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Abstract

In this work we apply non-negative matrix factorizations (NMF) to some imaging and inverse
problems. We propose a sparse low-rank approximation of big data and images in terms of tensor
products, and investigate its effectiveness in terms of the number of tensor products to be used in the
approximation. A multi-resolution analysis (MRA) framework is presented using a sparse low-rank
approximation. We propose a primal-dual active set semi-smooth Newton method for the non-
negative factorization. Numerical results are given to demonstrate the effectiveness of the proposed
method to capture features in images and structures of inverse problems under no a-priori assumption
on the data structure, as well as to provide a sparse low-rank representation of the data.
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1 Introduction to Non-negative Factorizations

Non-negative factorization (NMF) has emerged since the last decade, attempting to tackle k-clustering
problems and structural analysis of big data. It is very effective in extraction of principle components,
features and similarities inside a large set of data or image. NMF was first studied by Paatero [19], and
suggested by Lee and Seung [14, 15] into the realm of machine learning and data mining. Since then,
the now-known concept of NMF as K-means clustering for principle component analysis has been widely
studied theoretically and numerically in many works, e.g. [1, 4, 5, 6, 9, 17, 19, 21]. The concept of
tri-factorization was also suggested as a concurrent column and row clustering (a.k.a. co-clustering) of
data in, e.g. [7] . Usually, in order to achieve feature extraction as well as to reduce memory complexity,
sparsity is imposed to NMF using l0 or l1 regularization. In order to actualize these various concepts
of NMF, mature toolboxes have been well-developed to provide different choices of regularizers and
constraints, e.g. the non-negative matrix factorization toolbox in MATLAB developed by Li and Ngom
[18]. Another convex model for NMF is suggested by Ocher et. al. [8], where the convex l1,∞ norm is used
as the regularizer to enforce row sparsity. Applying this convex model to hyper-spectral end-members
selections, the authors succeeded in providing abundance maps of end-members representing different
structures inside an image, e.g. roofs, trees, grass, soil and road.

Generally speaking, a NMF of a general matrix Y ∈ RN×M is of the form

Y ≈ AP (1.1)

where A ∈ RN×k, P ∈ Rk×M and P ≥ 0 entry-wise. Generally, the rank k is much lower than the rank of
X, i.e. k << min(N,M). The matrix P is regarded as a basis of the information contained in matrix Y .
We may further requires P to be nearly orthornormal, i.e. PPT ≈ I. In this case, it is similar to a partition
of unity in the underlying space considered and the vectors in P are similar to some indicator functions.
The matrix A is an assignment matrix, which gives some special weighting to the corresponding vectors in
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P . It is our aim to obtain a sparse matrix A which has a very small number of non-zero entries. Therefore,
A can be interpreted as some sparse assignments of linear combinations of basis vectors in P . If the matrix
Y ≥ 0 entry-wise, we may further requires A ≥ 0 entry-wise. This constraint is however infeasible if Y is
not nonnegative entry-wise and we are bound to relax and drop the non-negativity condition for A if this
is the case. The sparsity constraint imposed on A makes the information extraction process to be concise
and precise. Moreover, the sorting of vectors in A in descending order of its magnitude indicates to us
the most important bases of P . From this sorting process, the physically important components can be
effectively extracted. Using the standard l1 regularization to impose sparsity and almost orthogonality,
the problem of NNF for a non-negative matrix Y can be reformulated as the following minimization
problem:

min
A≥0,P≥0

||Y −AP ||2F,2 + α||A||F,1 + γ||PPT − I||F,1 (1.2)

over nonnegative matrices A ∈ RN×k and P ∈ Rk×M , where ||X||F,2 :=
√∑

i,j |Xij |2 is the Frobenius

norm, ||X||F,1 :=
∑

i,j |Xij | and α, γ are some regularization parameters.
A classical and natural approach for matrix factorization is the singular value decomposition (SVD),

which helps to obtain the best low-rank approximation of the matrix in l2 sense. Classical approaches
usually use SVD decomposition to extract the most important components of the matrix Y based on the
magnitude of their corresponding singular values. The factorization of SVD is of the form

Y = UΣV T (1.3)

where we can interpret the matrix U, V as basis of information, Σ as a weighting representing the im-
portance of the corresponding basis vectors in U and V . However, SVD is unstructured, and therefore
we turn to NMF to obtain a structural decomposition of the matrix. Combining the non-negativity
constraints and the SVD gives rise to the idea of non-negative matrix tri-factorization, which was first
suggested in [7]. In this work, we suggest and investigate the following version of non-negative matrix
tri-factorization for non-negative matrix Y formulated using l1 regularisation:

min
U≥0,Σ≥0,V≥0

||Y − UΣV T ||2F,2 + α||Σ||F,1 + γ||UUT − I||F,1 + γ||V V T − I||F,1. (1.4)

We can interpret the matrices U ∈ MM×p, V ∈ Mp×N as basis of information, Σ ∈ Mp×p as a generalized
singular matrix. In here, we would like to remark that the matrix Σ is not required to be diagonal in our
setting, but is only required to be sparse.

In our work, we suggest to apply the aforementioned model of non-negative matrix tri-factorization
to big data and large images because of its low memory complexity when the rank p is small, even if the
original data and images do not attain any sparse structure. This is true considering the fact that the
factorization is a low rank sparse approximation of the matrix in term of the tensor products of column
and row vectors of U and V . The fact that p is small requires the storage of only a few columns and rows
in the matrices U and V , and therefore greatly reduces memory complexity. The sparsity of Σ is also very
important for the reduction of memory complexity because we only need to store the respective columns
and rows of the matrices U and V , i.e. ui and vj where the corresponding entry in the singular matrix Σ,
i.e. σij is significant. These reasons suggest us to apply the above NMF model to big data and imaging.
To effectively implement the NMF, we utilize the well-known primal-dual active set semi-smooth Newton
method [11] for the optimization process. It is more advantageous than the classical methods suggested in
[5] or [7] since Newton-type methods are known to converge faster than these classical methods. Using the
result of NMF from the Newton method, we propose a dissection of the image into layers by its order of
importance. Moreover, we propose a multi-resolution analysis (MRA) framework of the images based on
the NMF, which induces a sparse representation and extraction of features of different scales. Numerical
results has shown acceptable resolution of images can be achieved with low memory complexity using
this model of tri-factorization without any a-priori assumption of their structures, such as sparsity and
specific patterns.

This paper is organized as follows. In section 2 the general mathematical framework of non-negative
matrix tri-factorization using l1 regularization is clearly stated, and an optimal choice of the dimension of
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generalized singular matrix is investigated. An MRA framework using NMF is introduced in section 3 and
a primal-dual active set semi-smooth Newton method for NMF is presented in section 4. Applications of
our framework to imaging and inverse problems are provided in section 5, providing numerical evidence
for the success of sparse low-rank representation of the data.

2 Mathematical formulation of non-negative matrix tri-factorization
using l1 regularization

In this section we clearly state the matrix tri-factorization that we would like to consider. In the
subsequent discussion, we shall often denote MM×N as the set of M ×N matrices and M+

M×p ⊂ MM×N

as those with positive entries. Given a matrix Y ∈ M+
M×N , we define the following functional J α,γ

p for a
fixed set of parameters p, α, γ:

J α,γ
p : M+

M×p ×M+
p×p ×M+

p×N → R

J α,γ
p (U,Σ, V ) := ||Y − UΣV T ||2F,2 + γ||Σ||F,1 + α||UUT − I||F,1 + α||V V T − I||F,1. (2.1)

Consider a minimizer of the functional, denoted as [Ũp, Σ̃p, Ṽp] ∈ argminJ α,γ
p . With the above definition

at hand, we then define the following operator Iα,γ
p :

Iα,γ
p : M+

M×N → M+
M×N

Iα,γ
p (Y ) := ŨpΣ̃pṼp =

∑
i,j

σij(ũp)i ⊗ (ṽp)j (2.2)

where (ũp)i, (ṽp)j denote the respect column and row vectors of Ũp and Ṽp respectively and σij is the
(i, j)-th entry of the matrix Σp. This non-negative matrix tri-factorization can be regarded as a non-
negative version of the SVD, and the matrix Σp is called the generalized singular matrix, which is not
constrained to be diagonal.

It is obvious yet worth-noting that with a small p, the memory complexity of storing the matrix triple
[Ũp, Σ̃p, Ṽp] is minimal, since the memory complexity is of the order (M + N)p + p2 even if Σ̃p is not

sparse. If Σ̃p is furthermore a sparse matrix, the memory complexity can be much further reduced, as
we only need to store the vectors (ũp)i and (ṽp)j when σij is non-zero. In fact, for a generic matrix Y ,
if p can be chosen to be small and yet ||Y − Iα,γ

p (Y )||2F,2 can still be maintained to be a small quantity,

then [Ũp, Σ̃p, Ṽp] may serve as our desired sparse low-rank approximation of Y . However, it is obvious
that the smaller the value of p is, the worse the approximation of Y by Iα,γ

p (Y ) will be. With a smaller

p, the error ||Y − Iα,γ
p (Y )||2F and also J α,γ

p (Ũp, Σ̃p, Ṽp), will be larger. Therefore, in practice, it is an
interesting question to ask how we should choose the number p as N,M grow large.

