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Abstract. We extend the direct sampling method proposed in [13] to image a wave-
penetrable inhomogeneous medium in a 3D waveguide. Incidences and receivers are available
only on part of the surface of a cylinder. The proposed method is basically direct and does not
involve any matrix inversions or optimizations, thus computationally very cheap and efficient.
Numerical simulations are presented to show the feasibility and effectiveness of the method for
acoustic detection in a 3D waveguide. The method is applicable with a few scattered fields
corresponding to only one or two incident waves, and is very robust against noise.
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1 Introduction

The direct and inverse scattering problems of underwater acoustics have received much at-
tention in recent years, see, e.g., [1, 2, 4, 5, 7, 14, 15, 17] and the references therein. One of the
popular models used for acoustic waves in a finite depth ocean is the waveguide bounded by two
parallel planes. Because of the geometric structure, the inverse scattering problems in a parallel
waveguide are much harder than similar problems in a homogeneous space. Due to the presence
of two boundaries of the waveguide, only a finite number of wave modes can propagate in long
distance, while the other modes decay exponentially as a function of distance. This phenomenon
increases the ill-posedness of the inverse problem considerably. Assume that the ocean has a
pressure released surface and a rigid bottom, we can pose a Dirichlet condition on one of the
plane and a Neumann condition on the other. Based on this model, the exact and asymptotic
representations of the sound field in a stratified shallow ocean was obtained in [3]. Adding a
scatterer to the stratified model, a series of studies have been carried out for the direct and
inverse scattering of acoustic waves by obstacles in a waveguide with plane boundaries as well as
in an ocean under different sediment settings. We refer readers to [9, 10, 11, 6, 8, 12, 16, 19, 20]
for more details.

In this paper we extend the direct sampling method proposed in [13] for imaging a wave-
penetrable inhomogeneous medium in a 3D finite depth ocean. The method is based on a scat-
tering analysis and involves only computing the inner product of the measured scattered field us
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with fundamental solutions located at the sampling points over the measurement curve/surface.
The method is basically direct and does not involve any matrix inversions or optimizations.
Our numerical experiments indicate that it can provide an accurate and reliable estimate of the
support of unknown scatterers, even in the presence of a fairly large amount of noise in the
measured data. Consequently, it can be regarded as an effective but simple computational alter-
native to existing tools for locating a reliable approximate positions of the unknown obstacles,
or for generating an initial sampling region for the use in a more refined or computationally
more demanding optimization-type algorithm.

The new method applies a sampling-type technique, and resembles the linear sampling-type
methods (LSM) [5, 6, 17, 20], but it differs significantly from these existing techniques. Firstly,
it does not perform any matrix inversions, or solves ill-posed linear integral equations, thus is
computationally cheap. Secondly, the novel method requires only a few (e.g., one or two) incident
waves for reconstructing the locations of scatterers/inhomogeneities, whereas the others usually
require the data from sufficiently many incidents in order to acquire a reasonable reconstruction.
Lastly, the new method is highly tolerant to noise.

The paper is organized as follows. In Section 2, the direct scattering problem for the 3D
waveguide is presented, along with some useful notations, properties and identities. In section
3, we generate an iterative method to solve the direct scattering problem of the 3D waveguide.
Section 4 describes the mathematical motivation of the extended direct sampling method using
the near-field data and proposes a new indicator function. Section 5 provides extensive numerical
experiments to evaluate the performance of the novel indicator function by the near-field data
from scatterers. Finally, some concluding remarks are stated in Section 6.

2 The direct scattering problem for the 3D waveguide

In this section, we describe the direct scattering problem of our interest. Consider a three-
dimensional waveguide R3

h = R2 × (0, h) for h > 0. The third coordinate axis is singled out as
the one orthogonal to the waveguide, so we shall write

x = (x1, x2, x3)> = (x̃, x3)> ∀x ∈ R3.

The upper and lower boundaries of the waveguide are denoted respectively by

Γ+ := {x ∈ R3; x3 = h} and Γ− := {x ∈ R3; x3 = 0} .

