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In this note we define the sine and cosine by the following power series. For any x ∈ R, we
define

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
,

and

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · =

∞∑
k=0

(−1)kx2k

(2k)!
.

This is possible since the radius of convergence of the two power series above are infinite. One
may thus differentiate term by term, and obtain that

d

dx
sinx = cosx, and

d

dx
cosx = − sinx.

Also, from this definition, it is clear that sin 0 = 0, cos 0 = 1, and sin(−x) = − sinx, cos(−x) =
cosx for all x ∈ R.

Below we deduce all familiar properties of the sine and cosine from this definition.
The key is the following corollary of the mean value theorem:

Corollary 1. Suppose f : R→ R is differentiable on R. If

f ′(x) = 0

for all x ∈ R, then f is constant on R; in particular, f(x) = f(0) for all x ∈ R.

Hence we have:

Proposition 2.

sin2 x+ cos2 x = 1 for all x ∈ R. (1)

Proof. Let

f(x) = sin2 x+ cos2 x.

Then

f(0) = sin2 0 + cos2 0 = 1.

Also, f is differentiable on R, and

f ′(x) = 2 sinx cosx+ 2 cosx(− sinx) = 0

for all x ∈ R. Hence Corollary 1 implies that f(x) = f(0) = 1 for all x ∈ R, which is the desired
conclusion. �

Next we will prove the compound angle formula:

Proposition 3. For all x, y ∈ R, we have

sin(x+ y) = sinx cos y + cosx sin y (2)

sin(x− y) = sinx cos y − cosx sin y (3)

cos(x+ y) = cosx cos y − sinx sin y (4)

cos(x− y) = cosx cos y + sinx sin y. (5)

In fact, it is easy to see that (3) follows from (2) by replacing y by −y (and using that
sin(−y) = − sin y, cos(−y) = cos y). Similarly, (5) follows from (4) by replacing y by −y. Hence
it suffices to prove (2) and (4).

To do so, one way is to proceed via the following result about differential equation:
1
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Lemma 4. Suppose f : R→ R is a twice differentiable function, with

f ′′(x) + f(x) = 0 for all x ∈ R,
and

f(0) = f ′(0) = 0.

Then f(x) = 0 for all x ∈ R.

It says the zero function is the only function that satisfies the conditions of the Lemma.

Proof of Lemma 4. We introduce two auxiliary functions F : R→ R, G : R→ R, such that

F (x) = f(x) cosx− f ′(x) sinx, G(x) = f(x) sinx+ f ′(x) cosx

for all x ∈ R. Then F and G are both differentiable, and

F ′(x) = −f(x) sinx+ f ′(x)(cosx− cosx)− f ′′(x) sinx = 0

G′(x) = f(x) cosx+ f ′(x)(sinx− sinx) + f ′′(x) cosx = 0

for all x ∈ R (the last equalities uses the assumption f ′′ + f = 0). Hence both F and G are
constants. Also, by our assumptions on f and f ′, we have

F (0) = f(0) cos 0− f ′(0) sin 0 = f(0) = 0

and
G(0) = f(0) sin 0 + f ′(0) cos 0 = f ′(0) = 0.

Hence
F (x) = 0 = G(x) for all x ∈ R,

i.e. {
f(x) cosx− f ′(x) sinx = 0

f(x) sinx+ f ′(x) cosx = 0
for all x ∈ R.

We now solve for f(x) by eliminating f ′(x): we multiply the first equation by cosx, and the
second equation by sinx, and take the sum of the resulting equations. Then

(cos2 x+ sin2 x)f(x) = 0

for all x ∈ R, which by (1) implies f(x) = 0 for all x ∈ R, as desired. �

We can now prove (2) and (4).

Proof of (2). Fix y ∈ R. Let f(x) = sin(x+ y)− sinx cos y − cosx sin y. We want to show that
f(x) = 0 for all x ∈ R. To do so, we appeal to our lemma. First,

f ′′(x) = − sin(x+ y) + sinx cos y + cosx sin y = −f(x)

for all x ∈ R, i.e. f ′′(x) + f(x) = 0 for all x ∈ R. Next,

f(0) = sin(0 + y)− sin 0 cos y − cos 0 sin y = 0.