2.1 An Optimal choice of p

In what follows, we aim to find an optimal choice of p with respect to N,M by means of a probabilistic
argument. We first obtain a lower bound in terms of p,N,M, δ of the probability that there exists a
triple [U,Σ, V ] such that J α,γ

p (U,Σ, V ) < δ. From this lower bound, we suggest an optimal choice of p
to maximize this probability. The value J α,γ

p (Up,Σp, Vp) reflects the derivations of matrices Up, Vp from
being orthogonal, the sparsity of Σp and the error of the approximation of Y by Iα,γ

p (Y ). In particular,
if for some [U,Σ, V ], we have J α,γ

p (U,Σ, V ) < δ, then

||Y − Iα,γ
p (Y )||2F,2 ≤ J α,γ

p (Up,Σp, Vp) ≤ J α,γ
p (U,Σ, V ) < δ .

We begin by showing the following lemmas concerning a set of i.i.d. random vectors. Consider a set
of i.i.d random vectors {Xi}Ni=1 ∈ [0, 1]d, where the probability distribution dPX = fdx with dx denoting
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the standard Lebesgue measure and 0 < C1 < f < C2 < ∞. Then it is immediate to see that the random
variables {ωi := Xi/||Xi||2}Ni=1 ∈ Sd−1 has a probability density dPω = gdω where dω is the standard
surface measure and C1

||ω||∞ ≤ g ≤ C2

||ω||∞ for some other constants 0 < C1, C2 < ∞. From this, we can

derive the following important results for our subsequent analysis.

Lemma 2.1. Consider a set of i.i.d random vectors {Xi}Ni=1 ∈ [0, 1]d, where the probability distribution
dPX = fdx with dx denoting the standard Lebesgue measure and 0 < C1 < f < C2 < ∞. Then the
probability of the vectors ωi := Xi/||Xi||2 being able to be approximated by p points {Pi}pi=1 ∈ Sd−1

∪
[0, 1]d

within an error of ε > 0 for a small ε can be estimated as follows:

pN (C3ε)
(d−1)N ≤ P

∃{Pi}pi=1 s.t. {ωi}Ni=1 ⊂
∪

1≤i≤P

Bε(Pi)

 ≤ pN (C4ε)
(d−1)N (2.3)

for some 0 < C3, C4 < ∞.

Proof. Using the fact that for small ε > 0, Cε < sin ε < ε for some C > 0, we can actually observe from
the assumption of the i.i.d. random vectors and the polynomial theorem that

P

∃{Pi}pi=1 s.t. {ωi}Ni=1 ⊂
∪

1≤i≤P

Bε(Pi)


=

∑
∑p

i=1 Ni=N

N !∏
i Ni!

1

|Sd−1
∩
[0, 1]d|

∏
i

∫
Sd−1

∩
[0,1]d

P(||ωi −K||2 < ε)NidK

≥
∑

∑p
i=1 Ni=N

N !∏
i Ni!

(C3ε)
(d−1)

∑
i Ni

≥ pN (C3ε)
(d−1)N

for some C3 > 0. The other side of the inequality is similar.

Lemma 2.2. Consider a set of i.i.d random vectors {Pi}pi=1 ∈ [0, 1]d, where the probability distribution
dPω = fdω with dω denoting the standard surface measure and 0 < C1 < f < C2 < ∞. Then the
probability of the set of vectors Pi being almost mutually orthogonal within an error of ε for a small ε > 0
can be estimated as follows:

p! d (C3ε)
(p)(p−1)

2 +(d−1) ≤ P (|⟨Pi, Pj⟩ − δij | < ε ∀i, j ) ≤ p! d (C43ε)
(p)(p−1)

2 +(d−1) (2.4)

for some 0 < C3, C4 < ∞ if p ≤ d, and is zero if otherwise.

Proof. From direct counting, and the fact that ||Pi−Pj ||2 = 2−2⟨Pi, Pj⟩ together with half angle formula,
we have for p ≤ d,

P (⟨|Pi, Pj⟩ − δij | < ε ∀i, j)

≥ p! d (C3ε)
d−1

∏
1≤i≤p

(C3ε)
i|(Bi

1 × Bn−i
1 )

∩
[0, 1]d|

≥ p! d (C3ε)
(p)(p−1)

2 +(d−1)

for some C3 > 0. The other side of the inequality is similar. The probability of this being zero when
p > d follows directly from dimensionality argument.

Lemma 2.3. Consider a set of i.i.d random vectors {Xi}Ni=1 ∈ [0, 1]d, where the probability distribution
dPX = fdx with dx denoting the standard Lebesgue measure and 0 < C1 < f < C2 < ∞. Then the
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probability of the event Ep,ε representing ∃{Pi}pi=1 s.t. {ωi}Ni=1 ⊂
∪

1≤i≤P Bε(Pi) and |⟨Pi, Pj⟩ − δij | <
ε ∀i, j for a small ε > 0 can be estimated as follows:(
pN − (p− 1)N

)
pl! d (C3ε)

p(p−1)
2 +(d−1)(N+1) ≤ P (Ep,ε\Ep−1,ε) ≤

(
pN − (p− 1)N

)
pl! d (C4ε)

p(p−1)
2 +(d−1)(N+1)

for some 0 < C3, C4 < ∞ if p ≤ N , and therefore

p∑
l=1

(
lN − (l − 1)N

)
l! d (C3ε)

l(l−1)
2 +(d−1)(N+1) ≤ P (Ep,ε) ≤

p∑
l=1

(
lN − (l − 1)N

)
l! d (C4ε)

l(l−1)
2 +(d−1)(N+1) .

We also have the following lower bound estimate

P (Ep,ε) ≥ dpN (C3ε)
(d−1)(N+1)+

(p)(p−1)
2 . (2.5)

Proof. The following inequality follows directly from the argument of the above two lemmas∑
∑p

i=1 Ni=N ,Ni>0

N !∏
i Ni!

p! d (C3ε)
p(p−1)

2 +(d−1)(N+1)

≤ P (Ep,ε\Ep−1,ε)

≤
∑

∑p
i=1 Ni=N ,Ni>0

N !∏
i Ni!

p! d (C4ε)
p(p−1)

2 +(d−1)(N+1) .

Now since the last term can be simplified as follows:

p! d (C3ε)
p(p−1)

2 +(d−1)(N+1)
∑

∑p
i=1 Ni=N ,Ni>0

N !∏
i Ni!

= p! d (C3ε)
p(p−1)

2 +(d−1)(N+1)

 ∑
∑p

i=1 Ni=N

N !∏
i Ni!

−
∑

∑p−1
i=1 Ni=N

N !∏
i Ni!


=

(
pN − (p− 1)N

)
p! d (C3ε)

p(p−1)
2 +(d−1)(N+1) ,

we directly have

p∑
l=1

(
lN − (l − 1)N

)
l! d (C3ε)

l(l−1)
2 +(d−1)(N+1) ≤ P (Ep,ε) ≤

p∑
l=1

(
lN − (l − 1)N

)
l! d (C4ε)

l(l−1)
2 +(d−1)(N+1) .

The last inequality comes readily from

P (Ep,ε) ≥
p∑

l=1

(
lN − (l − 1)N

)
d (C3ε)

p(p−1)
2 +(d−1)(N+1) = dpN (C3ε)

(d−1)(N+1)+
(p)(p−1)

2 .

Now we consider a general image or large data Y =
∑

i,j Yij ei⊗ ej comprised of non-negative entries.
Without loss of generality, we may always assume maxi,j |Yij | = 1. Write Yi :=

∑
j Yij ej , and ωi =

Yi/||Yi||2, then Y =
∑

i ||Yi||2 ei⊗ωi. If it is possible that there exists a set of {Pi}pi=1 such that {ωi}Ni=1 ⊂∪
1≤i≤P Bε(Pi) and |⟨Pi, Pj⟩ − δij | < ε ∀i, j, then we can write {ωkj}

Kj

j=1 ∈ Bε(Pj) for some Kj with
1 ≤ j ≤ p and then intuitively, we have

I =
∑
i

||Yi||2ei ⊗ ωi ≈
p∑

j=1

Kj∑
kj=1

||Ykj
||2 ekj

⊗ Pj .
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Writing Qj := (
∑Kj

kj=1 ||Ykj
||2ekj

)/
√∑Kj

kj=1 ||Ykj
||2 and denoting σij = δij

√∑Kj

kj=1 ||Ykj
||2, then we have

I ≈
∑
i

σij Qi ⊗ Pj

where |⟨Pi, Pj⟩ − δij | < ε ∀i, j and |⟨Qi, Qj⟩ − δij | = 0 ∀i, j. Writing Σ = (σij), P = (Pi)
T Q = (Qj),

then we actually have directly that

||I −
∑
i

σij Qi ⊗ Pj ||F2 ≤
p∑

j=1

Kj∑
kj=1

||Ykj ||2|ωkj − Pj | ≤ ||I||F,2ε ≤ NMε ,

as well as

J α,γ
p (Ũp, Σ̃p, Ṽp) ≤ J α,γ

p (Q,Σ, P ) ≤ ||I||F,2ε+ γ
∑
j

√√√√√ Kj∑
kj=1

||Ykj ||2 + αp(p− 1)ε

≤ NMε+NMγ + αp(p− 1)ε .