A bounded and wave-penetrable scatterer D is assumed to be compactly contained in the waveg-
uide. The part of the waveguide not occupied by D is denoted by Ω := R3

h\D, which is assumed
to be connected. Let us point out here that we shall often work later in the bounded domain
ΩR := {x ∈ Ω : |x̃|2 < R2}, where the radius R is assumed to be large enough such that
1 + |x̃|2 < R2 for all (x̃, x3) ∈ D. This implies that D is contained in the interior of ΩR. The
surface of the cylinder

ΓR := {x ∈ Ω; |x̃|2 = R2}

denotes the boundary of ΩR that is contained in Ω. The two other parts of ∂ΩR, contained in
the upper and lower boundaries of the waveguide, are denoted by

Γ+
R := {x ∈ R3; |x̃| < R, x3 = h} and Γ−R := {x ∈ R3; |x̃| < R, x3 = 0}.
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Figure 1 shows a diagram of the waveguide’s geometry.
The direct scattering of acoustic wave in a parallel waveguide with a wave-penetrable medium

is modeled by the Helmholtz equation

∆u+ k2n(x)u = f(x) in R3
h , (2.1)

where u = ui+us, formed by the incident wave ui and its corresponding scattered wave us. The
sound-hard and sound-soft boundary conditions are imposed on the lower and upper boundaries
of the waveguide, i.e.,

u = 0 on Γ− and
∂u

∂x3
= 0 on Γ+. (2.2)

The source function f(x) has compact support, such that supp(f) ∩ D = ∅ . We assume that
the wave number k > 0, q(x) = n(x)− 1 ≥ 0, and

supp(n(x)− 1) ≡ supp(q(x)) ⊂ D.

Consequently, it yields that n(x) = 1 for x 6∈ D while n(x) = 1 + q(x) for x ∈ D, with q(x)
called the contrast function. The incident wave ui is a solution to the inhomogeneous Helmholtz
equation with n(x) ≡ 1, which implies,

∆ui + k2ui = f(x) . (2.3)

The scattered wave us = u− ui satisfies the out-going radiation condition [9] for x ∈ Ω\ΩR and

us(x) =
∞∑
m=1

sin(αmx3)um(x̃) ,

where αm = (2m−1)π
2h . The modes um are subject to the Sommerfield radiation condition [6]:

lim
r→∞

r1/2(
∂um
∂r
− ikum) = 0 , (2.4)

uniformly for all x̃, with r = |x̃|.
We rewrite the equation (2.1) into the following form,

∆(us + ui) + k2n(x)(us + ui) = f(x) ,

which leads to
∆us + k2(1 + q(x))us + ∆ui + k2ui + k2q(x)ui = f(x) .

Hence, with the help of (2.3), we have the following equation

∆us + k2(1 + q)us = −k2qui. (2.5)

The Green’s function [3] for the homogeneous medium (n ≡ 1) in the waveguide R3
h with the

condition (2.2) is

G(x, y) =
i

2h

∞∑
m=1

sin(αmx3) sin(αmy3)H
(1)
0 (km|x̃− ỹ|), x, y ∈ Ω, x̃ 6= ỹ , (2.6)
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where km =
√
k2 − α2

m . An equivalent representation of the Green’s function in (2.6) can be
derived via the method of images,

G(x, y) =
1

4π

+∞∑
m=−∞

(−1)m
{
eik|x−ym|

|x− ym|
− eik|x−y

′
m|

|x− y′m|

}
, (2.7)

where the source image points are given by

ym = (y1, y2, y3)> + (0, 0, 2mh) and y′m = (y1, y2,−y3) + (0, 0, 2mh), m ∈ Z .