Also,
f ′(x) = cos(x+ y)− cosx cos y + sinx sin y

for all x ∈ R. Hence

f ′(0) = cos(0 + y)− cos 0 cos y + sin 0 sin y = 0.

By the lemma, it follows that f(x) = 0 for all x ∈ R, as desired. �

The proof of (4) is similar, and left as an exercise.
From Proposition 3 we have the usual double angle formula:

Proposition 5. For all x ∈ R, we have

sin(2x) = 2 sinx cosx (6)

cos(2x) = cos2 x− sin2 x (7)

cos(2x) = 2 cos2 x− 1 (8)

cos(2x) = 1− 2 sin2 x (9)
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Proof. (6) and (7) just follows from (2) and (4) by setting y = x. (8) and (9) follow from (7)
and an application of (1). �

Hence we have the half-angle formula:

Proposition 6. For all x ∈ R, we have

cos2 x =
1

2
(1 + cos 2x) (10)

sin2 x =
1

2
(1− cos 2x) (11)

Proof. Just rearrange (8) and (9). �

Sometimes the following triple-angle formula are also useful:

Proposition 7. For all x ∈ R, we have

sin(3x) = 3 sinx− 4 sin3 x (12)

cos(3x) = 4 cos3 x− 3 cosx (13)

Proof. For all x ∈ R, we have (by the compound and double angle formula)

sin(3x) = sin(x+ 2x)

= sinx cos 2x+ cosx sin 2x

= sinx(1− 2 sin2 x) + 2 sinx cos2 x

= sinx(1− 2 sin2 x) + 2 sinx(1− sin2 x)

= 3 sinx− 4 sin3 x,

and

cos(3x) = cos(x+ 2x)

= cosx cos 2x− sinx sin 2x

= cosx(2 cos2 x− 1)− 2 sin2 x cosx

= cosx(2 cos2 x− 1)− 2(1− cos2 x) cosx

= 4 cos3 x− 3 cosx.

�

Also from Proposition 3, we have the following product-to-sum formula (allowing one to
convert the product of two trigonometric functions into a sum):

Proposition 8. For all x, y ∈ R, we have

sinx cos y =
1

2
(sin(x+ y) + sin(x− y)) (14)

cosx cos y =
1

2
(cos(x+ y) + cos(x− y)) (15)

sinx sin y =
1

2
(cos(x− y)− cos(x+ y)) (16)

Proof. (14) follows by averaging (2) and (3). (15) follows by averaging (4) and (5). (16) follows
by subtracting (4) from (5), and dividing by 2. �

Next, we look at why sine and cosine are periodic. We know cos 0 = 1, and we claim cos 2 < 0:
in fact cos 2 is defined by an alternating series, and thus

cos 2 = 1− 22

2!
+

24

4!
− . . .

≤ 1− 22

2!
+

24

4!
< 0.

Since cosx is continuous on R, there exists a smallest positive number a such that cos a = 0.
(Such a is unique.) We now make the following definition:
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Definition 1. We define the real number π so that

π := 2a,

where a is as above.

Note that if we adopt this definition, then we will have to prove that the circumference of a
circle of radius r is 2πr; that we will do when we learn about integration, which allows one to
make sense of the length of a curve.

Adopting the above definition of π, we show the following:

Proposition 9.

cosx > 0 for all x ∈ [0,
π

2
), (17)

and
sinx > 0 for all x ∈ (0,

π

2
]. (18)

Also,

cos
π

2
= 0, (19)

and
sin

π

2
= 1 (20)

Proof. (19) follows immediately from our definition of π.
Now note that π

2 is the first positive zero of cos, and that cos 0 = 1 > 0. Hence by continuity

of cos, we conclude that (17) holds. In particular, d
dx sinx = cosx > 0 for x ∈ [0, π2 ). Hence sin

is strictly increasing on [0, π2 ]. Since sin 0 = 0, it follows that (18) holds; in particular, sin π
2 > 0.