The measure of the event Ep,ε such that the above happens has an estimate of

P (Ep,ε) ≥
p∑

l=1

(
lN − (l − 1)N

)
l!M (C3ε)

l(l−1)
2 +(M−1)(N+1)

≥ M pN (C3ε)
(M−1)(N+1)+

(p)(p−1)
2 .

Similarly, switching the columns and rows of the image, we may follow the above argument and analysis
to conclude the same with N,M switched. Combining to the two statements, we have

P
(
J α,γ
p (Ũp, Σ̃p, Ṽp) < NMε+NMγ + αp(p− 1)ε

)
≥

p∑
l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

µ(N,M,l)

≥ min(N,M)pmax(N,M)(C3ε)
µ(N,M,p) .

where the function µ( · , · , · ) is defined for all N,M, l ∈ N as

µ(N,M, l) :=
l(l − 1)

2
+MN − |N −M | − 1 . (2.6)

If we further choose the parameter γ ≤ (K − 1)ε for some K > 1, then we have directly that

Lemma 2.4. For any small ε > 0 and for all N,M ∈ N, then we have

P
(
J α,γ
p (Ũp, Σ̃p, Ṽp) <

(
KNM +min(N,M)2

)
ε
)

≥
p∑

l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

µ(N,M,l) (2.7)

≥ min(N,M)pmax(N,M)(C3ε)
µ(N,M,p) (2.8)

where the function µ( · , · , · ) is defined as in (2.6) and γ is such that γ ≤ (K − 1)ε for some K > 1.
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Before we derive a sharp bound of an optimal choice for p, let us consider a rough lower bound
introduced in the last inequality (2.8). Now if we consider the function

F (p) := min(N,M)pmax(N,M) (C3ε)
µ(N,M,p)

for p ≥ 1, then we have

F ′(p) =
F (p)

p

(
max(N,M) +

| log(C3ε)|
16

− | log(C3ε)|(p−
3

4
)2
)

>
=
<

 0 ⇔ p

<
=
>

 3

4
+

√
1

16
+

max(M,N)

| log(C3ε)|
.

Therefore we can propose a primitive optimal choice of p to maximize the lower bound of the possibility

P
(
J α,γ
p ([Ũp, Σ̃p, Ṽp]) <

(
KNM +min(M,N)2

)
ε
)
, i.e. to choose

p =

√
max(M,N)

| log(C3ε)|
(2.9)

for large N,M . Following some basic substitutions, we obtain the following theorem.

Theorem 2.5. For any small δ > 0, we have

P
(
min
p

J α,γ
p (Ũp, Σ̃p, Ṽp) < δ

)
≥ min(N,M) p

max(N,M)
N,M,δ (C3ε)

µ(N,M,pN,M,δ) (2.10)

whenever γ ≤ (K − 1) ε, where ε := δ
(
KNM +min(M,N)2

)−1
for some K > 1, the function µ( · , · , · )

is defined as in (2.6), and pN,M,δ stands for the following constant

pN,M,δ :=

√
max(M,N)

| log(C3ε)|
=

√
max(M,N)

log(KNM +min(M,N)2)− | log δ| − logC3
. (2.11)

When M = N , it is then obvious that the above optimal choice of p for a fixed δ > 0 is of the form

p = pN,N,δ =

√
N

2 logN − | log δ| − logC3 + log(K + 1)
∼

√
N

2 logN
(2.12)

as N goes to infinity. The last asymptotic actually gives a precise approximation and√
N

2 logN
≤ pN,N,δ ≤

√
N

logN
(2.13)

if N is large enough such that N > C3δ
−1. Hence (2.12) serves as an optimal choice of p for large N .

Furthermore, with this choice of p, the memory complexity is asymptotically
√

2N3

logN as N goes to infinity.

However, we note that the optimal choice of p obtained above is only based on a rough lower bound
(2.8). In what follows, we peruse a sharper bound by using (2.7). Since (2.7) always increases with
respect to p, we get an optimal choice of p by controlling the increment of (2.7) with respect to p. In
order to do so, we investigate the ratio of the terms

al :=
(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

µ(N,M,l)

explicitly given as follows:

al+1

al
=

(l + 1)max(N,M) − lmax(N,M)

lmax(N,M) − (l − 1)max(N,M)
le−| log(C3ε)|(l+1) .
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From the l’Hospital rule, we can directly see that for a fixed pair of N,M , the above term al+1/al → 0
as l → ∞. Therefore, given a small η < 1, there is always a p̂N,M,η,ε such that al+1/al ≤ η whenever
l > p̂N,M,η,ε. Then for all p > p̂N,M,η,ε we have

P
(
J α,γ

p (Ũp, Σ̃p, Ṽp) <
(
KNM +min(N,M)2

)
ε
)

≥
p̂N,M,η,ε−1∑

l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

µ(N,M,l)

+
1

1− η

(
(p̂N,M,η,ε)

max(N,M) − (p̂N,M,η,ε − 1)max(N,M)
)
(p̂N,M,η,ε)! min(N,M) (C3ε)

µ(N,M,p̂N,M,η,ε)

whenever γ ≤ (K− 1) ε, and that the increment of p from p̂N,M,η,ε onward brings insignificant increment
to (2.7). Now we aim to find an explicit p̂N,M,η,ε in terms of N,M , thus obtaining an optimal choice of
p. From Holder’s inequality, we readily have

ap+1/ap =

∑max(N,M)−1
i=0 (1 + 1/p)i∑max(N,M)−1
i=0 (1− 1/p)i

p e−| log(C3ε)|(p+1) ≤ p(p+ 1)max(N,M)−1

(p− 1)max(N,M)−1
p e−| log(C3ε)|(p+1) . (2.14)

Now if we consider the function

G(N0, p) :=
p(p+ 1)N0−1

(p− 1)N0−1
p e−| log(C3ε)|(p+1)

for p ≥ 2 and N0 ≥ 2, then we have

∂

∂p
G(N0, p) = G(N0, p)

(
1

p
+

N0 − 1

p+ 1
− N0 − 1

p− 1
− | log(C3ε)|

)
>
=
<

 0 ⇔ p

<
=
>

 p0(N0) .

where p0(N0) is the unique real zero of −| log(C3ε)|p3 + p2 + (| log(C3ε)| − 2N0 + 2)p − 1 = 0 which
can be found explicitly by the Cardano’s formula or the Lagrange’s method. Fixing N0, we get that
G(N0, p0(N0)) is the global maximum of G(N0, p) on (2,∞), and from p0(N0) onward, the function
is decreasing. Together with the fact that G(N0, 2) = 4(5/3)N0−1(C3ε)

4, we have that G(N0, ·)−1 :
(0, 4(C3ε)

4) → (p0,∞) is a well-defined smooth function and is monotone by inverse function theorem,
and that the implicity function g : (1,∞) → (1,∞) defined by G(N0, g(N0)) = η is well-defined and
smooth by implicit function theorem as g(N0) = [G(N0, ·)]−1(η). Moreover

g′ = −
∂N0

∂p (N0, g(N0))
∂G
∂p (N0, g(N0))

= − log

(
g + 1

g − 1

)(
1

g
+

N0 − 1

g + 1
− N0 − 1

g − 1
− | log(C3ε)|

)−1

= log

(
g + 1

g − 1

)
g(g + 1)(g − 1)

| log(C3ε)|g3 − g2 − (| log(C3ε)| − 2N0 + 2)g + 1

Now since g(N0) > p0(N0) + δ̂ > 1 for some δ̂ > 0 by our choice of domain, we have | log(C3ε)|p3 − p2 −
(| log(C3ε)| − 2N0 + 2)p+ 1 > Ĉ > 0 for some Ĉ, and 0 < g′(N0) < ∞ for all N0 as well as g′(N0) → ∞
as N0 → ∞. Moreover putting these inequalities back into the expression of g′, we have g′(N0) → 0 as
N0 → ∞, and that g satisfies the following differential inequality for large N0,

g′ ≤ log

(
g + 1

g − 1

)
2

| log(C3ε)|
≤ 4

(g − 1)| log(C3ε)|

Now using the Gronwall-Bellman-Bihari’s inequality, we directly infer that

g ≤ H−1(H(a(η)) +N0) (2.15)
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for some constant a(η) depending only on η, where the function H is defined as

H(s) :=
| log(C3ε)|

4

∫
(s− 1)ds =

| log(C3ε)|(s− 1)2

8
+K0(η) (2.16)

for some K0(η). Therefore the following inequality holds for g:

g ≤

√
K1(η)N0 −K2(η)

| log(C3ε)|
+K3(η) .

for some K1(η),K2(η),K3(η). Choosing p̂N,M,η,ε such that

p̂N,M,η,ε = Kη

√
max(N,M)

| log(C3ε)|
= KηpN,M,δ (2.17)

for some Kη depending only on η, where pN,M,δ is defined as in (2.11), then for all

p > p̂N,M,η,ε ≥ g (max(N,M)) = [G (max(N,M), ·)]−1
(η) ,

we have

p(p+ 1)max(N,M)−1

(p− 1)max(N,M)−1
p e−| log(C3ε)|(p+1) < η .

Therefore the growth of the probability P
(
J α,γ
p (Ũp, Σ̃p, Ṽp) <

(
KNM +min(N,M)2

)
ε
)

with respect

to p becomes insignificant from p̂N,M,η,ε onward. This gives another optimal choice for p. Amazingly
enough, we notice that

p̂N,M,η,ε ∼ pN,M,δ .

i.e. the two choices of p are of the same order. This gives the following theorem.

