T (λI − W )−1Ty

yTy
−

yTWy
yTy

. (3.6)

Now we first consider the case that λ > ΛW . Clearly λI − W ≥ (λ − ΛW )I > 0, which implies that 0 < (λI − W )−1
≤

(λ − ΛW )−1I . Combining this with (3.6), we have

λ ≤
1

λ − ΛW

yTT TTy
yTy

−
yTWy
yTy

≤
∥T∥

2
2

λ − ΛW
+ λW .

Solving this quadratic inequality for λ, we derive

ΛW + λW −

√
(ΛW − λW )2 + 4∥T∥

2
2

2
≤ λ ≤

ΛW + λW +

√
(ΛW − λW )2 + 4∥T∥

2
2

2
. (3.7)

It is direct to check that

ΛW + λW −

√
(ΛW − λW )2 + 4∥T∥

2
2

2
≤ ΛW ≤

ΛW + λW +

√
(ΛW − λW )2 + 4∥T∥

2
2

2
,

which with λ > ΛW and (3.7) gives the desired upper bound in Lemma 3.3.
Next we consider the case that λ < −λW . Clearly λI − W ≤ (λ + λW )I < 0, which implies that 0 > (λI − W )−1

≥

(λ + λW )−1I . Using this, we see from (3.6) that

λ ≥
1

λ + λW

yTT TTy
yTy

−
yTWy
yTy

≥
∥T∥

2
2

λ + λW
− ΛW ,

solving this quadratic inequality, we get

−λW − ΛW −

√
(λW − ΛW )2 + 4∥T∥

2
2

2
≤ λ ≤

−λW − ΛW +

√
(λW − ΛW )2 + 4∥T∥

2
2

2
.
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This, along with the fact that

−λW − ΛW −

√
(λW − ΛW )2 + 4∥T∥

2
2

2
≤ −λW ≤

−λW − ΛW +

√
(λW − ΛW )2 + 4∥T∥

2
2

2
yields

−λW − ΛW −

√
(λW − ΛW )2 + 4∥T∥

2
2

2
≤ λ ≤ −λW .

Summing up all the estimates above, we can conclude Lemma 3.2. □

By means of the spectral estimates in Lemma 3.2, we can now derive the spectral estimate of the matrix A−1MA−T .
Noticing that

A−1MA−T
=

(
L̂−1 0
0 L̂−1

)(
A B
B −A

)(
L̂−T 0
0 L̂−T

)
=

(
L̂−1AL̂−T L̂−1BL̂−T

L̂−1BL̂−T
−L̂−1AL̂−T

)
=

(
Ã B̃
B̃ −Ã

)
, (3.8)

then a direct application of Lemma 3.2 leads to the following results.

Lemma 3.3. Let M and A be defined as in (1.2) and (3.2) respectively, then the eigenvalues of the matrix A−1MA−T lie in the
range [−ϱ, ϱ], where ϱ is given by

ϱ =
ΛÃ + λÃ +

√
(ΛÃ − λÃ)2 + 4∥B̃∥

2
2

2
.

Remark 3.1. If we simply choose ΛÃ = λÃ for the bounds of the matrix Ã, then the spectral estimate of A−1MA−T in
Lemma 3.3 reduces to sp(A−1MA−T ) ⊂ [−λÃ − ∥B̃∥2, λÃ + ∥B̃∥2].

3.2. Spectral bounds of the inverse (A−1MA−T )−1

In this section we study how the eigenvalues of the preconditioned system P−1MP−T approach zero. To do so, we
estimate the spectral bounds of (A−1MA−T )−1. It is easy to verify that(

Ã B̃
B̃ −Ã

)
=

(
I 0

B̃Ã−1 I

)(
Ã 0
0 −S̃

)(
I Ã−1B̃
0 I

)
.

This shows that

(A−1MA−T )−1
=

(
I −Ã−1B̃
0 I

)(
Ã−1 0
0 −S̃−1

)(
I 0

−B̃Ã−1 I

)
=

(
Ã−1

− Ã−1B̃S̃−1B̃Ã−1 Ã−1B̃S̃−1

S̃−1B̃Ã−1
−S̃−1

)
. (3.9)

By Sherman–Morrison–Woodbury formula; see, e.g., [40], we have

Ã−1
− Ã−1B̃S̃−1B̃Ã−1

= Ã−1
− Ã−1B̃(Ã + B̃Ã−1B̃)−1B̃Ã−1

= Ã−1
− Ã−1B̃(I + Ã−1B̃Ã−1B̃)−1Ã−1B̃Ã−1

= (Ã + B̃Ã−1B̃)−1
= S̃−1.

This together with (3.9) yields that

(A−1MA−T )−1
=

(
S̃−1 Ã−1B̃S̃−1

S̃−1B̃Ã−1
−S̃−1

)
, (3.10)

which has the same form asR in (3.4). Therefore, we can apply Lemma 3.2 for the upper and lower bounds of the eigenvalues
of (A−1MA−T )−1, as stated in the following lemma.

Lemma 3.4. Under the same setting and conditions as in Lemma 3.3, any eigenvalue µ of the matrix (A−1MA−T )−1 meets the
following estimates:

−
ΛS̃−1 + λS̃−1 +

√
(ΛS̃−1 − λS̃−1 )2 + 4ν
2

≤ µ ≤
ΛS̃−1 + λS̃−1 +

√
(ΛS̃−1 − λS̃−1 )2 + 4ν
2

where ν is the maximum eigenvalue of the matrix S̃−1(B̃Ã−2B̃)S̃−1.
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3.3. Spectral estimate of the preconditioned system P−1MP−T

We are now in a position to derive the bound of the eigenvalues of the preconditioned system P−1MP−T by making use
of the spectral estimates we have obtained in the previous two Sections 3.1 and 3.2.

Theorem 3.1. Let P be defined as in (3.1) and ν the maximum eigenvalue of the matrix S̃−1(B̃Ã−2B̃)S̃−1, then the eigenvalues of
the matrix P−1MP−T satisfy

sp(P−1MP−T ) ⊂ [−a, −b ] ∪ [ b, a ],

where a and b are given by

a =
ΛÃ + λÃ +

√
(ΛÃ − λÃ)2 + 4∥B̃∥

2
2

2 + η2 −
√
4η2 + η4

,

b =
4

(ΛS̃−1 + λS̃−1 +
√
(ΛS̃−1 − λS̃−1 )2 + 4ν)(2 + η2 +

√
4η2 + η4)

.

Proof. It follows from Lemma 3.1 that

sp(P−1AATP−T ) ⊂

[
2

2 + η2 +
√
4η2 + η4

,
2

2 + η2 −
√
4η2 + η4

]
.

