MATH4060 Exercise 6

Deadline: December 1, 2015.

The questions are from Stein and Shakarchi, Complex Analysis, unless otherwise stated.

Chapter 1. Exercise 7.

Chapter 8. Exercise 1, 4, 5, 10, 12, 13.

Additional Exercises.

- 1. Find a biholomorphic map from the half-strip $\{z \in \mathbb{C}: -\pi/2 < \operatorname{Re} z < \pi/2, \operatorname{Im} z > 0\}$ to the upper half space $\{w \in \mathbb{C}: \operatorname{Im} w > 0\}$. (Hint: Use Exercise 5 above.)
- 2. Let \mathbb{D} be the unit disc $\{z \in \mathbb{C} : |z| < 1\}$. Suppose $f : \mathbb{D} \to \Omega$ is a biholomorphism from \mathbb{D} onto a domain Ω . Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

be the power series expansion of f centered at 0. Show that the area of Ω is given by $\pi \sum_{n=1}^{\infty} n|a_n|^2$. (Hint: First show that the area of Ω is given by $\int_{\mathbb{D}} |f'(z)|^2 dx dy$.)

3. In this question we prove a special case of the so called three-lines lemma, which is useful for the next question.

Let S be the vertical strip $\{z \in \mathbb{C} : a < \operatorname{Re} z < b\}$ for some $a, b \in \mathbb{R}$. Let $f: S \to \mathbb{C}$ be a holomorphic function on S, that extends continuously to the closure \overline{S} of S. Suppose f is bounded on S (possibly by some very large constant M). If C is a constant for which $|f(z)| \leq C$ for all z on the boundary of S, show that $|f(z)| \leq C$ for all $z \in S$. (This is a generalization of the maximum modulus principle to an unbounded domain.)

(Hint: Apply the maximum modulus principle to the function $e^{\varepsilon z^2} f(z)$ on \overline{S} for $\varepsilon > 0$, and then let $\varepsilon \to 0^+$. The whole point here being that $|e^{\varepsilon z^2} f(z)| \to 0$ as $\text{Im } z \to \pm \infty$, whenever $\varepsilon > 0$. You should check that this is indeed the case.)

4. For each r > 1, let A_r be the annuli $\{z \in \mathbb{C} : 1 < |z| < r\}$. The goal of this question is to show that if r_1, r_2 are both greater than 1, and $r_1 \neq r_2$, then there is no biholomorphic map from A_{r_1} onto A_{r_2} .

Suppose $f: A_{r_1} \to A_{r_2}$ is a biholomorphic map for some $r_1, r_2 > 1$. We will show that $r_1 = r_2$.

(a) Show that if $\delta > 0$ is sufficiently small, then

either
$$f(A_{1+\delta}) \subset A_{\sqrt{r_1}}$$
, or $f(A_{1+\delta}) \subset A_{r_1} \setminus \overline{A_{\sqrt{r_1}}}$.

In the latter case, by replacing f by r_2/f , we may reduce to the first case. Hence from now on, we assume that $f(A_{1+\delta}) \subset A_{\sqrt{r_1}}$ whenever δ is sufficiently small.

(b) Show (after the renormalization in part (a)) that

$$\lim_{\delta \to 0^+} \left(\max_{|z|=1+\delta} |f(z)| \right) = 1, \quad \text{and} \quad \lim_{\delta \to 0^+} \left(\min_{|z|=r_1-\delta} |f(z)| \right) = r_2.$$

- (c) Write Log for the natural logarithm of the positive number. Show that the map $w \mapsto e^w$ maps the vertical strip $S := \{w \in \mathbb{C} : 0 < \operatorname{Re} w < \operatorname{Log} r_1\}$ into A_{r_1} .
- (d) Part (c) allows us to define a holomorphic map $g \colon S \to A_{r_2}$, by

$$g(w) = f(e^w).$$

Let $\alpha = \frac{\log r_2}{\log r_1}$. Show that

$$|g(w)| = |e^{\alpha w}|$$
 for all $w \in S$.

(Hint: Apply the three-lines lemma to the bounded holomorphic functions $g(w)/e^{\alpha w}$, and $e^{\alpha w}/g(w)$, on the slightly smaller vertical strip $\{w \in \mathbb{C} : \eta < \operatorname{Re} w < \operatorname{Log} r_1 - \eta\}$ than S, and let $\eta \to 0^+$.)

(e) Using part (d), show that there exists a constant c with |c| = 1 such that

$$f(e^w) = ce^{\alpha w}$$
 for all $w \in S$.

- (f) Show that α is an integer. (Hint: Replace w by $w + 2\pi i$ in the formula in part (e).)
- (g) Conclude that

$$f(z) = cz^{\alpha}$$
 for all $z \in A_{r_1}$.

Since f is injective, it follows that $\alpha = 1$, and hence $r_1 = r_2$.