Theorem 2.6. For any small δ > 0 and, the following bound for the probability holds

P
(
J α,γ
p (Ũp, Σ̃p, Ṽp) < δ

)
≥

p∑
l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

µ(N,M,l)
(2.18)

whenever γ ≤ (K − 1) ε, where ε := δ
(
KNM +min(M,N)2

)−1
for some K > 1 and the function

µ( · , · , · ) is defined as in (2.6). For a given small constant η, the growth of value of the last summation
with respect to p can be controlled by η when p > Kη pN,M,δ for some Kη depending on only η where
pN,M,δ is defined as (2.11). Furthermore, whenever the above event happens, ||Y − Iα,γ

p (Y )||2F,2 < δ.

Therefore, in the particular case when M = N , the following asymptotic order for p

p ∼

√
N

logN
(2.19)

is genuinely an optimal choice of p, and that they are equivalent up to a multiplicative constant whenever

N > C3δ
−1. Following this optimal choice of p, the memory complexity grows in the order

√
N3

logN as N

goes to infinity.
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2.2 Importance of magnitudes of entries in generalized singular matrix

In this subsection, we discuss a further reduction of memory complexity by truncating the generalized
singular matrix Σ̃p = (σij). We aim to remove the less important components (ũp)i⊗ (ṽp)j in (2.2) while
keeping the most important ones so that it still serves as a good approximation of the original matrix Y .

In order to attain this aim, we rearrange σij from the largest value to the smallest value as σi1j1 ≥
σi2j2 ≥ .. ≥ σip2 jp2

. We then denote σ̃l = σiljlel ⊗ el, and write Σ̃p,p̃ =
∑p̃

l=1 σ̃l as the truncated

generalized singular matrix for all p̃ ≤ p2. The sequence {σ̃l}p
2

l=1 represents the components of Σ̃p in
descending order by its importance of magnitude. With the above definition at hand, we then define the
following operator Iα,γ

p,p̃ :

Iα,γ
p,p̃ : M+

M×N → M+
M×N

Iα,γ
p,p̃ (Y ) := ŨpΣ̃p,p̃Ṽp =

p̃∑
l=1

σiljl(ũp)il ⊗ (ṽp)jl (2.20)

where [Ũp,Σp, Ṽp] is a chosen minimizer of the functional (2.1) and Σ̃p,p̃ is the truncated generalized
singular matrix up to p̃ as stated above.

The approximation Y ≈ Iα,γ
p,p̃ (Y ) = ŨpΣ̃p,p̃Ṽp is a truncation of the approximation (2.2) of Y up to

p̃. This truncated approximation removes the less important components but keep the more important
parts. With this approach, we only need to save the vectors (ũp)il and (ṽp)jl for 1 ≤ l ≤ p̃. This further
reduces the memory complexity and serves as our desired sparse low-rank approximation of Y .

In what follows, we give a brief analysis for the aforementioned truncated approximation of Y . Indeed,
from the pigeon-hole principle, we directly obtain that

J α,γ
p (Ũp, Σ̃p,p̃, Ṽp) < J α,γ

p (Ũp, Σ̃p, Ṽp) + C||I||1
p2−p̃∑
i=0

1

p2 − i

< J α,γ
p (Ũp, Σ̃p, Ṽp) + C||I||1

∫ 1

p̃

p2

1/xdx

< J α,γ
p (Ũp, Σ̃p, Ṽp) + CNM log

(
p2

p̃

)
<

(
(K + LC)NM +min(N,M)2

)
ε

whenever J α,γ
p (Ũp, Σ̃p, Ṽp) <

(
(KNM +min(N,M)2

)
ε and p̃ > e−Lεp2. Combining this with Theorem

2.5, the following corollary follows directly.

Corollary 2.7. For any small δ > 0, we have

P
(
min
p

J α,γ
p (Ũp, Σ̃p,p̃, Ṽp) < δ

)
≥ min(N,M) p

max(N,M)
N,M,δ (C3ε)

µ(N,M,pN,M,δ) .

whenever γ ≤ (K − 1) ε, where ε := δ((K + CL)NM + min(M,N)2)−1, pN,M,δ is stated as (2.11) and
p̃ > e−Lεp2 for some C,K,L. Moreover, whenever the above event happens, ||Y − Iα,γ

p,p̃ (Y )||2F,2 < δ.

3 Multi-resolution analysis (MRA) of non-negative tri-factorization

In this section, we introduce an MRA framework based on the aforementioned tri-factorization. We
notice that, for a matrix Y , especially for those representing an image, there are features of different
scales in Y which usually represent different objects in the image. We aim at extracting these features
of different scales and represent them in a sparse low-rank approximation in terms of tensor products.
By combining the concepts of MRA and NMF, we obtain a framework which helps to get a sparse
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representation of the features of multiple scales, ranging from the coarsest scale to the finest scale in the
image Y .

For the sake of exposition, we shall introduce the following several operators which are very useful
in the subsequent discussion. We first define an interpolation operator ιs : MM×N → MM

rs × N
rs

as the

following averaging operator:

ιs : MM×N → MM
rs × N

rs

ιs(Y ) :=
∑

1≤i≤M/rs,1≤j≤N/rs

1

r2s

∑
k,l∈QIi,Jj

Yklei ⊗ ej (3.1)

where QIi,Jj contains the entries iM/rs ≤ k < (i+ 1)M/rs, jM/rs ≤ l < (j + 1)M/rs. Then we define

Iα,γ
s,p : M+

M×N → M+
M×N

as follows,

Iα,γ
s,p := ιTs ◦ Iα,γ

p ◦ ιs . (3.2)

The approximation Iα,γ
s,p (Y ) represents the approximation of the (smax − s)-th layer of the image Y by

NMF where smax ≤ [log(min(N,M))/ log(r)]. Similarly, we define

Iα,γ
s,p,p̃ : M+

M×N → M+
M×N

as

Iα,γ
s,p,p̃ := ιTs ◦ Iα,γ

p,p̃ ◦ ιs , (3.3)

which serves as a truncated approximation of the (smax − s)-th layer of Y .
Now we are ready to analyse this MRA framework. In fact, it is easy to see by combining the

arguments in previous sections and the Poincare inequality that

||Y − ιTs ◦ Iα,γ
p,p̃ ◦ ιs(Y )||2F,2 ≤ r2s||ιs(Y )− Iα,γ

p,p̃ ◦ ιs(Y )||2F,2 +
∑
I,J

||∇δYIJ ||2F,2

≤ r2sJ α,γ
p (Ũp, Σ̃p,p̃, Ṽp) +

∑
I,J

||∇δYIJ ||2F,2

≤ r2sJ α,γ
p (Ũp, Σ̃p,, Ṽp) + r2s

(
Cr−2sNM log

(
p2

p̃

))
+
∑
I,J

||∇δYIJ ||2F,2

where∇δ is the difference gradient operator defined as (∇δY )i,j = (Yi+1,j − Yi,j , Yi,j+1 − Yi,j), the matrix

YIJ are the (I, J)-th block of the Y matrices, [Ũp, Σ̃p, Ṽp] is an argument minimum of (2.1) with Y replaced

by ιs(Y ) and Σ̃p,p̃ is the truncation of Σ̃p up to p̃ as stated in the previous section.

Therefore if we can choose [Ũp, Σ̃p, Ṽp] such that J α,γ
p (Ũp, Σ̃p, Ṽp) < r−2s

(
(KNM +min(N,M)2

)
ε

and p̃ > e−Lεp2, then

||Y − Iα,γ
s,p,p̃(Y )||2F,2 ≤

(
(K + CL)NM +min(N,M)2

)
ε+

∑
I,J

||∇δYIJ ||2F,2 .

From the discussions made in the previous section, The probability of the above event, denoted as Ep,p̃,δ,
is bounded below by

P(Ep,p̃,δ) ≥ r−s min(N,M) p
r−s max(N,M)
r−sN,r−sM,δ (C3ε)

µ(r−sN,r−sM,pr−sN,r−sM,δ)

whenever γ ≤ (K − 1) ε, where pr−sN,r−sM,δ is defined as in (2.12).
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Now, in general, we have no hope that either ||∇δY ||2F,2 or
∑

I,J ||∇δYIJ ||2F,2 can be controlled, since
we did not impose any regularity conditions for Y in general. However, if we further assume that Y has
some regularity, for instance

∑
I,J ||∇δYIJ ||2F,2 < K0MNε, then

||Y − Iα,Cε
s,p,p̃ (Y )||2F,2 ≤

(
(K + CL+K0)NM +min(N,M)2

)
ε .

Therefore we have the following theorem combining all the previous arguments and theorems.