From the formula (2.7), it is obvious that G(·, ·) can be written as the superposition of the
fundamental solution Φ(x − y) = eik|x−y|/(4π|x − y|) of the Helmholtz equation in free space
and an analytic function G̃(·, ·), that is,

G(x, y) =
1

4π

eik|x−y|

|x− y|
+ G̃(x, y), x 6= y ∈ Ω . (2.8)

Accordingly, the mapping properties of the volume potential∫
D
G(·, y)f(y)dy

are the same as for the volume potential with kernel

Φ =
1

4π

eik|x−y|

|x− y|
.

From (2.5) we derive,
∆us + k2us = −k2qus − k2qui,

then we can represent the scattered field us and the total field u as

us(x) = k2

∫
D
G(x, y)q(y)u(y)dy, x ∈ R3

h (2.9)

and

u(x) = k2

∫
D
G(x, y)q(y)u(y)dy + ui(x), x ∈ R3

h . (2.10)

Suppose that the incident wave is a point source wave from xs, say, f(x) = −δ(x− xs), then

ui(x, xs) = G(x, xs).

The formula (2.10) indicates that the total field u(x) satisfies the integral equation,

u(x) = k2

∫
D
G(x, y)q(y)u(y)dy +G(x, xs), x ∈ D. (2.11)

Since the operator

Su(x) := k2

∫
D
G(x, y)q(y)u(y)dy, x ∈ D

is compact in L2(D), (2.11) is uniquely solvable for

k2

∫
D
|G(x, y)q(y)|2dy < 1 . (2.12)

After we obtain the total field u(x) for x ∈ D, the scattered field us(x) for x ∈ R3
h can be

straightforwardly generated by the formula (2.9).
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3 An iterative algorithm for the direct scattering problem

As we know, the near-field or scattered data is obtained through some measurements in
practical applications. But for the verification of the effectiveness of a reconstruction method,
we need to generate the scattered data by solving the direct scattering problem. In this section,
we propose a simple iterative method for solving the direct scattering problem of the shallow
ocean waveguide. Suppose some scatterers are embedded in the cylinder ΩR with the refractive
index n(x) 6= 1. We choose a few arc segments with the central angle α of some circles on the
surface of cylinder ΩR, see Γs and Γr in Figure 2. Some source points xs are located at Γs, see
the red star points in Figure 2, and a set of receivers xr are situated at Γr, see the blue circle
points in Figure 2.

Assume that the condition (2.12) is satisfied, we first solve the volume integral (2.11) itera-
tively for x ∈ D. Let u1(x) = G(x, xs),

un+1(x) = k2

∫
D
G(x, y)q(y)un(y)dy +G(x, xs), n = 1, 2, · · · . (3.1)

For the implementation of this iterative method, we discretize the scatterer D into N small
cubes and the center point of each cube is denoted as ym for 1 ≤ m ≤ N . Therefore, we obtain
the following formula from (3.1):

un+1(xm) = k2
N∑
p=1

G(xm, yp)Aq(yp)un(yp) +G(xm, xs), m = 1, 2, · · · , N, (3.2)

where A is the volume of each cube.
With the total field u(x) obtained for x ∈ D, we can compute the scattered field us(xr) by

us(xr) = k2

∫
D
G(xr, y)q(y)u(y)dy, xr ∈ Γr , (3.3)

or approximately by

us(xr) = k2
N∑
p=1

G(xr, yp)Aq(yp)u(yp), xr ∈ Γr . (3.4)

4 A direct sampling method for the inverse scattering problem

In this section, we attempt to extend the direct sampling method proposed in [13] to deter-
mine a stable and accurate approximation to the shape of inhomogeneities in our interested 3D
waveguide model with a finite depth. Here is an explicit statement of the the inverse problem
to be considered in this work, namely to determine the supports of inhomogeneities D from the
scattered field us measured on Γr.