Then for any eigenvalue λ of the preconditioned system P−1MP−T , we can derive by the spectral theorem and
Lemmas 3.1–3.3 that

λ ≤ max
z ̸=0

zTP−1MP−T z
zT z

= max
z ̸=0

zTP−1AA−1MA−TATP−T z
zTP−1AATP−T z

zTP−1AATP−T z
zT z

≤ max
z ̸=0

zTA−1MA−T z
zT z

max
z ̸=0

zTP−1AATP−T z
zT z

≤
ΛÃ + λÃ +

√
(ΛÃ − λÃ)2 + 4∥B̃∥

2
2

2 + η2 −
√
4η2 + η4

,

and

λ ≥ min
z ̸=0

zTP−1MP−T z
zT z

≥ min
z ̸=0

zTA−1MA−T z
zT z

max
z ̸=0

zTP−1AATP−T z
zT z

≥ −
ΛÃ + λÃ +

√
(ΛÃ − λÃ)2 + 4∥B̃∥

2
2

2 + η2 −
√
4η2 + η4

.

On the other hand, it follows from Lemmas 3.1 and 3.4 that

1
λ

≤ max
z ̸=0

zT (P−1MP−T )−1z
zT z

= max
z ̸=0

zTPTM−1Pz
zT z

= max
z ̸=0

zTPTA−T (A−1MA−T )−1A−1Pz
zTPTA−TA−1Pz

zTPTA−TA−1Pz
zT z

≤ max
z ̸=0

zT (A−1MA−T )−1z
zT z

max
z ̸=0

zTPTA−TA−1Pz
zT z

≤
(ΛS̃−1 + λS̃−1 +

√
(ΛS̃−1 − λS̃−1 )2 + 4ν)(2 + η2

+
√
4η2 + η4)

4
,

and

1
λ

≥ min
z ̸=0

zT (P−1MP−T )−1z
zT z

≥ min
z ̸=0

zT (A−1MA−T )−1z
zT z

max
z ̸=0

zTGz
zT z

≥ −
(ΛS̃−1 + λS̃−1 +

√
(ΛS̃−1 − λS̃−1 )2 + 4ν)(2 + η2

+
√
4η2 + η4)

4
.

Then for λ > 0, we deduce

λ ≥
4

(ΛS̃−1 + λS̃−1 +
√
(ΛS̃−1 − λS̃−1 )2 + 4ν)(2 + η2 +

√
4η2 + η4)

,
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while for λ < 0, we have

λ ≤ −
4

(ΛS̃−1 + λS̃−1 +
√
(ΛS̃−1 − λS̃−1 )2 + 4ν)(2 + η2 +

√
4η2 + η4)

.

This completes the proof of Theorem 3.1. □

Remark 3.2. The block triangular preconditioner P in (3.1) reduces to the block diagonal preconditioner for η = 0. In this
case, a and b in Theorem 3.1 can be simplified to

a =
ΛÃ + λÃ +

√
(ΛÃ − λÃ)2 + 4∥B̃∥

2
2

2
, b =

2

ΛS̃−1 + λS̃−1 +
√
(ΛS̃−1 − λS̃−1 )2 + 4ν

.

Furthermore, if we choose ΛÃ = λÃ and ΛS̃−1 = λS̃−1 , then a = ΛÃ + ∥B̃∥2, b = 1/(ΛS̃−1 +
√

ν), and the estimate of
Theorem 3.1 reduces to

sp(P−1MP−T ) ⊂

[
−ΛÃ − ∥B̃∥2, −

1
ΛS̃−1 +

√
ν

]
∪

[ 1
ΛS̃−1 +

√
ν
, ΛÃ + ∥B̃∥2

]
.

4. Block triangular preconditioner for one-sided preconditioning

Although the generalized saddle-point system (1.2) of our interest is symmetric, onemay also like to apply some iteration
methods for nonsymmetric systems in applications, see, e.g., [17–23]. To this end, we shall study the following block
triangular preconditioner

P̃ =

(
Â 0
B Â

)
(4.1)

to precondition the system (1.2) only from one side and analyze the spectrum of the preconditioned system. Then we will
solve the following system instead of the original one (1.2):

P̃−1Mz = P̃−1b or MP̃−1ẑ = b

with ẑ = P̃z. Noting that the preconditioned systems P̃−1M andMP̃−1 have the same eigenvalues, so we shall only analyze
the spectral property of P̃−1M. As the preconditioned system P̃−1M is nonsymmetric, we need to discuss its real and
complex eigenvalues respectively. For both real and complex cases, we shall study the eigen-system of a matrix W that
is similar to P̃−1M. For the real eigenvalues, we will do the same as we did in the proof of Lemma 3.3 by considering a
one-variable quadratic inequality arising from the eigen-system. But the deriving process of the inequality is much more
complicated than before. And then we achieve the estimates by solving the resulting inequality. The study of the complex
eigenvalues ismuchmore tricky anddelicate. By separating the real and imaginary parts of the quadratic formof the resultant
equation, we achieve the desired estimates by using the important relation between the real and imaginary parts. In the
remainder of this section, we follow this general guideline to investigate the spectral properties of P̃−1M. First we can
easily verify that

P̃−1M =

(
Â−1 0

−Â−1BÂ−1 Â−1

)(
A B
B −A

)
=

(
Â−1A Â−1B

−Â−1BÂ−1A + Â−1B −Â−1BÂ−1B − Â−1A

)
,

which is similar to

W =:

(
Â−

1
2 AÂ−

1
2 Â−

1
2 BÂ−

1
2

−Â−
1
2 BÂ−1AÂ−

1
2 + Â−

1
2 BÂ−

1
2 −Â−

1
2 BÂ−1BÂ−

1
2 − Â−

1
2 AÂ−

1
2

)

=

(
Ã B̃

−B̃Ã + B̃ −B̃2
− Ã

)
. (4.2)

Thereby, the preconditionedmatrix P̃−1M andW have the same eigenvalues. So it suffices for us to analyze the eigenvalues
of the matrix W . Let λ be an eigenvalue of W and (xT , yT )T be the corresponding eigenvector. Then we have(

Ã B̃
−B̃Ã + B̃ −B̃2

− Ã

)(
x
y

)
= λ

(
x
y

)
,

equivalently,{
Ãx + B̃y = λx,
B̃Ãx − B̃x + B̃2y + Ãy = −λy.

(4.3)
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Substituting the first equation of (4.3) into the second one leads to{
Ãx + B̃y = λx,
(λ − 1)B̃x + Ãy = −λy.