Theorem 3.1. For any small δ > 0, let the event Ep,p̃,δ be such that the following inequality holds:

||Y − Iα,γ
s,p,p̃(Y )||2F,2 ≤

(
(K + CL)NM +min(N,M)2

)
ε+

∑
I,J

||∇δYIJ ||2F,2

where ε := −r2sδ
(
(K + CL+K0)NM +min(N,M)2

)−1
for some K0,K,C, L. If all the p̃ corresponding

to p is chosen such that p̃ > eLεp2, then we have for any s,

P

(∪
p

Ep,p̃,δ

)
≥ r−s min(N,M) p

r−s max(N,M)
r−sN,r−sM,δ (Cε)

µ(r−sN,r−sM,pr−sN,r−sM,δ) (3.4)

whenever γ ≤ (K − 1) ε where the function µ(·, ·, ·) is defined as in (2.6) and pr−sN,r−sM,δ is defined as
in (2.11). Moreover, the following bound for the probability holds for all s and p < r−s min(N,M), that
whenever p̃ > eLεp2 and γ ≤ (K − 1) ε,

P (Ep,p̃,δ) ≥
p∑

l=1

(
lr

−s max(N,M) − (l − 1)r
−s max(N,M)

)
l! r−s min(N,M) (C3ε)

µ(r−sN,r−sM,l)
. (3.5)

For a given small constant η, the growth of value of the last summation with respect to p can be controlled
by η when p > Kη pr−sN,r−sM,δ for some Kη depending on only η. Furthermore, when the above event
Ep,p̃,δ happens as well as the inequality

∑
I,J ||∇δYIJ ||2F,2 < K0MNε holds, we have

||Y − Iα,γ
s,p,p̃(Y )||2F,2 ≤ δ . (3.6)

Now that given a threshold δ, whenM = N , if Y has the regularity such that ||∇δY ||2F,2 < K̃δ for some

K̃ < 1, then the above theorem infers that the lower bound of the probability of ||Y − Iα,γ
s,p,p̃(Y )||2F,2 < δ

is higher than that of ||Y − Iα,γ
p,p̃ (Y )||2F,2 < δ if p̃ is smartly chosen. Furthermore, for each s, the optimal

choice of p has the same order as pr−sN,r−sM,δ, which is asymptotically

p ∼ r−s/2

√
N

logN − 2s log r
, (3.7)

with the memory complexity of Iα,γ
s,p,p̃ growing in the order r−3s/2

√
N3

logN−2s log r as N goes to infinity.

This tells us that, by increasing s, the probability of fine approximation by NMF is increased as well as
the memory complexity is decreased. Moreover, from numerical experiments, we can observe that for
larger values of s, the resulted approximation Iα,γ

s,p,p̃ captures the coarser features of Y , with features finer
and finer as s decreases.

4 Semi-smooth Newton method for non-negative factorizations

In this section, we describe the numerical algorithm to obtain the NMF of the image or big data Y
as previously mentioned. We aim to utilize an efficient and cost-effective algorithm for this numerical
process.
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From numerical experiments, we notice that instead of finding the optimal [Ũp,Σp, Ṽp] inside the
functional (2.1), it is enough to perform the following alternative NMF to obtain an approximation of
Iα,γ
p (Y ) as follows:

Y ≈ AV T , AT ≈ ΣTUT , then combine to get Y ≈ UΣV T . (4.1)

where in each of the NMF, we minimize the functional (1.2) via a primal-dual active set semi-smooth
Newton method [11, 12] which would be derived and stated below. The primal-dual active set semi-
smooth Newton method is more advantageous than the classical methods suggested in [5] or [7] since it
converges faster than the classical methods. We notice also that although this process does not obtain
the optimal [Ũp,Σp, Ṽp] of the functional (2.1), this gives us a approximation of Iα,γ

p (Y ), which is good
enough as confirmed by numerical experiments. It is also convenient to use the alternative NMF in
practice, since the necessary optimality condition coming from a linearization of the functional that is
used in the semi-smooth Newton method is more convenient to be evaluated numerically as one-sided
matrix multiplications, than as a two-sided matrix multiplication which will be encountered when one aims
to minimize (2.1) directly. Therefore numerically speaking, alternative factorization is more convenient
to implement and less computationally expensive.

4.1 Primal-dual active set semi-smooth Newton method for NMF

Before we discuss the alternative NMF for a approximation of Iα,γ
p (Y ), we first discuss the opti-

mization algorithm for the important non-convex problem (1.2). The primal-dual active set semi-smooth
Newton method are proposed and derived in [11, 12] to solve either convex or non-convex non-smooth
optimization problem effectively by combining the ideas of active sets and a Newton type update. In
this section, we briefly introduce this method for solving the optimization of the non-smooth non-convex
problem (1.2):

min
A≥0,P≥0

J(A,P ) := ||Y −AP ||2F,2 + α||A||F,1 + γ||PPT − I||F,1. (4.2)

4.1.1 Complementary Conditions

Before stepping into the optimization process, we shall first recall two complementary conditions for
the characterization of some constraints conditions from [12], which is crucial for the development of the
algorithm in the subsequent analysis. For this purpose, We first recall that for the function | · | : R → R,
the sub-differential ∂| · | is the set-valued signum function defined as

∂| · |(x) =


1 if x > 0 ,

[−1, 1] if x = 0 ,

−1 if x < 0 .

(4.3)

We also recall the following celebrated complementarity condition [12] which characterizes the set-value
sub-differential ∂| · | as follows:

λ =
λ+ cx

max(1, |λ+ cx|)
(4.4)

for any given c > 0. It is handy to obtain the following lemma by directly comparison of point-wise
values:

Theorem 4.1.

λ =
λ+ cx

max(1, |λ+ cx|)
⇔ λ ∈ ∂| · |(x) (4.5)

where ∂ is regarded as the sub-differential operator.
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Proof. Suppose λ = λ+cx
max(1,|λ+cx|) . If |λ+ cx| ≤ 1, then λ = λ+ cx, which gives x = 0, hence |λ| ≤ 1 and

λ ∈ ∂| · |(x). Else if |λ+ cx| > 1, then λ = λ+cx
|λ+cx| = ±1. Assume that λ = 1, then we have |1 + cx| > 1,

which directly gives x > 0, and therefore λ ∈ ∂| · |(x). The case for λ = −1 is the similar.
On the other hand, suppose that λ ∈ ∂| · |(x). If x = 0, then |λ| ≤ 1 and therefore λ = λ

max(1,|λ|) =
λ+cx

max(1,|λ+cx|) . Else if x > 0, then λ = 1 and |λ + cx| > 1, therefore λ+cx
max(1,|λ+cx|) = λ+cx

|λ+cx| = λ. The case

for x < 0 is similar.

Note that in the above complementary condition, the choice of c is arbitrary. However, for a practical
implementation of an algorithm using the complementary condition, c will be chosen as a fixed constant
which acts as a parameter for a stable implementation.

Now for any matrix A, note that ||A||F,1 =
∑

i,j |Ai,j |, we then have the set-valued sub-differential
function ∂|| · ||F,1(A) as follows:

( ∂|| · ||F,1[A] )i,j =


1 if Ai,j > 0 ,

[−1, 1] if Ai,j = 0 ,

−1 if Ai,j < 0 .

(4.6)

Using the aforementioned celebrated complementarity condition for a dual variable λ, we can then put

λi,j =
λi,j + cAi,j

max(1, |λi,j + cAi,j |)
⇔ λ ∈ ∂|| · ||F,1(A) . (4.7)

or in short λ = λ+cA
max(1,|λ+cA|) , where the division, the maximum and the absolute values are taken point-

wise.
The second complementary condition we would like to introduce is to characterise an inequality

constrain x ≥ 0, which is introduced in [12]. We sketch the argument from [12] to arrive at our desired
complementary condition. Consider the following constrained optimization for a functional F : RN → R.

minF (x) subject to x ≥ 0 . (4.8)

We consider the following equivalent formulation of the variation problem with the same necessary opti-
mality condition with the help of the introduction of a dummy variable z and the augmented Lagrangian
formulation with a dual variable µ and constant c:

minF (x) + ⟨µ, x− z⟩+ c

2
||x− z||22 subject to x = z and z ≥ 0 . (4.9)

Minimizing over z ≥ 0, with the convexity of this functional in z, we obtain the following entry-wise
necessary and sufficient condition for z with the help of the linearization ⟨µ, ·⟩+c⟨x−z, ·⟩ of the functional
in z : {

µi + c(xi − zi) < 0 if zi = 0 ,

µi + c(xi − zi) = 0 if zi > 0 ,
(4.10)

or equivalently {
0 > µi + cxi if zi = 0 ,

zi =
µi+cxi

c if zi > 0 .
(4.11)

which gives the following unique minimizer for the variable z

zi = max

(
0,

µi + cxi

c

)
. (4.12)
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or in compact form z = max(0, µ+cx
c ) where the operations are understood point-wisely. Now putting

this into the expression ⟨µ, x− z⟩+ c
2 ||x− z||22, we have by direct computation

⟨µ, x− z⟩+ c

2
||x− z||22

=
1

c
⟨µ,min(cx,−µ)⟩+ 1

2c
||min(cx,−µ)||22

=
1

2c

(
||min(cx,−µ) + µ||22 − ||µ||22

)
=

1

2c

(
||min(µ+ cx, 0)||22 − ||µ||22

)
. (4.13)

Substituting this expression back to the augmented lagrangian, we obtain the following equivalent mini-
mization problem

minF (x) +
1

2c

(
||min(µ+ cx, 0)||22 − ||µ||22

)
(4.14)

The necessary optimality condition of the above problem is therefore given by the following set-valued
equation {

0 ∈ ∂F (x) + min(µ+ cx, 0)∂min(·, 0) (min(µ+ cx, 0))

0 ∈ −µ+min(µ+ cx, 0)∂min(·, 0) (min(µ+ cx, 0)) .
(4.15)

Equivalently, by point-wise comparison, if µ + cx ≤ 0, then min(µ + cx, 0)∂min(·, 0) (min(µ+ cx, 0)) =
0 as a set value function, then from the above necessary optimality condition, we have µ = 0 and
min(µ + cx, 0) = 0, and therefore µ = min(µ + cx, 0); whereas, if µ + cx > 0, then we have that the
following is satisfies min(µ + cx, 0)∂min(·, 0) (min(µ+ cx, 0)) = min(µ + cx, 0); which gives, from the
necessary optimality condition, that µ = min(µ + cx, 0). Therefore, after considering both of the cases,
we arrive at the following equivalent optimality condition for µ, namely µ = min(µ + cx, 0). Therefore,
as in [12], we arrive at the following necessary optimality condition of the above problem.