We can now determine the value of sin π
2 . In fact, from (1), we get

sin2 π

2
+ cos2

π

2
= 1,

so from (19), we get sin π
2 = ±1. But we already knew that sin π

2 > 0, so sin π
2 must be 1 (and

not −1). This proves (20). �

We can now prove the periodicity of sine and cosine:

Proposition 10. For all x ∈ R, we have

sin(x+
π

2
) = cosx (21)

cos(x+
π

2
) = − sinx (22)

sin(x+ π) = − sinx (23)

cos(x+ π) = − cosx (24)

sin(x+ 2π) = sinx (25)

cos(x+ 2π) = cosx (26)

Proof. To prove (21), let f(x) = sin(x + π
2 ) − cosx. We want to invoke Lemma 4. To do so,

let’s check that

f ′′(x) + f(x) = [− sin(x+
π

2
) + cosx] + [sin(x+

π

2
)− cosx] = 0

for all x ∈ R. Also,

f(0) = sin
π

2
− cos 0 = 1− 1 = 0,

f ′(0) = cos
π

2
+ sin 0 = 0 + 0 = 0.

So one can apply Lemma 4, and conclude that f(x) = 0 for all x ∈ R. This proves (21).
The proof of (22) is similar, and left to the reader.
Finally, (23) follows by first applying (21), and then (22):

sin(x+ π) = cos(x+
π

2
) = − sinx,

Similarly one can prove (24). Also, (25) follows from applying (23) twice:

sin(x+ 2π) = − sin(x+ π) = sinx.
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Similarly one can prove (26). �

We can now sketch the graph of sin and cos. First, from the periodicity established in the
earlier proposition, it suffices to sketch sin and cos on [0, π2 ]. But then this is easy: for instance,
to sketch sin, knowing that

sin 0 = 0, sin
π

2
= 1, sinx is continuous for x ∈ [0,

π

2
],

d

dx
sinx = cosx > 0 for x ∈ (0,

π

2
),

d2

dx2
sinx = − sinx < 0 for x ∈ (0,

π

2
),

allows us to sketch fairly well the graph of sin on [0, π2 ]; it is strictly increasing and concave
there. Similarly one can sketch the graph of cos on [0, π2 ], hence on the whole R by periodicity.

Another useful formula is

Proposition 11. For any x ∈ R,

sin(
π

2
− x) = cosx (27)

cos(
π

2
− x) = sinx (28)

Proof. To prove (27), just use (21) with x replaced by −x, and use that cos is even:

sin(
π

2
− x) = cos(−x) = cosx.

Similarly one can prove (28). �

If one wants to calculate the values of sin and cos at some special angles, we can also do so:

Proposition 12.

sinπ = 0 (29)

cosπ = −1 (30)

sin
3π

2
= −1 (31)

cos
3π

2
= 0 (32)

sin 2π = 0 (33)

cos 2π = 1 (34)

Proof. Just use (23) and (24) by setting x = 0, π
2 or π. �

Proposition 13.

sin
π

4
=

1√
2

(35)

cos
π

4
=

1√
2

(36)

sin
π

3
=

√
3

2
(37)

cos
π

3
=

1

2
(38)

sin
π

6
=

1

2
(39)

cos
π

6
=

√
3

2
(40)



6 PO-LAM YUNG

Proof. (35) follows from (11), (19) and (18):

sin2 π

4
=

1

2
(1− cos

π

2
) =

1

2

so from (18) we get sin π
4 = 1√

2
. Similarly one can prove (36).

To prove (37), note that from (12) and (29),

3 sin
π

3
− 4 sin3 π

3
= sinπ = 0.

Hence sin π
3 is a root of 3x− 4x3 = 0. Now we solve this cubic equation: if 3x− 4x3 = 0, then

x = 0, or 3− 4x2 = 0, so x = 0,±
√
3
2 . But sin π

3 > 0 by (18). Hence sin π
3 =

√
3
2 , as desired.