(4.4)

Using this eigen-system, we can now derive the spectral estimates of the matrix W in (4.2), first for real eigenvalues in
Theorem 4.1, then for complex eigenvalues in Theorem 4.2. For this purpose, we introduce two notations:

ς = −
λÃ + ΛÃ + ∥B̃∥

2
2 +

√
(λÃ + ΛÃ + ∥B̃∥

2
2)2 − 4(λÃΛÃ − ∥B̃∥

2
2)

2
,

Φ =
λÃ + ΛÃ − ∥B̃∥

2
2 +

√
(λÃ + ΛÃ − ∥B̃∥

2
2)2 − 4(λÃΛÃ − ∥B̃∥

2
2)

2
.

Theorem 4.1. Let W be the matrix defined as in (4.2), then all the real eigenvalues λ of W meet the following estimates:
1. if ΛÃ ≥ 1, then λ ∈ [ ς,max{λÃ, ΛÃ} ];
2. if ΛÃ < 1 and λÃ < 1, then λ ∈ [ς, Φ] ∪ {1}.

Proof. Let (xT , yT )T be the corresponding eigenvector ofW . If y = 0, then we get from (4.4) that Ãx = λx and (λ − 1)B̃x = 0,
which imply that λ ∈ [−λÃ, ΛÃ] or λ = 1. This also suggests us to consider λ ̸∈ [−λÃ, ΛÃ] if y ̸= 0. Clearly λI − Ã is
nonsingular in this case, and it follows from the first equality of (4.4) that x = (λI − Ã)−1B̃y. This together with (4.4) yields
that

(λ − 1)B̃(λI − Ã)−1B̃y + Ãy = −λy,

by multiplying the above equality from the left by yT/yTy, we obtain

− λ = (λ − 1)
yT B̃(λI − Ã)−1B̃y

yTy
+

yT Ãy
yTy

. (4.5)

Next we estimate the eigenvalue λ in two different cases.
We first consider the case that λ > ΛÃ. Clearly λI − Ã ≥ (λ−ΛÃ)I > 0, which implies that 0 < (λI − Ã)−1

≤ (λ−ΛÃ)
−1I .

If ΛÃ ≥ 1, then λ > 1, yielding that

− λ ≥
yT Ãy
yTy

≥ −λÃ,

i.e., λ ≤ λÃ. Combining this with the result λ ∈ [−λÃ, ΛÃ] for y = 0, we see λ ≤ max{λÃ, ΛÃ}.
If ΛÃ < 1 and λÃ < 1, we can assert that λ < 1. Otherwise, in the same manner as we did earlier, we can deduce that

1 ≤ λ ≤ λÃ, which contradicts the fact that λÃ < 1. Then combining with (4.5), we have

− λ ≥
λ − 1

λ − ΛÃ

yT B̃2y
yTy

+
yT Ãy
yTy

≥
λ − 1

λ − ΛÃ
∥B̃∥

2
2 − λÃ.

By simple calculations, we derive

λ2
− (ΛÃ + λÃ − ∥B̃∥

2
2)λ − ∥B̃∥

2
2 + λÃΛÃ ≤ 0.

This, along with the simple estimate that

(ΛÃ + λÃ − ∥B̃∥
2
2)

2
− 4(λÃΛÃ − ∥B̃∥

2
2)

= (ΛÃ − λÃ)
2
+ ∥B̃∥

4
2 − 2∥B̃∥

2
2ΛÃ − 2∥B̃∥

2
2λÃ + 4∥B̃∥

2
2

> (ΛÃ − λÃ)
2
+ ∥B̃∥

4
2 − 2∥B̃∥

2
2ΛÃ − 2∥B̃∥

2
2λÃ + 4∥B̃∥

2
2ΛÃ

= (ΛÃ − λÃ)
2
+ ∥B̃∥

4
2 + 2∥B̃∥

2
2(ΛÃ − λÃ)

= (ΛÃ − λÃ + ∥B̃∥
2
2)

2
≥ 0,

leads to

ΛÃ + λÃ − ∥B̃∥
2
2 −

√
(ΛÃ + λÃ − ∥B̃∥

2
2)2 − 4(λÃΛÃ − ∥B̃∥

2
2)

2
≤ λ ≤ Φ. (4.6)

Furthermore, we can directly check the following relations

ΛÃ + λÃ − ∥B̃∥
2
2 −

√
(ΛÃ + λÃ − ∥B̃∥

2
2)2 − 4(λÃΛÃ − ∥B̃∥

2
2)

2
< ΛÃ < Φ < 1

hold for ΛÃ < 1 and λÃ < 1. This, with ΛÃ < λ < 1 and (4.6), gives ΛÃ < λ ≤ Φ.
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Nextwe consider the case thatλ < −λÃ. Clearly Ã−λI ≥ (−λÃ−λ)I > 0,which yields that 0 < (Ã−λI)−1
≤ (−λÃ−λ)−1I .

Using this, we directly see from (4.5) that

− λ = (1 − λ)
yT B̃(Ã − λI)−1B̃y

yTy
+

yT Ãy
yTy

≤
1 − λ

−λÃ − λ

yT B̃2y
yTy

+
yT Ãy
yTy

≤
1 − λ

−λÃ − λ
∥B̃∥

2
2 + ΛÃ,

by a further simplification, we obtain

λ2
+ (λÃ + ΛÃ + ∥B̃∥

2
2)λ + λÃΛÃ − ∥B̃∥

2
2 ≤ 0.

Combining this with the following fact that

(λÃ + ΛÃ + ∥B̃∥
2
2)

2
− 4(λÃΛÃ − ∥B̃∥

2
2) = (λÃ − ΛÃ)

2
+ ∥B̃∥

4
2 + 2∥B̃∥

2
2(λÃ + ΛÃ + 2) ≥ 0,

we deduce

ς ≤ λ ≤
−(λÃ + ΛÃ + ∥B̃∥

2
2) +

√
(λÃ + ΛÃ + ∥B̃∥

2
2)2 − 4(λÃΛÃ − ∥B̃∥

2
2)

2
.

This, along with the fact that

ς ≤ −λÃ ≤
−(λÃ + ΛÃ + ∥B̃∥

2
2) +

√
(λÃ + ΛÃ + ∥B̃∥

2
2)2 − 4(λÃΛÃ − ∥B̃∥

2
2)

2
,

leads to the estimate that ς ≤ λ < −λÃ. This completes the proof of Theorem 4.1. □

The next theorem gives some bounds on the complex eigenvalues of matrix W in (4.2).

Theorem 4.2. Let W be defined as in (4.2). If W has a complex eigenvalue λ with Im(λ) ̸= 0, then ΛÃ ≥ 1. Moreover, if λÃ ≥ 1,
λ can be bounded as follows:

|Im(λ)| ≤
√

ΛÃ − 1∥B̃∥2,

1 −
√
(ΛÃ − 1)(λÃ − 1) ≤ Re(λ) ≤ 1 +

√
(ΛÃ − 1)(λÃ − 1).

Proof. Let λ = a + bi, with a ∈ R, 0 ̸= b ∈ R and i =
√

−1, be a complex eigenvalue of W , and z = (xT , yT )T be an
eigenvector corresponding to λ. It is easy to see that λI − Ã is nonsingular. Then similarly to what we did in the proof of
Theorem 4.1, we have

− λy∗y = (λ − 1)y∗B̃(λI − Ã)−1B̃y + y∗Ãy. (4.7)

Let Ã = UDU∗ be the eigen-decomposition of Ã, where U ∈ Cn×n is an unitary matrix and D = diag(ρ1, ρ2, . . . , ρn) with
ρ1 = −λÃ and ρn = ΛÃ. Using this eigen-decomposition, we derive from (4.7) that

− λy∗y = (λ − 1)y∗B̃U(λI − D)−1U∗B̃y + y∗Ãy. (4.8)

It is easy to see for any 1 ≤ j ≤ n that

(λ − ρj)−1
=

1
a + bi − ρj

=
a − ρj − bi

(a − ρj)2 + b2
,

which implies

(λI − D)−1
= diag

( a − ρ1 − bi
(a − ρ1)2 + b2

, . . . ,
a − ρn − bi

(a − ρn)2 + b2

)
.

Then it follows from this equality and (4.8) that

− ay∗y = (a − 1)Hr + b2Hi + y∗Ãy, (4.9)

− y∗y = Hr − (a − 1)Hi, (4.10)

where Hr and Hi are given by

Hr = y∗B̃Udiag
( a − ρ1

(a − ρ1)2 + b2
, . . . ,

a − ρn

(a − ρn)2 + b2

)
U∗B̃y, (4.11)

Hi = y∗B̃Udiag
( 1
(a − ρ1)2 + b2

, . . . ,
1

(a − ρn)2 + b2

)
U∗B̃y. (4.12)
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We now claim that y ̸= 0. If this is not true, we get from (4.4) that Ãx = λx and B̃x = 0, which contradicts the fact that b ̸= 0.
It follows from (4.11) and (4.12) that

(a − ΛÃ)Hi ≤ Hr ≤ (a + λÃ)Hi. (4.13)

This together with (4.10) gives

(a − 1)Hi − y∗y ≥ (a − ΛÃ)Hi.

Hence we have (ΛÃ − 1)Hi ≥ y∗y, which shows ΛÃ ≥ 1, and

1 ≤ (ΛÃ − 1)
Hi

y∗y
≤ (ΛÃ − 1)

∥B̃∥
2
2

b2
,

or

|b| ≤
√

ΛÃ − 1∥B̃∥2.

On the other hand, combining (4.9) and (4.10), we derive

Hr =
(a − a2 − b2)y∗y − (a − 1)y∗Ãy

(a − 1)2 + b2
, Hi =

−y∗y − y∗Ãy
(a − 1)2 + b2

.

Then we obtain using (4.13) that

(a − ΛÃ)
−y∗y − y∗Ãy
(a − 1)2 + b2

≤
(a − a2 − b2)y∗y − (a − 1)y∗Ãy

(a − 1)2 + b2
,

which implies that

(a − ΛÃ)(y
∗y + y∗Ãy) ≥ (a2 + b2 − a)y∗y + (a − 1)y∗Ãy.

This together with the fact that sp(Ã) ⊂ [−λÃ, ΛÃ] yields

0 ≥ a2 + b2 − 2a + ΛÃ + (ΛÃ − 1)
y∗Ãy
y∗y

≥ a2 − 2a + ΛÃ − λÃ(ΛÃ − 1),

hence it is easy to see that

1 −
√
(ΛÃ − 1)(λÃ − 1) ≤ a ≤ 1 +

√
(ΛÃ − 1)(λÃ − 1),

and completes the proof of Theorem 4.2. □

Remark 4.1. We see from Theorem 4.2 that all the eigenvalues of W are real if ΛÃ < 1. On the other hand, we remark that
the case with λÃ < 1was not addressed in Theorem 4.2. But this can be easily classified as the case with λÃ ≥ 1, by assuming
sp(Ã) ⊂ [−ΛÃ, ΛÃ] instead of sp(Ã) ⊂ [−λÃ, ΛÃ].

As we recall at the beginning of Section 4, the preconditioned matrix P̃−1M is similar to W , hence both have the same
eigenvalues. Then the following results are direct consequences of Theorems 4.1 and 4.2.

Theorem 4.3. Let P̃ be defined as in (4.1), then the following estimates hold for the eigenvalues λ of P̃−1M:
(1) if |Im(λ)| = 0, then

λ ∈

{
[ ς,max{λÃ, ΛÃ} ], if ΛÃ ≥ 1,
[ς, Φ] ∪ {1}, if ΛÃ < 1 and λÃ < 1.

(2) if |Im(λ)| ̸= 0, then ΛÃ ≥ 1. Moreover, if λÃ ≥ 1, then

1 −
√
(ΛÃ − 1)(λÃ − 1) ≤ Re(λ) ≤ 1 +

√
(ΛÃ − 1)(λÃ − 1), |Im(λ)| ≤

√
ΛÃ − 1∥B̃∥2.

Remark 4.2. If ΛÃ and λÃ are close to 1, then we can easily see from Theorem 4.3 that the real parts of all the complex
eigenvalues with |Im(λ)| ̸= 0 of the preconditioned system P̃−1M are positive and clustered around 1 while the imaginary
parts are small.

5. Spectral estimates of the preconditioned system by diagonal preconditioner Ps

The diagonal preconditioner Ps in (1.3) was proposed in [1] for solving the generalized saddle-point system (1.2) when
it arises from the edge element discretization of the PML system of an electromagnetic wave scattering problem. The

preconditioned system P
−

1
2

s MP
−

1
2

s was investigated in a general framework in [1] under some abstract assumptions,
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resulting in only some quantitative spectral estimates. And it appears to be still rather difficult to verify all the abstract
assumptions in [1]. In this section, we shall derive some more explicit bounds for the positive and negative eigenvalues of

the preconditioned system P
−

1
2

s MP
−

1
2

s , following a purely algebraic argument. For this purpose, we introduce the following
few helpful matrices

Ã = Â−
1
2 AÂ−

1
2 , H̃ = Â−

1
2 BŜ−

1
2 , Ãs = Ŝ−

1
2 AŜ−

1
2 , S̃ = Ŝ−

1
2 SŜ−

1
2 .