Theorem 4.2. The necessary optimality condition for the minimization problem (4.8) is

0 ∈ ∂F (x) + µ and µ = min(µ+ cx, 0) . (4.16)

where ∂ is regarded as the sub-differential operator.

The condition µ = min(µ+ cx, 0) for the dual variable µ is regarded as a complementary condition in
[12] which serves as a characterization of the constraint x ≥ 0. This complementary condition may also
be regarded as a project of the solution to the convex set as the epigraph defined by the constraint.

4.1.2 Necessary optimality condition for optimization of (4.2)

Combining the above two theorems from the last subsection, we arrive at the necessary optimality
condition for optimization of (4.2), which we intend to solve numerically using semi-smooth Newton
method. In fact, directly applying Theorem 4.2 and calculating the sub-differentials, we have the following
necessary optimality condition for (4.2) using the primal-dual variables (A,P, µA, µP ) for a given c1:

0 ∈ ∂AJ(A,P ) + µA = 2APPT − 2Y PT + µA + α∂|| · ||F,1(A)

µA = min(µA + c1A, 0) .

0 ∈ ∂PJ(A,P ) + µP = −2ATY + 2ATAP + µP + γ∂|| · ||F,1(PPT − I)
(
P + T ◦ PT ◦ T

)
µP = min(µP + c1P, 0) .

(4.17)

where T : MM×N → MN×M , A → AT is the transpose operator. Now, applying Theorem 4.1 to the
above system and introducing several more variables R,L, we arrive at the following conclusion.
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Theorem 4.3. The following system of equations with the primal-dual variables (A,P,R,L, µA, λA, µP , λL)
provides the necessary optimality condition for (4.2) for a given c1, c2:

0 = 2APPT − 2Y PT + µA + αλA

λA = λA+c2A
max(1,|λA+c2A|)

µA = min(µA + c1A, 0)

0 = −2ATY + 2ATAP + µP + γλLR

L = PPT − I

R = P ◦ T + T ◦ PT ◦ T
λL = λL+c2L

max(1,|λL+c2L|)
µP = min(µP + c1P, 0) .

(4.18)

where T : MM×N → MN×M is the transpose operator.

This is the starting point of the algorithm for solving the variational problem (4.2).

4.1.3 Semi-smooth Newton strategy

From the previous subsection, we derived a necessary optimality condition for solving the optimization
problem (4.2). In what follows, we shall develop a semi-smooth Newton method for solving such a system,
which can be immediately shown to be Newton differentiable [12]. To further develop our algorithm, we
separate the variables (A,P,R,L, µA, λA, µP , λL) into three set, i.e. (A,µA, λA), (P, µP ) and (L,R, λL),
and perform a directional search. This is computationally advantageous to separate the variables and
solve independently by considering the variables from the other sides as constants thanks to the following
reasons. On one hand, the separate systems are easier for us to perform active set method which greatly
reduces computational cost, and on the other hand, each system consists of much fewer non-linear terms,
and is therefore more stable when performing semi-smooth Newton method. With these motivation, we
therefore separate (4.18) into three separate set of equations and consider the following three systems:

(1) For a fixed P , solve for (A,µA, λA) such that
0 = 2APPT − 2Y PT + µA + αλA

λA = λA+c2A
max(1,|λA+c2A|)

µA = min(µA + c1A, 0) .

(4.19)

(2) For a fixed A,L,R, λL, solve for (P, µP ) such that{
0 = −2ATY + 2ATAP + µP + γλLR

µP = min(µP + c1P, 0) .
(4.20)

(3) For a fixed P , solve for (L,R, λL) such that
L = PPT − I

R = P ◦ T + T ◦ PT ◦ T
λL = λL+c2L

max(1,|λP+c2L|) .

(4.21)

Now if we define the following active sets and inactive sets:

AA,1 = {(i, j) : (µA)i,j + c1Ai,j > 0} IA,1 = {(i, j) : (µA)i,j + c1Ai,j ≤ 0}
AA,2 = {(i, j) : |(λA)i,j + c2Ai,j | ≤ 1} IA,2 = {(i, j) : |(λA)i,j + c2Ai,j | > 1}
AP = {(i, j) : (µP )i,j + c1Pi,j > 0} IP = {(i, j) : (µP )i,j + c1Pi,j ≤ 0}
AL = {(i, j) : |(λL)i,j + c2Li,j | ≤ 1} IL = {(i, j) : |(λL)i,j + c2Li,j | > 1} ,
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we can further reduce the system into the following much simpler form thanks to the direct substitution
and point-wise comparison of the complementary conditions:
(1) For a fixed P , on AA,1

∪
AA,2, we have A = 0, whereas on IA,1

∩
IA,2, (A, λA) satisfies{

0 = 2APPT − 2Y PT + αλA

0 = λA|λA + c2A| − (λA + c2A) .
(4.22)

(2) For a fixed A,L,R, λL, on AP , we have P = 0, whereas on IP , P satisfies

0 = −2ATY + 2ATAP + γλLR . (4.23)

(3) For a fixed P , on AL, we have L = 0, whereas on IL, (L,R, λL) satisfies
L = PPT − I

R = P ◦ T + T ◦ PT ◦ T
0 = λL|λL + c2L| − (λL + c2L) .

(4.24)

For the non-linear constraint on λA in the first system as well as that on λL in the third system, we
propose a semi-smooth Newton step update as in [11] to solve the corresponding equations. One might
suggest the Uzawa explicit method [12] instead, however this method is only conditionally stable and the
convergence is slower than a semi-smooth update, and therefore we prefer the Newton step update. In
here, we only sketch a derivation of the method following [11]. We first consider the first system. In fact,
assume that (A, λA) are perturbed to (Ah, λh

A) such that the increment is of order O(h) and satisfies
0 = λA|λA + c2A| − (λA + c2A), we actually have

(λh
A − λA)|λA + c2A|+ λA

(
|λA + c2A|+

λA + c2A

|λA + c2A|
(λh

A + c2A
h − λA − c2A)

)
− (λh

A + c2A
h) + (λA + c2A) = O(h2)

which gives the following Newton update from (A, λA) to (A+, λ+
A):

λ+
A|λA + c2A|+ λA

λA + c2A

|λA + c2A|
(
λ+
A + c2A

+
)
= λA|λA + c2A|+ (λ+

A + c2A
+)

We then suggest the following damping term and regularization following [12] for the update

λ+
A|λA + c2A|+

λA + c2A

|λA + c2A|
(
λ+
A + c2A

+
) θλA

max(1, |λA|)
= |λA + c2A|

θλA

max(1, |λA|)
+ (λ+

A + c2A
+)

where θ is automatically chosen to achieve stability and the regularizer λA/max(1, |λA|) is set to automati-

cally constrain λA to be in [−1, 1]. Following [11], we set θ |λA+c2A|/
(
|λA + c2A| − 1 + θ λA(λA+c2A)

max(1,|λA|)|λA+c2A|

)
=

1 which gives θ ≤ 1 to simplify the iteration and get the following update after direct substitution,

0 = λ+
A − c2

1− aAbA
dA − 1

A+ + aA

where aA = λA

max(1,|λA|) , bA = λA+c2A
|λA+c2A| and dA = |λA + c2A|, which is used as the semi-smooth update

for the first system {
0 = 2A+PPT − 2Y PT + αλ+

A

0 = λ+
A − c2

dA−1

(
I − aAb

T
A

)
A+ + aA .

(4.25)

We can linearize the constraint for the variable λL in the third system with this same method.
For the other two variables (L,R) in the third system, we can solve for them by direct substitutions;

however, it is not easy. Although the equation R = P ◦ T + T ◦ PT ◦ T is linear, this is computational
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costly to evaluate as the transpose operator T is involved. We therefore derive a semi-smooth update for
R from L and P instead of a direct substitution. Assume (L,R, P ) are perturbed to (Lh, Rh, Ph) such
that the increment is of order O(h) and satisfies L = PPT − I, we then actually get that

(Lh − L) = Rh(Ph − P ) +O(h2) ,

and hence we get the following update after linearization,

R+ = (L+ − L)[P+ − P ]−1 .

Combining the above update with the aforementioned strategy for λL, we obtain the following semi-
smooth Newton update from (L,R, P ) to (L+, R+, P+) for the third system:

L+ = P+(P+)T − I

R+ = (L+ − L)[P+ − P ]−1

λ+
L = c2

dL−1

(
I − aLb

T
L

)
L+ − aL

(4.26)

where aL = λL

max(1,|λL|) , bL = λL+c2L
|λL+c2L| and dL = |λL + c2L|.

Using the numerical values of the variables in the previous iteration, we can predict the locations of
the active sets, and therefore greatly reduce the computational cost of the algorithm.