(38) then follows from (1) and (17):

cos2
π

6
= 1− sin2 π

6
= 1− 3

4
=

1

4

so cos π3 > 0 implies cos π3 = 1
2 .

Also, (39) follows from (27) and (38):

sin
π

6
= sin(

π

2
− π

3
) = cos

π

3
=

1

2
.

Similarly one can deduce (40). �

In what follows, we deduce some properties of tangent and cotangent: recall

tanx =
sinx

cosx
when cosx 6= 0, and

cotx =
1

tanx
=

cosx

sinx
when sinx 6= 0. Also

secx =
1

cosx
when cosx 6= 0, and

cscx =
1

sinx
when sinx 6= 0.

Proposition 14.

1 + tan2 x = sec2 x if cosx 6= 0 (41)

1 + cot2 x = csc2 x if sinx 6= 0 (42)

Proof. To prove (41), note that if cosx 6= 0, then

1 + tan2 x = 1 +
sin2 x

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

The proof of (42) is similar. �

The following is a compound angle formula for tangent:

Proposition 15. For all x, y ∈ R, we have

tan(x+ y) =
tanx+ tan y

1− tanx tan y
if cos(x+ y) 6= 0, cosx 6= 0 and cos y 6= 0 (43)

tan(x− y) =
tanx− tan y

1 + tanx tan y
if cos(x− y) 6= 0, cosx 6= 0 and cos y 6= 0 (44)

Proof. To prove (43), note that for x, y ∈ R, if cos(x− y) 6= 0, then

tan(x+ y) =
sin(x+ y)

cos(x+ y)
=

sinx cos y + cosx sin y

cosx cos y − sinx sin y
.

If further cosx 6= 0 and cos y 6= 0, then one divides both the numerator and denominator by
cosx cos y, and obtain (43).

(44) follows from (43) by replacing y by −y, and using that tan y = − tan y. �
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The following are formula that expresses sinx, cosx and tanx in terms of tan x
2 only. They

are useful formula in computing integrals involving trigonometric functions (via a technique
called t-substitution).

Proposition 16. For all x ∈ R, we have

tanx =
2 tan x

2

1− tan2 x
2

if cos
x

2
6= 0 and cosx 6= 0 (45)

sinx =
2 tan x

2

1 + tan2 x
2

if cos
x

2
6= 0 (46)

cosx =
1− tan2 x

2

1 + tan2 x
2

if cos
x

2
6= 0 (47)

Proof. (45) follows from (43) by replacing both x and y there by x
2 .

To prove (46), note that if cos x2 6= 0, we can simplify the denominator of the right hand side,
and obtain:

2 tan x
2

1 + tan2 x
2

=
2 tan x

2

sec2 x2
= 2 tan

x

2
cos2

x

2
= 2 sin

x

2
cos

x

2
= sinx

(the last equality following from (6).)
To prove (47), note that if cos x2 6= 0, we can simplify the denominator of the right hand side,

and obtain:

1− tan2 x
2

1 + tan2 x
2

=
1− tan2 x

2

sec2 x2
= (1− tan2 x

2
) cos2

x

2
= cos2

x

2
− sin2 x

2
= cosx

(the last equality following from (7).) �

Finally, here are some half-angle formula for tangent:

Proposition 17. For all x ∈ R, we have

tan
x

2
=

sinx

1 + cosx
if cos

x

2
6= 0 (48)

tan
x

2
=

1− cosx

sinx
if sin

x

2
6= 0 and cos

x

2
6= 0 (49)

Proof. To prove (48), note that if cos x2 6= 0, then by double angle formula (6) and (8), we have

sinx

1 + cosx
=

2 sin x
2 cos x2

2 cos2 x2
=

sin x
2

cos x2
= tan

x

2
.

To prove (49), note that if sin x
2 6= 0 and cos x2 6= 0, then by double angle formula (6) and

(9), we have
1− cosx

sinx
=

2 sin2 x
2

2 sin x
2 cos x2

=
sin x

2

cos x2
= tan

x

2
.

�


