THE TRIGONOMETRIC FUNCTIONS

PO-LAM YUNG

In this note we define the sine and cosine by the following power series. For any x € R, we
define
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This is possible since the radius of convergence of the two power series above are infinite. One
may thus differentiate term by term, and obtain that

d . q .
—sinz = cosz, and ——cosx = —sinzx.
dx ’ dx
Also, from this definition, it is clear that sin0 = 0, cos0 = 1, and sin(—z) = —sinz, cos(—x) =

cosx for all z € R.
Below we deduce all familiar properties of the sine and cosine from this definition.
The key is the following corollary of the mean value theorem:

Corollary 1. Suppose f: R — R is differentiable on R. If
fllz)=0
for all x € R, then f is constant on R; in particular, f(x) = f(0) for all x € R.
Hence we have:

Proposition 2.
sinz 4+ cos’z =1 for all z € R. (1)

Proof. Let

f(z) = sin® z + cos? z.

Then
£(0) =sin?0 + cos?0 = 1.
Also, f is differentiable on R, and
f'(z) = 2sinzcosz + 2cosz(—sinz) = 0

for all z € R. Hence Corollary 1 implies that f(z) = f(0) = 1 for all 2 € R, which is the desired
conclusion. O

Next we will prove the compound angle formula:

Proposition 3. For all x,y € R, we have

sin(z + y) = sinz cosy + cos xsiny (2)
sin(x —y) = sinx cosy — coszsiny (3)
cos(z +y) = coszcosy —sinxsiny (4)
cos(z — y) = cosz cosy + sinx siny. (5)

In fact, it is easy to see that (3) follows from (2) by replacing y by —y (and using that
sin(—y) = —siny, cos(—y) = cosy). Similarly, (5) follows from (4) by replacing y by —y. Hence
it suffices to prove (2) and (4).

To do so, one way is to proceed via the following result about differential equation:
1
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Lemma 4. Suppose f: R — R is a twice differentiable function, with
f"(x)+ f(x) =0 for allz € R,

and

Then f(z) =0 for all x € R.
It says the zero function is the only function that satisfies the conditions of the Lemma.
Proof of Lemma 4. We introduce two auxiliary functions F': R — R, G: R — R, such that
F(z) = f(z)cosz — f'(z)sinz, G(z)= f(z)sinx + f'(z)cosz
for all x € R. Then F' and G are both differentiable, and
F'(z) = —f(z)sinz + f'(z)(cosx — cosz) — f"(z)sinz =0
G'(x) = f(z)cosz + f'(z)(sinx — sinz) + f"(x) cosz =0

for all z € R (the last equalities uses the assumption f” + f = 0). Hence both F and G are
constants. Also, by our assumptions on f and f’, we have

F(0) = f(0)cos0 — f'(0)sin0 = f(0) =0

and
G(0) = f(0)sin 0+ £/(0) cos 0 = f'(0) = 0.
Hence
F(z)=0=G(z) forall z€R,
ie.

! 3 e
{f(m) cosx — f (:U) sinz =0 for all x € R.

f(z)sinz + f'(z)cosz =0

We now solve for f(x) by eliminating f’(x): we multiply the first equation by cosz, and the
second equation by sinz, and take the sum of the resulting equations. Then

(cos® x +sin® x) f(z) = 0
for all x € R, which by (1) implies f(z) =0 for all x € R, as desired. O
We can now prove (2) and (4).

Proof of (2). Fix y € R. Let f(x) = sin(z 4+ y) — sinz cosy — coszsiny. We want to show that
f(z) =0 for all z € R. To do so, we appeal to our lemma. First,

f"(x) = —sin(x + y) + sinx cosy + coswsiny = — f(x)
for all x € R, i.e. f(z)+ f(z) =0 for all z € R. Next,
f(0) =sin(0 + y) — sin0cosy — cos Osiny = 0.
Also,
f'(xz) = cos(x + y) — cosx cosy + sinzsiny

for all z € R. Hence

1'(0) = cos(0 + y) — cos O cosy + sinOsiny = 0.
By the lemma, it follows that f(z) = 0 for all z € R, as desired. O

The proof of (4) is similar, and left as an exercise.
From Proposition 3 we have the usual double angle formula:

Proposition 5. For all x € R, we have

=2sinxcosx

= cos’x —sin’x
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Proof. (6) and (7) just follows from (2) and (4) by setting y = . (8) and (9) follow from (7)

and an application of (1). O
Hence we have the half-angle formula:

Proposition 6. For all z € R, we have

1
cos’ x = 5(1 + cos 2x) (10)
. 9 1
sin“ x = 5(1 — cos 2x) (11)
Proof. Just rearrange (8) and (9). O