4.1.4 The algorithm

Combining all the techniques and results from the previous subsections, we are ready to propose the
following primal-dual active set semi-smooth Newton method for solving the system (4.18) to tackle the
minimization problem (4.2).

Algorithm 1

Step 1 Fix two parameters c1, c2. Initialize (A0, P 0, µ0
A, λ

0
A, µ

0
P , λ

0
P ).

Step 2 For k = 0, ...,K,

Step 2.1 Compute µ
(k)
A as

µ
(k)
A := −2A(k)P (k)P (k)T + 2Y (P (k))T − αλ

(k)
A .

Step 2.2 Set the active sets Ak
A,i and inactive sets Ik

A,i for i = 1, 2 respectively as follows:

A(k)
A,1 = {(i, j) : (µA)

(k)
i,j + c1A

(k)
i,j > 0} I(k)

A,1 = {(i, j) : (µA)
(k)
i,j + c1A

(k)
i,j ≤ 0}

A(k)
A,2 = {(i, j) : |(λA)

(k)
i,j + c2A

(k)
i,j | ≤ 1} I(k)

A,2 = {(i, j) : |(λA)
(k)
i,j + c2A

(k)
i,j | > 1} .

Step 2.3 Compute a
(k)
A , b

(k)
A , d

(k)
A as

a
(k)
A :=

λ
(k)
A

max(1, |λ(k)
A |)

, b
(k)
A :=

λ
(k)
A + c2A

(k)

|λ(k)
A + c2A(k)|

and d
(k)
A := |λ(k)

A + c2A
(k)| .

Step 2.4 On A(k)
A,1

∪
A(k)

A,2, set A
(k+1) := 0. On I(k)

A,1

∩
I(k)
A,2, solve (A(k+1), λ

(k+1)
A ) from the system0 = 2A(k+1)P (k)P (k)T − 2Y (P (k))T + αλ

(k+1)
A

0 = λ
(k+1)
A − c2

d
(k)
A −1

(
I − a

(k)
A [b

(k)
A ]T

)
A(k+1) + a

(k)
A .
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Step 2.5 Compute µ
(k)
P as

µ
(k)
P := 2(A(k+1))TY − 2(A(k+1))TA(k+1)P (k) − γλ

(k)
L R(k) .

Step 2.6 Set the active sets A(k)
P and inactive sets I(k)

P respectively as follows:

A(k)
P = {(i, j) : (µP )

(k)
i,j + c1P

(k)
i,j > 0} I(k)

P = {(i, j) : (µP )
(k)
i,j + c1P

(k)
i,j ≤ 0} .

Step 2.7 On A(k)
P , set P (k+1) := 0. On I(k)

P , solve P (k+1) from

0 = −2(A(k+1))TY + 2(A(k+1))TA(k+1)P (k+1) + γλ
(k)
L R(k) .

Step 2.8 Set the active sets A(k)
L and inactive sets I(k)

L respectively as follows:

A(k)
L = {(i, j) : |(λL)

(k)
i,j + c2L

(k)
i,j | ≤ 1} I(k)

L = {(i, j) : |(λL)
(k)
i,j + c2L

(k)
i,j | > 1} .

Step 2.9 Compute a
(k)
L , b

(k)
L , d

(k)
L as

a
(k)
L :=

λ
(k)
L

max(1, |λ(k)
L |)

, b
(k)
L :=

λ
(k)
L + c2L

(k)

|λ(k)
L + c2L(k)|

and d
(k)
L := |λ(k)

L + c2L
(k)| .

Step 2.10 On A(k)
L , set L(k+1) = 0. On I(k)

L , evaluate (L(k+1), R(k+1), λ
(k+1)
L ) as

L(k+1) = P (k+1)(P (k+1))T − I

R(k+1) =
(
L(k+1) − L(k)

)
[P (k+1) − P (k)]−1

λ
(k+1)
L = c2

d
(k)
L −1

(
I − a

(k)
L [b

(k)
L ]T

)
L(k+1) − a

(k)
L .

Step 2.11 Check the stopping criterion.

A natural choice of the stopping criterion is based on checking the change of the active sets: if the
active sets for two consecutive iterations are the same, we may stop the iteration [11, 12]. We can see that,
as A,P, L becomes more and more sparse, the system of linear equations solved in the above iteration
drip drastically and therefore the inversion of the linear system involved will be less computational costly
as k increases.

Finally, for effective implementation of the algorithm, the following remarks are in force:

1. With the enforcement of the constraint A ≥ 0 by the dual variable µA, if the initial guess A(0)

is chosen to be non-negative, then we automatically have A(k) ≥ 0 for all k. The algorithm can

therefore be simplified by automatically setting the dual variable λ
(k)
A to be a constant λ

(k)
A = 1 and

drop the the active/inactive sets A(k)
A,2 and I(k)

A,2.

2. In order to further simplify the algorithm, we may normalize the row vectors of P after Step 2.7

so that PPT has unit diagonal entries. If this step is added, then L(k) ≥ 0 for all k. λ
(k)
L can be

automatically set as a constant λ
(k)
L = 1 and A(k)

L and I(k)
L can be dropped.

3. In the development of the algorithm above, we assume Y ≥ 0 entry-wise, and therefore the constraint
A ≥ 0 entry-wise is legitimate to be enforced. This non-negativity condition for A is however
infeasible and shall be dropped if Y is not nonnegative entry-wise. In this case, nonetheless,
we can still utilize the above algorithm for a non-negative factorization with the following minor

modification: drop the dual variable µA and the active/inactive sets A(k)
A,1 and I(k)

A,1.
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4.2 Numerical algorithm for NMF of an image

With the availability of Algorithm 1 to minimize the functional (4.2), we are ready to propose the
following algorithm to approximate Iα,γ

p (Y ) in (2.2) and Iα,γ
p,p̃ (Y ) in (2.20) for the NMF of an image Y

which is convenient in application:

Algorithm 2

Step 1 Fix four parameters α, γ, p, p̃.

Step 2 Minimize
min

A≥0,V≥0
||Y −AV T ||2F,2 + α||A||F,1 + γ||V TV − I||F,1.

using Algorithm 1 to obtain a minimizer [A0, V0].

Step 3 Minimize
min

Σ≥0,U≥0
||AT

0 − ΣTUT ||2F,2 + α||Σ||F,1 + γ||UTU − I||F,1.

using Algorithm 1 to obtain a minimizer [Σ0, U0].

Step 4 Compute Iα,γ
p (Y ) from [U0,Σ0, V0] as

Iα,γ
p (Y ) := U0Σ0V

T
0 .

Step 5 Sort the entries of Σ0 from the largest to the smallest, enumerated as σi1j1 ≥ σi2j2 ≥ .. ≥ σip2 jp2
.

Step 6 Compute σ̃l := σiljlel ⊗ el and evaluate

Σ0,p̃ :=

p̃∑
l=1

σ̃l.

Step 7 Evaluate Iα,γ
p,p̃ as

Iα,γ
p,p̃ (Y ) := U0Σ0,p̃V

T
0 .

4.3 Numerical algorithm for MRA using NMF

Finally we state the algorithm for the MRA framework based on the results from NMF.

Algorithm 3

Step 1 Fix a scaling parameter r and smax such that smax < logN/ log r.

Step 2 Set two parameters α, γ and two arrays of parameters [p(1), ..., p(smax)], [p̃(1), ..., p̃(smax)].

Step 3 For s = 1, ..., smax,

Step 3.1 Compute ιs(Y ) as in (3.1).

Step 3.2 Calculate Iα,γ
p(s),p̃(s)[ιs(Y )] using Algorithm 2.

Step 3.3 Calculate Iα,γ
s,p(s),p̃(s)(Y ) as Iα,γ

s,p(s),p̃(s)(Y ) := ιTs I
α,γ
p(s),p̃(s)ιs(I).
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5 Applications to photo images, EIT and DOT images from
DSMs

In this section we shall present of some of the applications of both the NMF and the MRA framework
of NMF suggested in the previous sections. We investigate two applications, the first being an MRA
for photo images using NMF, and the second being an NMF over the images from an inverse problem
algorithm for a broad class of coefficient determination inverse problem. In the first application, we
aim at capturing features of different scales in the image and obtain a sparse low-rank representation
of them; while in the second application, we aim to identify the major components in the image, which
represents some structures in the coefficients to be determined in the corresponding inverse problems,
and remove noise from the reconstruction. We observe, from the numerical experiments of both of the
applications, that a much fewer number of p than that being suggested by (2.19) and (3.7) are necessary
for good approximation of the data involved. This is very desirable for memory reduction and feature
identifications.

5.1 Applications to photo images

We perform an MRA over several grey-scaled photo images Y using NMF. In all of the following
examples, we utilize Algorithm 3 for the MRA to approximate Iα,γ

s,p(s),p̃(s)(Y ), in which Algorithm 2

is used to calculate Iα,γ
p(s),p̃(s)[ιs(Y )] and Algorithm 1 is used to minimize (4.2) .