We are now ready to estimate the spectrum of the preconditioned matrix P
−

1
2

s MP
−

1
2

s . For this purpose, we first write

P
−

1
2

s MP
−

1
2

s =

(
Â−

1
2 0

0 Ŝ−
1
2

)(
A B
B −A

)(
Â−

1
2 0

0 Ŝ−
1
2

)
=

(
Ã H̃
H̃T

−Ãs

)

=

(
I 0

H̃T Ã−1 I

)(Ã 0

0 −Ŝ−
1
2 SŜ−

1
2

)(
I Ã−1H̃
0 I

)
:= LDLT . (5.1)

Next, we shall make use of this factorization to estimate respectively the lower and upper bounds of all positive and negative

eigenvalues of P
−

1
2

s MP
−

1
2

s . First, for any positive eigenvalue λ we can directly see that

λ ≤ λmax

(
P

−
1
2

s MP
−

1
2

s

)
= max

z ̸=0

zTLDLT z
zT z

= max
z ̸=0

zTLDLT z
zTLLT z

zTLLT z
zT z

≤ max
z ̸=0

zTDz
zT z

max
z ̸=0

zTLLT z
zT z

, (5.2)

and

1
λ

≤ λmax

((
P

−
1
2

s MP
−

1
2

s

)−1
)

= max
z ̸=0

zTL−TD−1L−1z
zT z

= max
z ̸=0

zTL−TD−1L−1z
zTL−TL−1z

zT (LLT )−1z
zT z

≤ max
z ̸=0

zTD−1z
zT z

max
z ̸=0

zT (LLT )−1z
zT z

. (5.3)

Then it follows from the definition of L that

LLT
=

(
I 0

H̃T Ã−1 I

)(
I Ã−1H̃
0 I

)
=

(
I Ã−1H̃

H̃T Ã−1 I + H̃T Ã−2H̃

)
.

Consider the singular value decomposition

Ã−1H̃ = VΣUT ,

where Σ = diag{σ1, σ2, . . . , σn} with σi ≥ 0 for all i = 1, 2, . . . , n, U and V are two orthonormal n × n matrices. Then we
can easily see

LLT
=

(
I VΣUT

UΣV T I + UΣ2UT

)
,

which is similar to the following simple matrix

D =

(
I Σ

Σ I + Σ2

)
.

Then it is not difficult to deduce that

sp(LLT ) ⊂

[2 + ℓ1 −

√
4ℓ1 + ℓ21

2
,
2 + ℓ1 +

√
4ℓ1 + ℓ21

2

]
, (5.4)

where ℓ1 is the maximum eigenvalues of H̃T Ã−2H̃ . Combining this with (5.2) and (5.3) yields

min{ΓÃ, γS̃}(2 + ℓ1 −

√
4ℓ1 + ℓ21)

2
≤ λ ≤

max{λS̃, ΛÃ}(2 + ℓ1 +

√
4ℓ1 + ℓ21)

2
. (5.5)

Now for any negative eigenvalue λ of P
−

1
2

s MP
−

1
2

s , it follows from (5.4) that

λ ≥ λmin

(
P

−
1
2

s MP
−

1
2

s

)
≥ min

z ̸=0

zTDz
zT z

max
z ̸=0

zTLLT z
zT z

= −

max{λÃ, ΛS̃}(2 + ℓ1 +

√
4ℓ1 + ℓ21)

2
,
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and

1
λ

≥ λmin

((
P

−
1
2

s MP
−

1
2

s

)−1
)

≥ min
z ̸=0

zTD−1z
zT z

max
z ̸=0

zT (LLT )−1z
zT z

=
−2

min{ΓS̃, γÃ}(2 + ℓ1 −

√
4ℓ1 + ℓ21)

.

This shows that

−

max{λÃ, ΛS̃}(2 + ℓ1 +

√
4ℓ1 + ℓ21)

2
≤ λ ≤ −

min{ΓS̃, γÃ}(2 + ℓ1 −

√
4ℓ1 + ℓ21)

2
. (5.6)

Combining (5.5) and (5.6), we can now conclude the following results.

Theorem 5.1. Let M andPs be defined as in (1.2) and (1.3), ℓ1 be the maximum eigenvalues of H̃T Ã−2H̃, then all the eigenvalues

of the preconditioned matrix P
−

1
2

s MP
−

1
2

s lie in the range I−
∪ I+, with

I+
=

[min{ΓÃ, γS̃}(2 + ℓ1 −

√
4ℓ1 + ℓ21)

2
,
max{λS̃, ΛÃ}(2 + ℓ1 +

√
4ℓ1 + ℓ21)

2

]
⊂ R+,

I−
=

[
−

max{λÃ, ΛS̃}(2 + ℓ1 +

√
4ℓ1 + ℓ21)

2
, −

min{ΓS̃, γÃ}(2 + ℓ1 −

√
4ℓ1 + ℓ21)

2

]
⊂ R−.

As can be seen from the above theorem that the spectral bounds of P
−

1
2

s MP
−

1
2

s can be made independent of the spectral
bounds of Ãs and H̃T H̃ . On the other hand, we can also make use of the spectral bounds of Ãs and H̃T H̃ , then we can derive

an alternative estimate of the spectrum of the preconditioned system P
−

1
2

s MP
−

1
2

s , as it is done in the following lemma.

Lemma 5.1. Let M and Ps be defined as in (1.2) and (1.3), ℓ2 be the maximum eigenvalue of H̃T H̃, then all the eigenvalues λ of

the matrix P
−

1
2

s MP
−

1
2

s lie in the following range

−λÃ − ΛÃs −

√
(λÃ − ΛÃs )

2 + 4ℓ2

2
≤ λ ≤

λÃs + ΛÃ +

√
(λÃs − ΛÃ)2 + 4ℓ2

2
.

Proof. Let λ and (xT , yT )T be the eigenvalue and eigenvector of the preconditioned matrix P
−

1
2

s MP
−

1
2

s , then using

P
−

1
2

s MP
−

1
2

s =

(
Â−

1
2 0

0 Ŝ−
1
2

)(
A B
B −A

)(
Â−

1
2 0

0 Ŝ−
1
2

)

=

(
Â−

1
2 AÂ−

1
2 Â−

1
2 BŜ−

1
2

Ŝ−
1
2 BÂ−

1
2 −Ŝ−

1
2 AŜ−

1
2

)
=

(
Ã H̃
H̃T

−Ãs

)
, (5.7)

it is easy to see

Ãx + H̃y = λx, H̃T x − Ãsy = λy. (5.8)

If y = 0, we see readily H̃T x = 0 and Ãx = λx, so we know λ ∈ [−λÃ, ΛÃ]. This suggests us to consider only the case
that λ ̸∈ [−λÃ, ΛÃ] if y ̸= 0. Clearly λI − Ã is nonsingular in this case, and it follows from the first equality of (5.8) that
x = (λI − Ã)−1H̃y. Substituting it into the second equality in (5.8) yields

H̃T (λI − Ã)−1H̃y − Ãsy = λy,

then multiplying the above equality from the left by yT/yTy, we obtain

λ =
yT H̃T (λI − Ã)−1H̃y

yTy
−

yT Ãsy
yTy

. (5.9)

Next we analyze in two cases. We first consider the case that λ > ΛÃ. Clearly λI − Ã ≥ (λ − ΛÃ)I > 0, so it holds that
0 < (λI − Ã)−1

≤ (λ − ΛÃ)
−1I . Combining this with (5.9) gives

λ ≤
1

λ − ΛÃ

yT H̃T H̃y
yTy

−
yT Ãsy
yTy

≤
ℓ2

λ − ΛÃ
+ λÃs ,
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solving the above quadratic inequality for λ, we obtain

λÃs + ΛÃ −

√
(λÃs − ΛÃ)2 + 4ℓ2

2
≤ λ ≤

λÃs + ΛÃ +

√
(λÃs − ΛÃ)2 + 4ℓ2

2
.