Sometimes the following triple-angle formula are also useful:
Proposition 7. For all x € R, we have
sin(3z) = 3sinz — 4sin’ (12)
cos(3z) = 4cos® z — 3cos (13)
Proof. For all x € R, we have (by the compound and double angle formula)
sin(3z) = sin(x + 2x)
= sin x cos 2z + cos z sin 2z
= sinz(1 — 2sin z) + 2sinz cos?
= sinz(1 — 2sin’ z) + 2sinz(1 — sin® z)
= 3sinz — 4sin’® z,
and
cos(3z) = cos(x + 2x)
= Ccos T cos 2 — sin x sin 2z
=cosz(2cos’z — 1) — 2sin®zcosx
=cosz(2cos’z — 1) — 2(1 — cos® z) cos =

3

= 4cos’x — 3cosx.

O

Also from Proposition 3, we have the following product-to-sum formula (allowing one to
convert the product of two trigonometric functions into a sum):

Proposition 8. For all z,y € R, we have

sinx cosy = %(sin(x +y) + sin(z — y)) (14)
COS T COSY = %(cos(m +y) + cos(z — y)) (15)
sinzsiny = %(cos(w —y) —cos(z +y)) (16)

Proof. (14) follows by averaging (2) and (3). (15) follows by averaging (4) and (5). (16) follows
by subtracting (4) from (5), and dividing by 2. O

Next, we look at why sine and cosine are periodic. We know cos0 = 1, and we claim cos2 < 0:
in fact cos 2 is defined by an alternating series, and thus

22 94
cos2:1—§+ﬂ—...
22 94
< 0.

Since cosz is continuous on R, there exists a smallest positive number a such that cosa = 0.
(Such a is unique.) We now make the following definition:
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Definition 1. We define the real number 7 so that
= 2a,
where a is as above.

Note that if we adopt this definition, then we will have to prove that the circumference of a
circle of radius 7 is 27r; that we will do when we learn about integration, which allows one to
make sense of the length of a curve.

Adopting the above definition of 7, we show the following:

Proposition 9.

cosx >0 forall z €0, g), (17)
and -
sinz >0 for all z € (0, 5] (18)
Also,
Cosg =0, (19)
and -
sin§ =1 (20)

Proof. (19) follows immediately from our definition of .

Now note that 7 is the first positive zero of cos, and that cos0 = 1 > 0. Hence by continuity
of cos, we conclude that (17) holds. In particular, % sinz = cosz > 0 for z € [0, §). Hence sin
is strictly increasing on [0, §]. Since sin0 = 0, it follows that (18) holds; in particular, sin § > 0.

We can now determine the value of sin 5. In fact, from (1), we get

Lo g T
= 21
sin 5 ~+ cos 5 s
so from (19), we get sin § = +1. But we already knew that sin § > 0, so sin § must be 1 (and
not —1). This proves (20). O
We can now prove the periodicity of sine and cosine:

Proposition 10. For all z € R, we have

sin(x + g) =coszw (21)
cos(x + g) = —sinx (22)
sin(r + m) = —sinz (23)
cos(z +m) = —cosx (24)
sin(x 4 27) = sinx (25)
cos(x + 2m) = cosx (26)

Proof. To prove (21), let f(x) = sin(z + §) — cosz. We want to invoke Lemma 4. To do so,
let’s check that

f"(z) + f(x) = [~ sin(z + g) + cos x| + [sin(z + g) —cosz] =0
for all x € R. Also,
£(0) :sing—COSOZ 1-1=0,
£(0) :cosg+sin0:0+0:0.

So one can apply Lemma 4, and conclude that f(x) = 0 for all € R. This proves (21).
The proof of (22) is similar, and left to the reader.
Finally, (23) follows by first applying (21), and then (22):

sin(z + ) = cos(x + g) = —sinz,
Similarly one can prove (24). Also, (25) follows from applying (23) twice:

sin(x 4 27) = —sin(z + 7) = sin .
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Similarly one can prove (26). O

We can now sketch the graph of sin and cos. First, from the periodicity established in the
earlier proposition, it suffices to sketch sin and cos on [0, 5]. But then this is easy: for instance,
to sketch sin, knowing that

. . . . . s
sin0 =0, sin 5= 1, sinz is continuous for = € [0, 5],

—sinz =cosz >0 for z € (0, g),

dx
d2
@sinx = —sinz <0 forz € (0, g),
allows us to sketch fairly well the graph of sin on [0, §]; it is strictly increasing and concave
there. Similarly one can sketch the graph of cos on [0, 7], hence on the whole R by periodicity.
Another useful formula is
Proposition 11. For any x € R,
sin(g —x)=cosx (27)
cos(g —x)=sinz (28)

Proof. To prove (27), just use (21) with x replaced by —z, and use that cos is even:
sin(g —x) = cos(—x) = cos .
Similarly one can prove (28). O