Example 1. In this example, we set Y as the grey image presented in Figure 1. We use the following
set of parameters in Algorithm 3 as

r = 2, smax = [log(min(N,M))/ log(r)− 3] , α = 0.2, γ = 0.02,

as well as the two arrays of parameters

p(s) = [20 log(smax − s+ e)] , p̃(s) = [50 log(smax − s+ e)2(smax − s+ 1)]

where 1 ≤ s ≤ smax and [·] denotes the floor function. The parameters c1, c2 in Algorithm 1 are
both set to be 1. The resulting images are shown in Figure 2. The memory compression ratios for the
(smax − s)-th layer, defined as the quotient between the memory size of Iα,γ

s,p(s),p̃(s)(Y ) and that of Y , are

shown as follows:

smax − s : 1 2 3 4 5 6 Total
compression ratio : 0.0017 0.0046 0.0108 0.0230 0.0495 0.1015 0.1910

We can see from Figure 2 that details of different scales are captured in different layers, while a reasonably
low compression ratio is attained.

Orignal

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

21



Figure 1: Original image in Example 1
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Figure 2: MRA for the image in Example 1 using NMF
Example 2. In this example, we set Y as the image presented in Figure 3. The parameters are the
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same as in the previous example. The resulting images are shown in Figure 4. The memory compression
ratios for the (smax − s)-th layer are shown as follows:

smax − s : 1 2 3 4 Total
compression ratio : 0.0053 0.0146 0.0343 0.0733 0.2861

We can see from Figure 4 finer and finer details are present as the layer number increases, while a
reasonably low compression ratio is attained.
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Figure 3: Original image in Example 2

Level 1

100 200 300 400 500 600

50

100

150

200

250

300

350

400

Level 2

100 200 300 400 500 600

50

100

150

200

250

300

350

400

23



Level 3
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Figure 4: MRA for the image in Example 2 using NMF
Example 3. In this example, Y is set as the image in Figure 5. A same set of parameters is used,

and the resulting images are shown in Figure 6. The memory compression ratios for the (smax − s)-th
layer are shown as follows:

smax − s : 1 2 3 4 5 6 Total
compression ratio : 0.0020 0.0055 0.0130 0.0275 0.0590 0.1206 0.2274
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Figure 5: Original image in Example 3
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Figure 6: MRA for the image in Example 3 using NMF
Example 4. In this example, we use the same set of parameters except that we set smax =

[log(min(N,M))/ log(r) − 4] instead. Y is set as the image in Figure 7, and the resulting images are
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shown in Figure 8. The memory compression ratios for the (smax − s)-th layer are shown as follows:

smax − s : 1 2 3 4 5 Total
compression ratio : 0.0034 0.0090 0.0212 0.0458 0.1003 0.1796

Finer details are present as the layer number increases, and a reasonably low compression ratio is main-
tained. Meanwhile, the Chinese characters are already readable from the 4-th layer, which requires only
4% of the original memory.
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Figure 7: Original image in Example 4
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Figure 8: MRA for the image in Example 4 using NMF

5.2 Images from the DSMs

In this subsection, we shall present the application of NMF to the images obtained from an inverse
problem algorithm, namely the direct sampling methods (DSMs). The DSMs are a family of simple and
efficient inversion methods which aim at providing a good estimate of the locations of inhomogeneities
inside a homogeneous background representing various physical media from a single or a small number
of boundary data in both full and limited aperture cases. They were first introduced and studied in [16]
[20] using far-field data and in [13] using near-field data for locating inhomogeneities in inverse acoustic
medium scattering, and was later extended to various other coefficient determination inverse problems,
such as the electrical impendence tomography (EIT) [3], the diffusive optical tomography (DOT) [2] and
the electromagnetic inverse scattering problem [10]. In each of the aforementioned tomography, a family
of probing functions is introduced and an indicator function is defined as a dual product between the
observed data and the probing function under an appropriate choice of Sobolev scale. The evaluation of
the index function is very cost-effective and the images obtained from the index functions are proven to
be effective in locating small abnormalities. For further information of DSMs, the readers may consult
[2, 3, 10, 13, 16, 20].

In what follows, we shall apply the NMF to the DSM images from two tomography, namely the DOT
and EIT. DOT is a popular non-invasive imaging technique that measures the optical properties of a
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medium and creates images which show the distribution of absorption coefficient inside the body. It is
very useful for medical imaging, e.g. breast cancer imaging, brain functional imaging, stroke detection,
muscle functional studies, photodynamic therapy, and radiation therapy monitoring; see ref. in [2]. In
our subsequent discussion, we consider the numerical experiments of the DOT using DSM as in the
Section 6 in [2], and the same numerical setting described therein. The medium coefficient inside all the
inhomogeneous inclusions are set as µ = 50. The images generated from the scattered potential using
the DSM algorithm described in that work are then put into Algorithm 2 for NMF, with parameters
set to be α = 0.2, γ = 0.02, p = 5, p̃ = 3 and c1 = c2 = 1 in all the following examples.

Example 5. In this example, we consider the case of two circular inclusions of radius 0.065, which
are respectively centered at (−0.5, 0.25) and (0.25, 0.15); see Figure 9 (top). The squared reconstructed

images from the indices Ĩ2 described in [2] is presented in Figure 9 (second). The three images σiljl (ũp)il⊗
(ṽp)jl , for l = 1, 2, 3 after NMF obtained in Algorithm 2 are shown in Figure 9 (third to fifth). The
squared image of the final approximation to Iα,γ

p,p̃ after normalization is given in Figure 9 (last). From
the figure, we can see that with an appropriate cutoff, e.g. a 50% cutoff, both the sizes and locations of
inhomogeneities obtained from the image are reasonable accurate.

Example 6. This example tests a medium with 4 circular inclusions of radius 0.065 with their
corresponding positions: (−0.5, 0.3), (−0.3,−0.1), (0.3, 0.1) and (0.5, 0.3); see Figure 10 (top). Figure

10 (second) shows the squared reconstructed images from the indices Ĩ2 described in [2]. Components
σiljl (ũp)il ⊗ (ṽp)jl , for l = 1, 2, 3 after NMF are shown in Figure 10 (third to fifth). Figure 10 (last)
gives the squared image of the final approximation to Iα,γ

p,p̃ after normalization. The first two components
decomposed from NMF represent the inhomogeneous inclusions inside the original medium, although the
combined image shows a dominance by the bottom two inclusions.
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Figure 9: NMF decomposition of the DSM images from DOT in Example 5
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Figure 10: NMF decomposition of the DSM images from DOT in Example 6

Next, we shall apply the NMF to the DSM images from EIT, which is an effective noninvasive
evaluation method that creates images of the electrical conductivity of an inhomogeneous medium by
applying currents at a number of electrodes on the boundary and measuring the corresponding voltages.
It has found applications in many areas, such as oil and geophysical prospection, medical imaging,
physiological measurement, early diagnosis of breast cancer, monitoring of pulmonary functions and
detection of leaks from buried pipes, etc; see ref. in [3]. In what follows, we consider the same numerical
setting as in the numerical experiments of EIT for a circular domain using DSM described in the Section
6 in [3]. The physical coefficient of the inhomogeneous inclusions are all set to be σ = 5. The images
generated from the scattered potential field using the DSM algorithm are then put into Algorithm 2
for NMF, with parameters set to be α = 0.2, γ = 0.02, p = 5, p̃ = 3 and c1 = c2 = 1 in all the following
examples.

Example 7. We now investigate an example with 2 inclusions of size 0.1 × 0.1 respectively at the
positions (−0.44, 0.36) and (0.36,−0.44); see Figure 11 (a). The squared reconstructed images from

the indices Ĩ2 after normalization as described in [3] is presented in Figure 11 (b). The components

σiljl (ũp)il ⊗ (ṽp)jl , for l = 1, 2, 3 obtained from NMF using Algorithm 2 over the image Ĩ are shown
in Figure 11 (c-e). The squared image of the approximation to Iα,γ

p,p̃ after normalization is in Figure 11
(f). The components of inhomogeneous inclusions sitting inside the original medium are decomposed into
different components from the NMF.
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Figure 11: NMF decomposition of the DSM images from EIT in Example 7

Example 8. In this example, we consider the case of 4 inclusions with same size as in Example 7
sitting inside the sampling region, which are placed at positions of (0.36, 0.36), (0.36,−0.44), (−0.44, 0.36)

and (−0.44,−0.44); see Figure 12 (a). The squared reconstructed images from the indices Ĩ2 after
normalization is shown in Figure 12 (b). Figure 12 (c-e) presents the images of σiljl (ũp)il ⊗ (ṽp)jl ,

for l = 1, 2, 3 after NMF over the image Ĩ. The squared image of the approximation to Iα,γ
p,p̃ after

normalization is in Figure 12 (f).
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Figure 12: NMF decomposition of the DSM images from EIT in Example 8

Example 9. In this example, 2 inclusions of the same size as in Example 7 are introduced in the
homogeneous background, and they are respectively placed at the positions (−0.36, 0.36) and (0.36, 0.36)

inside the domain; see Figure 13 (a). The squared reconstructed images from the indices Ĩ2 after nor-
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malization is given in Figure 13 (b). The images of σiljl (ũp)il ⊗ (ṽp)jl , for l = 1, 2, 3 after NMF over

the image Ĩ are shown in Figure 13 (c-e). Figure 13 (f) presents the squared image of the approximation
to Iα,γ

p,p̃ after normalization. From the figure, both the sizes and locations of inhomogeneities can be
reasonably obtained from the NMF image after the introduction of a appropriate cutoff.
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Figure 13: Image of Example 3(EIT) using Non-negative factorization
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