On the other hand, we can directly check that

λÃs + ΛÃ −

√
(λÃs − ΛÃ)2 + 4ℓ2

2
< ΛÃ <

λÃs + ΛÃ +

√
(λÃs − ΛÃ)2 + 4ℓ2

2
this with λ > ΛÃ gives

ΛÃ < λ ≤

λÃs + ΛÃ +

√
(λÃs − ΛÃ)2 + 4ℓ2

2
. (5.10)

Next we consider the case that λ < −λÃ. Clearly λI − Ã ≤ (λ + λÃ)I < 0, so we have 0 > (λI − Ã)−1
≥ (λ + λÃ)

−1I . Then
it follows from (5.9) that

λ ≥
1

λ + λÃ

yT H̃T H̃y
yTy

−
yT Ãsy
yTy

≥
ℓ2

λ + λÃ
− ΛÃs .

By solving this inequality, we get the bounds that

−λÃ − ΛÃs −

√
(λÃ − ΛÃs )

2 + 4ℓ2

2
≤ λ ≤

−λÃ − ΛÃs +

√
(λÃ − ΛÃs )

2 + 4ℓ2

2
.

This, along with the fact that

−λÃ − ΛÃs −

√
(λÃ − ΛÃs )

2 + 4ℓ2

2
< −λÃ <

−λÃ − ΛÃs +

√
(λÃ − ΛÃs )

2 + 4ℓ2

2
yields

−λÃ − ΛÃs −

√
(λÃ − ΛÃs )

2 + 4ℓ2

2
≤ λ < −λÃ. (5.11)

Combining this with (5.10)–(5.11) and the case with y = 0, we complete the proof of Lemma 5.1. □

To proceed our estimates, we introduce two more notations:

U = min
{max{λS̃, ΛÃ}(2 + ℓ1 +

√
4ℓ1 + ℓ21)

2
,
λÃs + ΛÃ +

√
(λÃs − ΛÃ)2 + 4ℓ2

2

}
,

V = min
{max{λÃ, ΛS̃}(2 + ℓ1 +

√
4ℓ1 + ℓ21)

2
,
λÃ + ΛÃs +

√
(λÃ − ΛÃs )

2 + 4ℓ2

2

}
.

Then we come to the following conclusion directly from Theorem 5.1 and Lemma 5.1.

Theorem 5.2. Let M and Ps be defined as in (1.2) and (1.3), let ℓ1 and ℓ2 be the maximum eigenvalue of H̃T Ã−2H̃ and H̃T H̃,

respectively. Then all the eigenvalues λ of the preconditioned matrix P
−

1
2

s MP
−

1
2

s lie in the range I−
∪ I+

⊂ R, with

I+
=

[min{ΓÃ, γS̃}(2 + ℓ1 −

√
4ℓ1 + ℓ21)

2
, U

]
⊂ R+,

I−
=

[
−V, −

min{ΓS̃, γÃ}(2 + ℓ1 −

√
4ℓ1 + ℓ21)

2

]
⊂ R−.

Remark 5.1. We can easily see that ℓ1 ≈ ℓ2 if the preconditioner Â approximates A well, by noting that H̃T H̃ =

Ŝ−
1
2 (BÂ−1B)Ŝ−

1
2 and H̃T Ã−2H̃ = Ŝ−

1
2 (BA−1ÂA−1B)Ŝ−

1
2 .



2870 N. Huang et al. / Computers and Mathematics with Applications 74 (2017) 2856–2873

Table 1
Numerical results of the MINRES method.

DOF No preconditioning Preconditioner Ps

CPU ERR Iter CPU ERR Iter

1 360 0.2778 9.9813e−06 2859 0.1460 8.4774e−06 109
5600 4.1394 9.9997e−06 15364 0.7044 8.5037e−06 161

22720 74.3719 9.9998e−06 58235 5.5655 8.5590e−06 244

Table 2
Numerical results of the MINRES method.

DOF Preconditioner P0 Preconditioner P1 Preconditioner P2

CPU ERR Iter CPU ERR Iter CPU ERR Iter

1 360 0.0215 9.9676e−06 135 0.0731 9.4188e−06 136 0.0752 9.2952e−06 137
5600 0.1103 9.9713e−06 198 0.3997 9.6107e−06 198 0.4035 9.2047e−06 201

22720 1.3845 9.9699e−06 547 4.7839 9.9990e−06 547 4.9255 9.9400e−06 563

6. Numerical experiments

In this section, we present some numerical results for the preconditioners we introduced in Sections 3 and 4. All
experimentswere run on a PCwith Intel(R) Core(TM) i7-4770 CPU@3.40 GHz 16 GB, and all programmings are implemented
in MATLAB R2014a. In our experiments, we take the following data for the scattering system (1.1) as it is done in [1,2]:

g = ∇ × [H (1)
1 (r)eiθ ]|Γ0

, Ω0 = (−1, 1)2, µ = 1, ε = 1, k = 1,

whereH (1)
1 (r) is theHankel function of first kind. Then the analytic solution to the system (1.1) is given byu = ∇×[H (1)

1 (r)eiθ ].
As we did in Section 2, we may derive the PML edge element system (1.2) of the scattering system (1.1).

In our all implementations, we take the initial guesses to be the zero vectors and terminate the concerned algorithms
when the relative residual ERR ≤ 10−5 or the number of iteration is greater than 4000, where ERR is given by

ERR : =
∥b − Mzk∥

∥b∥
,

where zk = ((xk)T , (yk)T )T is the kth iterative solution of the system (1.2). We shall compare the performance of several
iterative methods by reporting the number of iterations, the total CPU time, the degree of freedom, and the relative residual
error, which are respectively denoted by ‘‘Iter’’, ‘‘CPU’’, ‘‘DOF’’ and ‘‘ERR’’. As it is motivated by [1], we take two symmetric
positive definite approximations Â and Ŝ of matrix A and Schur complement S = A + BA−1B to be the stiffness matrices
induced by the following bilinear forms∫

ΩL

|α|(∇ × u)(∇ × v)dx + k2
∫

ΩL

uTDvdx, ∀ u, v ∈ Vh,0(ΩL),

∫
ΩL

α̂(∇ × u)(∇ × ψ)dx + k2
∫

ΩL

uT D̂ψdx, ∀ u,ψ ∈ Vh,0(ΩL),

respectively, where ΩL is taken to be ΩL = (−4, 4)2 \ [−1, 1]2.
Let Ps be the preconditioner (1.3), and P0, P1 and P2 are the preconditioners we have proposed in (3.1), with η =

0, 0.01, 0.1 and L = ichol(Â):

P0 =

(
L 0
0 L

)
, P1 =

(
L 0

0.01L L

)
, P2 =

(
L 0

0.1L L

)
.

Then we shall solve the edge element PML system (1.2), using respectively the MINRES method (with no preconditioning),
the preconditionedMINRESmethodwith 4 preconditionersPs,P0,P1 andP2, the GMRESmethod (with no preconditioning),
and the preconditioned GMRES method with the block triangular preconditioner P̃ in (4.1).

The numerical results are listed in Tables 1–3 and Figs. 1–2 for all the aforementioned methods. In Table 1 and Fig. 1,
we can see that the MINRES method with no preconditioning is quite impractical and expensive in terms of the CPU times
and numbers of iterations, but the preconditioner Ps can essentially improve its performance. Similarly, from Table 3 and
Fig. 2 we can see that the GMRES with no preconditioning does not work well for solving the system (1.2), while the block
triangular preconditioner P̃ can greatly improve its performance.

In comparison with preconditioner Ps, we can observe from Tables 1 and 2 that preconditioners P0, P1 and P2 require
much more iterations but less CPU times.

Next,wewill check the effectiveness and reliability of the estimateswehave obtained in thiswork. To do so,we choose the
scattering system (1.1) with DOF= 1360 to examine the results in Theorems 3.1 and 4.3 respectively for the preconditioners
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Table 3
Numerical results of the GMRES method.

DOF No preconditioning Preconditioner P̃

CPU ERR Iter CPU ERR Iter

1 360 5.5962 9.9124e−06 866 0.7327 8.5160e−06 110
5600 445.5941 9.8611e−06 3488 4.9807 9.6847e−06 146

22720 – – – 44.3358 9.1143e−06 237

Fig. 1. Iterations vs. errors for MINRES with DOF = 1360.

Fig. 2. Iterations vs. errors for GMRES with DOF = 1360.

P and P̃ in (3.1) and (4.1). By using Matlab, we have computed the exact values of ∥B̃∥2, sp(Ã), sp(S̃−1) and ν defined in
Lemma 3.4 as follows:

∥B̃∥2 = 3.9837, ν = 7.9024,

and

sp(S̃−1) ⊂ [−1.6176, 2.6112], sp(Ã) ⊂ [−1.0000, −0.0030] ∪ [0.0233, 0.9848].

The estimates derived by Theorem 3.1 can be seen in Tables 4–6.
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Table 4
The bounds on the spectra of P−1MP−T with η = 0.1.

Exact value [−4.5936, −0.2177] ∪ [0.2514, 3.9785]
Estimated value [ −8.1590, −0.1227 ] ∪ [ 0.1227, 8.1590 ]

Table 5
The bounds on the spectra of P−1MP−T with η = 0.01.

Exact value [−4.1236, −0.2425] ∪ [0.2471, 4.0467]
Estimated value [ −5.2310, −0.1914 ] ∪ [ 0.1914, 5.2310 ]

Table 6
The bounds on the spectra of P−1MP−T with η = 0.

Exact value [−4.0835, −0.2449] ∪ [0.2449, 4.0835]
Estimated value [ −4.9761, −0.2012 ] ∪ [ 0.2012, 4.9761 ]

As can be seen in Tables 4–6, Theorem 3.1 provides quite reliable and accurate spectral bounds for the preconditioned
systemP−1MP−T . Andwe can also see from these tables that the preconditionerP−1 is quite effective as the preconditioned
system P−1MP−T is not very ill-conditioned.

For the spectral estimate of the preconditioned system P̃−1M, we see ΛÃ = 0.9848 < 1, hence we know from
Theorem 4.3 that all the eigenvalues of P̃−1M are real, and their predicted estimates lie in the range [−18.6529, 1.0000].
Then we have also computed the exact bounds of the eigenvalues of P̃−1M, given by [−16.8578, 1.0000]. This shows our
estimates in Theorem 4.3 are rather effective and accurate. To further check the effectiveness of our theoretical estimates
in Theorem 4.3, we replace the approximation Â of A used in the preconditioner P̃ in (4.1) by a more crude approximation,
namely 2Â. For this case, we can compute ΛÃ = 0.4924 < 1, λÃ = 0.5000 < 1 and ∥B̃∥

2
2 = 3.9675, which result in the

predicted spectral estimate by Theorem4.3 as sp(P−1M) ⊂ [−5.6219, 0.9485]. This is very close to the exact spectral bound
[−4.8296, 0.8669], so indicates again the effectiveness of our theoretical spectral estimates.

Acknowledgments

This work was partially supported by the Hi-Tech Research and Development Program of China (Grant 2014AA01A302).
The work of the first author was supported by Hu Guozan Overseas Study Grant for Graduates of Fujian Normal University.
The work of the second author was supported by National Natural Science Foundation of China (Grant Nos. 11071041 and
11201074), Fujian Natural Science Foundation (Grant No. 2013J01006). The work of the third author was substantially
supported by NSFC/RGC Joint Research Scheme 2016/17 (project N_CUHK437/16) and Hong Kong RGC General Research
Fund (projects 405513 and 14322516).

References

[1] Q.Y. Hu, C.M. Liu, S. Shu, J. Zou, An effective preconditioner for a PML system for electromagnetic scattering problem, ESAIM Math. Model. Numer.
Anal. 49 (2015) 839–854.

[2] J. Bramble, J. Pasciak, Analysis of a cartesian PML approximation to the three dimensional electromagnetic wave scattering problem, Int. J. Numer.
Anal. Model. 9 (2012) 543–561.

[3] J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994) 185–200.
[4] J. Chen, Z. Chen, An adaptive perfectly matched layer technique for 3-D time harmonic electromagnetic scattering problems, Math. Comp. 77 (2008)

673–698.
[5] Z. Chen, T. Cui, L. Zhang, An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic scattering problems, Numer.

Math. 125 (2013) 639–677.
[6] W. Chew, W. Weedon, A 3D perfectly matched medium for modified Maxwells equations with streched coordinates, Microw. Opt. Technol. Lett. 13

(1994) 599–604.
[7] W. Shin, S.H. Fan, Choice of the perfectly matched layer boundary condition for frequency-domain Maxwells equations solvers, J. Comput. Phys. 231

(2012) 3406–3431.
[8] F.L. Teixeira,W.C. Chew, Differential forms, metrics, and the reflectionless absorption of electromagnetic waves, J. Electromagn.Waves Appl. 13 (1999)

665–686.
[9] K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge University Press, 2005, p. 528.

[10] P. Li, L. Wang, A. Wood, Analysis of transient electromagnetic scattering from a three-dimensional open cavity, SIAM J. Appl. Math. 75 (2015)
1675–1699.

[11] I. Yousept, Optimal control of quasilinear H(curl)-elliptic partial differential equations in magnetostatic field problems, SIAM J. Control Optim. 51
(2013) 3624–3651.

[12] Y. Botros, J. Volakis, Preconditioned generalized minimal residual iterative scheme for perfectly matched layer terminated applications, IEEE Microw.
Guid. Wave 9 (1999) 45–47.

[13] Y. Botros, J. Volakis, Perfectly matched layer termination for finite-element meshed: Implementation and application, Microw. Opt. Technol. Lett. 23
(1999) 166–172.

[14] P. Tsuji, B. Engquist, L. Ying, A sweeping preconditioner for time-harmonic Maxwells equations with finite elements, J. Comput. Phys. 231 (2012)
3770–3783.

http://refhub.elsevier.com/S0898-1221(17)30455-8/sb1
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb1
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb1
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb2
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb2
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb2
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb3
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb4
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb4
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb4
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb5
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb5
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb5
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb6
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb6
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb6
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb7
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb7
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb7
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb8
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb8
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb8
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb9
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb10
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb10
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb10
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb11
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb11
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb11
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb12
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb12
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb12
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb13
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb13
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb13
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb14
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb14
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb14


N. Huang et al. / Computers and Mathematics with Applications 74 (2017) 2856–2873 2873

[15] Z.Z. Bai, Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems, Appl. Math. Comput. 109 (2000) 273–285.
[16] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003.
[17] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986)

856–869.
[18] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (1993) 461–469.
[19] H.A. Van Der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat.

Comput. 13 (1992) 631–644.
[20] M. Benzi, A.J. Wathen, Some preconditioning techniques for saddle point problems, in: Model Order Reduction: Theory, Research Aspects and

Applications, in: Math. Ind., vol. 13, Springer, Berlin, 2008, pp. 195–211.
[21] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, in: Numerical

Mathematics and Scientific Computation, Oxford University Press, Oxford, 2014.
[22] M.F. Murphy, G.H. Golub, A.J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21 (2000) 1969–1972.
[23] J.A. Sifuentes, M. Embree, R.B. Morgan, GMRES convergence for perturbed coefficient matrices, with application to approximate deflation precondi-

tioning, SIAM J. Matrix Anal. Appl. 34 (2013) 1066–1088.
[24] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975) 617–629.
[25] M. Benzi, G.H. Golub, A preconditioner for generalized saddle-point problems, SIAM J. Matrix Anal. Appl. 26 (2004) 20–41.
[26] L. Bergamaschi, Á. Martínez, RMCP: relaxed mixed constraint preconditioners for saddle-point linear systems arising in geomechanics, Comput.

Methods Appl. Mech. Engrg. 221/222 (2012) 54–62.
[27] M. Benzi, M.K. Ng, Q. Niu, Z. Wang, A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations, J. Comput.

Phys. 230 (2011) 6185–6202.
[28] Z.H. Cao, Positive stable block triangular preconditioners for symmetric saddle-point problems, Appl. Numer. Math. 57 (2007) 899–910.
[29] Y. Cao, J. Du, Q. Niu, Shift-splitting preconditioners for saddle-point problems, J. Comput. Appl. Math. 272 (2014) 239–250.
[30] M.Q. Jiang, Y. Cao, L.Q. Yao, On parameterized block triangular preconditioners for generalized saddle-point problems, Appl. Math. Comput. 216 (2010)

1777–1789.
[31] A. Klawonn, An optimal preconditioner for a class of saddle-point problems with a penalty term, SIAM J. Sci. Comput. 19 (1998) 540–552.
[32] J.Y. Pan, M.K. Ng, Z.Z. Bai, New preconditioners for saddle-point problems, Appl. Math. Comput. 172 (2006) 762–771.
[33] J.L. Zhang, C.Q. Gu, K. Zhang, A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle-point problems, Appl. Math. Comput.

249 (2014) 468–479.
[34] Z.Z. Bai, M.K. Ng, Z.Q. Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl. 31 (2009) 410–433.
[35] H.C. Elman, Preconditioners for saddle-point problems arising in computational fluid dynamics, Appl. Numer. Math. 43 (2002) 75–89.
[36] H.C. Elman, D.J. Silvester, A.J. Wathen, Performance and analysis of saddle-point preconditioners for the discrete steady-state Navier-Stokes equations,

Numer. Math. 90 (2002) 665–688.
[37] D. Silvester, H. Elman, D. Kay, A. Wathen, Efficient preconditioning of the linearized Navier–Stokes equations for incompressible flow, J. Comput. Appl.

Math. 128 (2001) 261–279.
[38] D. Silvester, A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners, SIAM J. Numer. Anal. 31 (1994)

1352–1367.
[39] V. Simoncini, Block triangular preconditioners for symmetric saddle-point problems, Appl. Numer. Math. 49 (2004) 63–80.
[40] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 2013.

http://refhub.elsevier.com/S0898-1221(17)30455-8/sb15
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb16
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb17
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb17
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb17
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb18
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb19
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb19
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb19
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb20
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb20
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb20
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb21
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb21
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb21
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb22
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb23
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb23
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb23
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb24
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb25
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb26
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb26
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb26
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb27
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb27
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb27
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb28
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb29
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb30
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb30
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb30
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb31
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb32
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb33
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb33
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb33
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb34
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb35
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb36
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb36
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb36
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb37
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb37
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb37
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb38
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb38
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb38
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb39
http://refhub.elsevier.com/S0898-1221(17)30455-8/sb40

	Analysis on block diagonal and triangular preconditioners for a PML system of an electromagnetic scattering problem
	Introduction
	Generalized saddle-point system from the PML scattering problem
	Block triangular preconditioners for symmetric preconditioning
	Spectral estimates of matrices (A-1P)TA-1P and A-1MA-T 
	Spectral bounds of the inverse (A-1MA-T)-1 
	Spectral estimate of the preconditioned system P-1MP-T 

	Block triangular preconditioner for one-sided preconditioning
	Spectral estimates of the preconditioned system by diagonal preconditioner Ps 
	Numerical experiments
	Acknowledgments
	References


