
BASIC GEOMETRY OF HOLOMORPHIC MAPS

PO-LAM YUNG

In this short note, we will discuss some basic geometry of mappings defined by holomorphic
functions. Write B(z0, r) for an open ball of radius r centered at z0, i.e.

B(z0, r) := {z ∈ C : |z − z0| < r}.

Proposition 1. Suppose f : Ω → C is a non-constant holomorphic function on an open
connected set Ω ⊆ C. If z0 ∈ Ω, w0 = f(z0), and k is the order of vanishing of f(z) − w0

at z = z0, then there exists an open set U ⊂ Ω, and an open set V ⊂ C containing w0,
such that for every w ∈ V \ {w0}, there exists exactly k distinct z1, . . . , zk ∈ U such that
f(z1) = · · · = f(zk) = w. In short, we say that f is locally k to 1 near z0.

Proof. First notice that there exists a non-zero constant ak ∈ C and some holomorphic
function g on Ω, such that

f(z)− w0 = ak(z − z0)k + g(z)

for all z ∈ Ω, and such that g(z) vanishes at z0 to order ≥ k + 1. As a result,

lim
z→z0

g(z)

ak(z − z0)k
= 0.

Hence there exists δ > 0, such that

|g(z)| ≤ 1

2
|ak||z − z0|k

for all z with 0 < |z − z0| ≤ δ. Now for w close to w0, we want to find solutions z to the
equation f(z) = w with z close to z0. So we write

f(z)− w = ak(z − z0)k + g(z) + (w − w0).

We know how many roots ak(z − z0)k has, and we want to apply Rouché’s theorem. So we
would estimate the size of |g(z) + (w −w0)| on the boundary of some curve surrounding z0,
and compare it to |ak(z − z0)k| over that curve.

Let’s take that curve to be a circle of radius δ around z0, where δ is chosen as above. So
let U := B(z0, δ). Then for z on the boundary of U , we have

|g(z) + (w − w0)| ≤ |g(z)|+ |w − w0| ≤
1

2
|ak(z − z0)k|+ |w − w0|

for all z on the boundary of U . This suggests that we take V := B(w0,
1
2
|ak|δk). Then for

every w ∈ V , we have
|g(z) + (w − w0)| < |ak(z − z0)k|

for all z on the boundary of U . This allows us to apply Rouché’s theorem on U to the
functions ak(z − z0)k and ak(z − z0)k + g(z) + (w − w0) = f(z) − w: we conclude that for
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every w ∈ V , the function f(z) − w has exactly k zeroes in U . If w 6= w0, then z 6= z0,
and by shrinking δ if necessary, we may assume that f ′(z) 6= 0 for all z ∈ U \ {z0}. In that
case, all zeroes of f(z)−w are simple. This shows that for every w ∈ V \ {w0}, the function
f(z)− w has exactly k distinct zeroes in U , which is our desired conclusion. �

We remark that if k = 1, and if U0 := U ∩ f−1(V ), then f is a biholomorphism from U0

to V . More generally, for a general k, if U0 := U ∩ f−1(V ), then f is a k-to-1 covering of V
by U0.

Corollary 2. If f is an injective holomorphic function on an open set Ω ⊂ C, then f ′(z) 6= 0
for every z ∈ Ω.

Proof. If f ′(z0) = 0 for some z0 ∈ Ω, then from the previous proposition, f is locally k to 1
for some k ≥ 1. So f cannot be injective. �

Proposition 3. If f is holomorphic on an open set containing a point z0 and f ′(z0) 6= 0,
then f preserves angles at z0.

Proof. Suppose γ1 and γ2 are two curves in the open set with γ1(0) = γ2(0) = z0, and
γ′1(t) 6= 0, γ′2(t) 6= 0 for all t. Let θ be the angle from γ1 to γ2 at z0. Then

γ′2(0)

|γ′2(0)|
= eiθ

γ′1(0)

|γ′1(0)|
.

Since (f ◦ γ1)′(0) = f ′(z0)γ
′
1(0), and similarly (f ◦ γ2)′(0) = f ′(z0)γ

′
2(0), from f ′(z0) 6= 0, we

also get
(f ◦ γ2)′(0)

|(f ◦ γ2)′(0)|
= eiθ

(f ◦ γ1)′(0)

|(f ◦ γ1)′(0)|
.

Hence the angle from f ◦ γ1 to f ◦ γ2 at f(z0) is also θ. �

In particular, we also have

Proposition 4. If f is holomorphic on an open set containing a point z0 and f ′(z0) 6= 0,
then f preserves orientation at z0.

Let’s give a direct proof of this proposition using Jacobian determinants (which extends
to higher dimensions).

Proof. Let f(z) = u(x, y) + iv(x, y) where u(x, y) = Re f(x+ iy) and v(x, y) = Im f(x+ iy).
Then the Jacobian matrix is (

∂xu ∂yu
∂xv ∂yv

)
=

(
∂xu −∂xv
∂xv ∂xu

)
by the Cauchy–Riemann equations. Thus, the determinant of the Jacobian matrix is

(∂xu)2 + (∂xv)2 = |f ′(z)|2,
which is positive by assumption. This shows that f preserves orientation at z0. �
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Finally, we have the following inverse function theorem in one complex variable:

Proposition 5. If f : U → V is bijective and holomorphic, then its inverse g := f−1 : V → U
is also holomorphic.

In particular, being biholomorphic defines an equivalence relation between domains in C.

Proof. Let w0 ∈ V , and z0 = g(w0). We claim that g(w) is continuous at w0. Indeed, for
any ε > 0, the set f(B(z0, ε)) is an open set containing w0, by the open mapping theorem.
Hence there exists some δ > 0 such that B(w0, δ) ⊆ f(B(z0, ε)), i.e. g(B(w0, δ)) ⊆ B(z0, ε).
This shows that for any w with |w−w0| < δ, we have |g(w)−z0| < ε, i.e. |g(w)−g(w0)| < ε.
Hence g(w) is continuous at w0.

Now we have shown that f ′(z0) 6= 0. Thus

lim
z→z0

z − z0
f(z)− f(z0)

=
1

f ′(z0)
.

This says for any ε > 0, there exists δ > 0, such that

(1)

∣∣∣∣ z − z0
f(z)− f(z0)

− 1

f ′(z0)

∣∣∣∣ < ε

whenever 0 < |z − z0| < δ. By continuity of g(w) at w0, there exists δ′ > 0 such that
|g(w)− g(w0)| < δ whenever |w−w0| < δ′. As a result, whenever 0 < |w−w0| < δ′, we have
0 < |g(w)− z0| < δ, and from the choice of δ as in (1) we have∣∣∣∣ g(w)− z0

f(g(w))− f(z0)
− 1

f ′(z0)

∣∣∣∣ < ε,

i.e. ∣∣∣∣g(w)− g(w0)

w − w0

− 1

f ′(z0)

∣∣∣∣ < ε.

This proves that g is differentiable at w0, and that

g′(w0) =
1

f ′(z0)
.

�
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