If one wants to calculate the values of sin and cos at some special angles, we can also do so:

Proposition 12.

sinm =0 (29)
cosm = —1 (30)
sinoF — 1 (31)
2
cos 3% =0 (32)
sin2r =0 (33)
cos2m =1 (34)
Proof. Just use (23) and (24) by setting z = 0, § or 7. O
Proposition 13.
T 1
sin — = — 35
4 V2 (35)
T 1
CoS — = — 36
4 V2 (36)
m \/3
in - =— 37
sin o 5 (37)
T 1
Z =z 38
cos ¢ =5 (38)
T 1
in— = — 39
sing =3 (39)
T V3
L_Ye 40
cos ¢ 5 (40)
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Proof. (35) follows from (11), (19) and (18):
. om 1 m 1
L Z(1—cos~) ==
sin” 2( cos 2) 5
so from (18) we get sin § = % Similarly one can prove (36).

To prove (37), note that from (12) and (29),

3sing — 4sin3% —sinw = 0.

Hence sin T is a root of 3z — 42® = 0. Now we solve this cubic equation: if 3z — 42® = 0, then

3

z=0,0or3—422=0,s0 z = 0,:&@. But sin § > 0 by (18). Hence sin § = V3 as desired.

2
(38) then follows from (1) and (17):

COSQ%:1—sinQ%:1—%:i
so cos 5 > 0 implies cos § = %
Also, (39) follows from (27) and (38):
T 1
sin — :sm(§ -—=)= cos o =35

Similarly one can deduce (40).

In what follows, we deduce some properties of tangent and cotangent: recall

sin x
tanx =
COS ¥
when cosz # 0, and
1 COS T
cotx = =

tanx sinx
when sinz # 0. Also

1
secx =
cos T
when cosz # 0, and
1
cSCx = —
sinz

when sinz # 0.

Proposition 14.
1+tan’z =sec’z ifcosx #0
1+cot’z=csc’>x ifsinz #0

Proof. To prove (41), note that if cosx # 0, then

1+ tan? 1+Sin2$ cos?z +sin z 1 9
an”xr = = = = sec” z.
cos? z cos? z cos? z

The proof of (42) is similar.
The following is a compound angle formula for tangent:

Proposition 15. For all z,y € R, we have

t t

tam(a:—l—y):M if cos(x +y) # 0, cosz # 0 and cosy # 0
1 —tanztany
t —t

tan(z — y) anr—tany if cos(x —y) #0, cosz # 0 and cosy # 0

1 + tanz tany
Proof. To prove (43), note that for z,y € R, if cos(x — y) # 0, then
sin(z +y) sinzcosy+ cosxsiny

t = = ’
an(z + y) cos(r +y) coszcosy —sinzsiny

(43)

(44)

If further cosx # 0 and cosy # 0, then one divides both the numerator and denominator by

cos x cosy, and obtain (43).
(44) follows from (43) by replacing y by —y, and using that tany = — tany.

O
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The following are formula that expresses sinx, cosz and tanx in terms of tan 5 only. They
are useful formula in computing integrals involving trigonometric functions (via a technique
called t-substitution).

Proposition 16. For all z € R, we have

2tan§ ) T
tanx = T tan2® if cos B #0 and cosx # 0 (45)
2
. 2tan Z . €T
sinz = m if cos B #0 (46)
2
1—tan%2 T
cosT = W if cos B #0 (47)
2

Proof. (45) follows from (43) by replacing both = and y there by 3.
To prove (46), note that if cos § # 0, we can simplify the denominator of the right hand side,

and obtain: N

5 T 9T . T x .
= 57 = 2tan - cos” o = 2sin ;5 cos - =sinx
1 + tan” 5 sec” 5 2 2 2 2
(the last equality following from (6).)

To prove (47), note that if cos § # 0, we can simplify the denominator of the right hand side,
and obtain:

2 tan % 2 tan

1—tan?Z 1 —tan’% " . . .
2 2 2 2 2 .2
1+tan2%: sec? & = (1 - tan §)COS 5 =cos" 5 —sin o =cosz
(the last equality following from (7).) -

Finally, here are some half-angle formula for tangent:

Proposition 17. For all x € R, we have

x sinz x
tan = = 0T ifcos L £ 0) 48
Y 1+cosz ZJCCOSQ7é (48)
1—
tan%z% ifsing;é() andcos%;ﬁo (49)
Proof. To prove (48), note that if cos § # 0, then by double angle formula (6) and (8), we have
sinx _ 2sin 5 cos 5 _ sin 5 R
1+ cosz 2cos? § cos 3 2

To prove (49), note that if sin § # 0 and cos § # 0, then by double angle formula (6) and
(9), we have

1—coszx 2sin? % sin % . T
- = — = = tan —.
sinx 2sin % coS % cos % 2