Now we would like to derive an index function which has significantly different behaviors
inside and outside the scatterers. The derivation is carried out for a cylindrical surface ΓR; see
Figure 1. Let G(x, xp) be the fundamental solution associated with the Helmholtz equation in
the waveguide R3

h:

∆G(x, xp) + k2G(x, xp) = −δ(x− xp) (4.1)
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with two boundary conditions G = 0 on Γ− and ∂G
∂x3

= 0 on Γ+, where δ(x − xp) refers to the
Dirac delta function located at the point xp ∈ ΩR . Multiplying both sides of the equation (4.1)
by the conjugate G(x, xq) of the fundamental solution G(x, xq) and integrating over the domain
ΩR, we have ∫

ΩR

(∆G(x, xp) + k2G(x, xp))G(x, xq)dx = −G(xp, xq) . (4.2)

Next we consider the equation (4.1) with xq ∈ ΩR in place of xp , and take its conjugate. Then
multiplying both sides of the resulting equation by G(x, xp) and integrating over the domain
ΩR , we obtain ∫

ΩR

(∆G(x, xq) + k2G(x, xq))G(x, xp)dx = −G(xp, xq) . (4.3)

Applying integration by parts for the terms involving Laplacians in (4.2) and (4.3), we can
deduce that

2iIm

(
G(xp, xq)

)
= G(xp, xq)−G(xp, xq) (4.4)

=

∫
ΓR

[
G(x, xq)

∂G(x, xp)

∂n
−G(x, xp)

∂G(x, xq)

∂n

]
dS ,

where Im means the imaginary part of a complex quantity. Note that ∂G
∂n (x, xp) = ∂G

∂r (x, xp),
we readily derive

∂G

∂n
(x, xp) =

∂

∂r

[ ∞∑
m=1

i

2h
sin(αmx3) sin(αm(xp)3)H

(1)
0 (km|x̃− x̃p|)

]

=
∞∑
m=1

i

2h
sin(αmx3) sin(αm(xp)3)

∂

∂r
H

(1)
0 (km|x̃− x̃p|)

=

∞∑
m=1

i

2h
sin(αmx3) sin(αm(xp)3)

[
ikmH

(1)
0 (km|x̃− x̃p|) +O

(
1

r3

)]
.

Similarly,

∂G

∂n
(x, xq) =

∞∑
m=1

−i
2h

sin(αmx3) sin(αm(xp)3)

[
− ikmH

(1)
0 (km|x̃− x̃q|) +O

(
1

r3

)]
.
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Therefore, with the help of (4.4),

2iIm

(
G(xp, xq)

)

= 2iIm

( ∞∑
m=1

i

2h
sin(αm(xp)3) sin(αm(xq)3)H

(1)
0 (km|x̃p − x̃q|)

)

=

∫
ΓR

[
G(x, xq)

∂G

∂n
(x, xp)−G(x, xp)

∂G

∂n
(x, xq)

]
dS

=

∫
|x̃|=R

∫ h

0

[
G(x, xq)

∂G

∂n
(x, xp)−G(x, xp)

∂G

∂n
(x, xq)

]
dx3ds(x̃)

≈
∫
|x̃|=R

∞∑
m=1

ikm
8h

sin(αm(xp)3) sin(αm(xq)3) ·
[
H

(1)
0 (km|x̃− x̃p|)H

(1)
0 (km|x̃− x̃q|)

+H
(1)
0 (km|x̃− x̃q|)H(1)

0 (km|x̃− x̃p|)
]
ds(x̃) .

Accordingly, we arrive at the following approximation for m = 1, 2, · · · ,

ikm
8h

∫
|x̃|=R

H
(1)
0 (km|x̃− x̃p|)H

(1)
0 (km|x̃− x̃q|)ds(x̃) ≈ 2i

h
Im

(
i

2
H

(1)
0 (km|x̃p − x̃q|)

)
.

Now we consider a sampling region D̃ that contains the scatterer D. In order to imple-
ment the novel method, the domain D̃ is divided into a set of small elements {τj} . Let
W (y) = k2q(y)u(y), then by the rectangular quadrature rule we obtain the following simple
approximation of the scattered field

us(x) =

∫
D̃
G(x, y)W (y)dy ≈

∑
j

wjG(x, yj) ,

where the point yj is in the jth element τj , and the weight wj is given by wj = aW (yj) for a
being the volume of the element τj and W (yj) = k2q(yj)u(yj).
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Now we consider the following integral on the surface ΓR ,∫
ΓR

us(x)G(x, xp)dS

=

∫
ΓR

∫
D̃
G(x, y)W (y)dyG(x, xp)dS

=

∫
D̃

[ ∫
ΓR

G(x, y)G(x, xp)ds

]
W (y)dy

=

∫
D̃
W (y)

(∫
|x̃|=R

∫ h

0

∞∑
m=1

i

2h
sin(αmx3) sin(αmy3)H

(1)
0 (km|x̃− ỹ|)

·
∞∑
n=1

i

2h
sin(αnx3) sin(αn(xp)3)H

(1)
0 (kn|x̃− x̃p|)dx3ds(x̃)

)
dy

=

∫
D̃
W (y)

[ ∞∑
m=1

−1

4h2

∫
|x̃|=R

h

2
sin(αmy3) sin(αm(xp)3)H

(1)
0 (km|x̃− ỹ|)

·H(1)
0 (km|x̃− x̃p|)ds(x̃)

]
dy

=

∫
D̃
W (y)

[ ∞∑
m=1

−1

4h2
· h

2
sin(αmy3) sin(αm(xp)3)

∫
|x̃|=R

H
(1)
0 (km|x̃− ỹ|)

·H(1)
0 (km|x̃− x̃p|)ds(x̃)

]
dy

≈
∫
D̃
W (y)

{ ∞∑
m=1

−1

8h
sin(αmy3) sin(αmxp3) · 16

km
Im

(
i

2
H

(1)
0 (km|ỹ − x̃p|)

)}
dy.

Hence, we accomplish the following approximation,∫
ΓR

us(x)G(x, xp)ds ≈
∑
j

wjIm

(
Ĝ(yj , xp)

)
, (4.5)

where

Ĝ(yj , xp) =

∞∑
m=1

−2

h
· 1

km
sin(αmy3) sin(αm(xp)3) ·

[
i

2
H

(1)
0 (km|ỹj − x̃p|)

]
.

We notice that if xp is far away from all physical point scatterers {yj}, then the summation
in (4.5) will be relative small due to decay property of the fundamental solution G(x, y). On
the contrary, if a point xp is close to some physical point scatterer yj ∈ D, then Ĝ(yj , xp) takes
a relative large value and thus contributes significantly to the sum. Moreover, if the radius R
of ΩR is large, G(yj , xp) and Ĝ(yj , xp) can be approximated by the sums of the propagating
modes. In summary, all these facts lead us to the following index function

I(xp) =
|〈us, G(·, xp)〉L2(ΓR)|

||us||L2(ΓR)||G(·, xp)||L2(ΓR)
∀xp ∈ D̃, (4.6)
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with

〈us, G(·, xp)〉L2(ΓR) =

∫
ΓR

us(x)G(x, xp)ds.

When there are several sets of scattered data available, we shall extend the above index
function I to the formula

I(xp) = max
i
{Ii(xp)} ∀xp ∈ D̃, (4.7)

where Ii refers to the index function (4.6) defined for the ith data set.
In practice, I(xp) ≈ 1 implies that the sampling point xp lies most likely inside the support

of a scatterer, while I(xp) ≈ 0 indicates that the sampling point lies outside the support of any
scatterer component. Hence, the indicator function I provides the likelihood of the sampling
point xp lying inside the supports of scatterers. No unstable matrix inversion as in the LSM is
needed for estimating the index function I. The indicator function I involves only evaluating
the inner product of the scattered field and the fundamental solution, thus computational very
cheap. Moreover, the data noise enters the index function I through the integration of the
measured data us on the boundary ΓR . The subsequent numerical simulations will demonstrate
the feasibility and effectiveness of the new method as well as its robustness with respect to the
noise in the data.

5 Numerical Simulation

In this section, we are going to present a few numerical examples to evaluate the feasibility
and effectiveness of the direct sampling method based on the index function (4.6) or (4.7). In our
numerical simulations, the sampling region D̃ is chosen to be [−1, 1]× [−1, 1]× [2, 4], the height h
of the shallow water is 8, the wavenumber k is 6, the Green’s function (2.6) is truncated at 100th
term. The incident fields will be specified for each example, and the corresponding scattered
filed us is measured at the following points that are uniformly distributed on the specified circles
with the angle step size ha = π

12 :

x = 5 cos(θ), y = 5 sin(θ), z = 1 + 0.4(n− 1), θ = 0, ha, · · · , 2π; n = 1, 2, · · · , 11.

We first apply the iterative method proposed in Section 3 to generate the scattered data us and
terminate the iteration when the relative L2-norm error of the field is less than ε = 10−3. Then
the noisy data usδ is generated pointwise by the formula

usδ(x) = us(x) + εδ(x) max
x
|us(x)| ,

where ε refers to the relative noise level, and both the real and imaginary parts of the noise
δ(x) follow the standard normal distribution. The mesh size for the forward problem is chosen
to be 0.02, while the one for the inverse problem is 0.05. The medium contrast function q of
the scatterer is 1 for all the following experiments. The index function (4.6) for estimating
the contrast q is normalized so that its maximum value is 1, and it will be displayed in each
numerical simulation. If it is not specified, the cut-off value 0.5 is used for the index function
values I(x) in numerical examples, namely, all the sampling points xp satisfying I(xp) < 0.5 will
be dropped in forming the reconstructed scatterers.

Example 1 We consider a scatterer occupying the region (−0.2, 0.2)×(−0.2, 0.2)×(2.8, 3.2).
Only 1 source point, located at (5 cos π4 , 5 sin π

4 , 6), is employed in this numerical experiment.
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The numerical reconstructed scatterer is shown in Figure 3, with a relative noise level being
ε = 10%, 20% and 30% respectively. As we may observe that the index I is relatively large at the
sampling points close to the physical scatterer, otherwise it is relatively small. The reconstructed
scatterer is given in Figure 4, with reconstructed locations and shapes being quite reasonable
even with noise level up to 30%, considering the fact that only one source point is used for the
numerical reconstruction. So the new sampling method appears to be very robust against noise.

Example 2 This example investigates two separated scatterers occupying the regions
(−0.8,−0.4)× (−0.8,−0.4)× (2.2, 2.6) and (0.4, 0.8)× (0.4, 0.8)× (3.4, .3.8) respectively. Only
2 source points are applied, at the locations (5 cos π4 , 5 sin π

4 , 6) and (5 cos 3π
4 , 5 sin 3π

4 , 6) respec-
tively.

For the ease of the illustration and observation, we only plot the values of the index function
I in the regions (−1,−0.2)× (−1,−0.2)× (2, 2.8) and (0.2, 1)× (0.2, 1)× (3.2, 4). Figure 5 shows
the index value distributions and Figure 6 plots the reconstructed scatterers, with the relative
noise level ε being 10%, 20% and 30% respectively.

We observe that the support estimated by the indicator function I agrees very well with the
exact one, and the index values decrease quickly away from the boundary of the true scatterers.
So the sampling method works also well for multiple scatterer components. But due to the
physical scattering interaction between the two scatterer components, we can observethat the
left lower object has an extra part on the right-hand side while the right upper object has an
extra part on the left-hand side.

Example 3 This example concerns the reconstruction of two very close scatterers occupying
the regions (−0.6,−0.2)× (−0.2, 0.2)× (2.8, 3.2) and (0.2, 0.6)× (−0.2, 0.2)× (2.8, .3.2) respec-
tively. The same two source points are used as in Example 2. The reconstructions are shown
in Figure 7 for the distributions of the index function I(x) and in Figure 8 for the approximate
scatterers, with the relative noise level ε being 10%, 20% and 30% respectively.

As we may observe, the two scatterers stay very close to each other in this example, less than
one half of the wavelength in distance, which is known to be rather challenging in numerical
reconstruction. Nonetheless, both scatterers are clearly seen separated and the approximate
locations of the scatterers are still rather impressive, considering only two point sources were
employed. But due to the physical scattering interaction between the two close scatterer com-
ponents, we can observe some artifact in each object grown towards the other one.

Example 4 In this final test, we consider a torus scatterer which has the following repre-
sentation, (

R−
√
x2 + y2

)2

+ z2 = r2,

where r = 0.1 and R = 0.4 (R is the radius from the center of the hole to the center of torus
tube, r is the radius of the tube). Only 6 source points are employed in this experiment, which
are located at (5 cos π3 , 5 sin π

3 , 6), (5 cos 2π
3 , 5 sin 2π

3 , 6), (5 cosπ, 5 sinπ, 6), (5 cos 4π
3 , 5 sin 4π

3 , 6),
(5 cos 5π

3 , 5 sin 5π
3 , 6) and (5 cos 2π, 5 sin 2π, 6) respectively.

The reconstructions are shown in Figure 9 for the distributions of the index function I(x)
and in Figure 10 for the approximate scatterers, with the relative noise level ε being 1%, 5% and
10% respectively and the cut-off value c being 0.7.

The torus scatterer represents one of the most challenging scatterers to recover, and it is
highly nontrivial even with multiple data sets, especially noting that the diameter of the torus

10



less than one half of the wavelength. Nonetheless, the new sampling method seems to be able
to provide a quite reasonable estimate of the shape of the torus.

6 Concluding remarks

We have extended the direct sampling method proposed in [13] to image wave-penetrable
inhomogeneous media in a 3D waveguide. The method involves only the inner product of the
scattered field with the fundamental solutions at the sampling points over some curves where
the scattered field is measured, without any optimizations or matrix inversions required. So
it is basically a direct method. The method is applicable to give reasonable reconstructions
of scatterers with a very limited amount of measured data corresponding to only few incident
waves. Moreover, the algorithm is easy to implement, computationally very cheap and highly
tolerant to noise. Consequently, it can serve as an efficient yet simple computational alternative
to provide a reasonable initial sampling domain for the use in existing more accurate and more
refined optimization-type reconstruction algorithms.
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Figure 1: Geometrical illustration of the waveguide.
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Figure 2: Geometrical illustration of the source points and receivers.

14



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

2

2.5

3

3.5

4

 

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

2

2.5

3

3.5

4

 

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

2

2.5

3

3.5

4

 

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

2

2.5

3

3.5

4

 

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d)

Figure 3: Exact contrast values q(x) (a), and distributions of the index function I(x) with 10 %
noise (b), 20 % noise (c) and 30 % noise (d) for Example 1.
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(a) (b)

(c) (d)

Figure 4: Exact scatterer (a), and reconstructed ones with 10 % noise (b), 20 % noise (c) and
30 % noise (d) for Example 1.
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Figure 5: Exact contrast values q(x) (a), and distributions of the index function I(x) with 10 %
noise (b), 20 % noise (c) and 30 % noise (d) for Example 2.
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(a) (b)

(c) (d)

Figure 6: Exact scatterer (a), and reconstructed ones with 10 % noise (b), 20 % noise (c) and
30 % noise (d) for Example 2.
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Figure 7: Exact contrast values q(x) (a), and distributions of the index function I(x) with 10 %
noise (b), 20 % noise (c) and 30 % noise (d) for Example 3.
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(a) (b)

(c) (d)

Figure 8: Exact scatterer (a), and reconstructed ones with 10 % noise (b), 20 % noise (c) and
30 % noise (d) for Example 3.
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Figure 9: Exact contrast values q(x) (a), and distributions of the index function I(x) with 1 %
noise (b), 5 % noise (c) and 10 % noise (d) for Example 4.
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(a) (b)

(c) (d)

Figure 10: Exact scatterer (a), and reconstructed ones with 1 % noise (b), 5 % noise (c) and
10 % noise (d) for Example 4.
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