
MATH4060 Exercise 6

You are not required to submit your solutions to this Homework.

Revision Exercises.

1. Find the Hadamard factorization of the function ez
2 − 1. (Hint: First factorize ez − 1.)

2. Let f : C→ C be entire, with f(0) = 1. Let Dr be the open disc {z ∈ C : |z| < r}, and Cr be
the boundary of Dr.

(a) State (without proof) an identity that relates the average of log |f | on Cr to the zeroes
of f . You should indicate the condition(s) on r for which your identity holds.

(b) Let n(r) be the number of zeroes of f inside the disc Dr. If there exists real numbers
A,B > 0 such that |f(z)| ≤ AeB|z|

ρ
for all z ∈ C, deduce, using the identity you stated

in part (a), an upper estimate for the growth of n(r) as r → +∞.

3. (a) Let {wk}∞k=1 be an absolutely summable sequence of complex numbers, with |wk| ≤ 1/2
for all k ∈ N, and let

S :=
∞∑
k=1

|wk| <∞.

Show that there exists a constant C, depending only on S (and not on the specific
sequence {wk}∞k=1), such that for all K1,K2 ∈ N with K1 < K2, we have∣∣∣∣∣

K1∏
k=1

(1− wk)

∣∣∣∣∣ ≤ C and

∣∣∣∣∣
K2∏
k=1

(1− wk)−
K1∏
k=1

(1− wk)

∣∣∣∣∣ ≤ C2
K2∑

k=K1+1

|wk|.

You may use freely without proof the following estimate:

|Log (1− w)| ≤ 2|w| whenever |w| ≤ 1/2.

(Here Log is the principal branch of the logarithm.)

(b) Let τ ∈ C with Im τ > 0. Let Λ = {m+ nτ : m,n ∈ Z} be the lattice generated by 1 and
τ , and {τk}∞k=1 be an enumeration of Λ \ {(0, 0)}. Let

E2(z) := (1− z) exp

(
z +

z2

2

)
.

Show that

σ(z) := z

∞∏
k=1

E2

(
z

τk

)
defines an entire function of z of order 2, has simple zeroes at all points of Λ, and does
not vanish anywhere on C \Λ. You may use freely without proof the following estimate:

|1− E2(z)| ≤ 2e|z|3 whenever |z| ≤ 1/2.

4. The Γ function is defined, for Re s > 0, by the integral

Γ(s) =

∫ ∞
0

e−tts−1dt.

You may assume known that Γ is holomorphic on the half plane where Re s > 0. The goal of
this problem is to show that Γ extends meromorphically to C, and that 1/Γ is entire.
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(a) State (without proof) a formula relating Γ(s+ 1) to Γ(s), that holds for Re s > 0.

(b) Using the formula you stated in (a), explain how one extends Γ to a meromorphic function
on C. You should specify where all the poles of Γ are, and the order of each pole.

(c) State (without proof) a formula relating Γ(s) to Γ(1− s).

(d) Using the formula you stated in (c), explain why
1

Γ(s)
is an entire function of s.

5. Let ϑ(t) be defined by

ϑ(t) =
∞∑

n=−∞
e−πn

2t

for t > 0. By applying the Poisson summation formula, establish a formula relating ϑ(t) and
ϑ(1/t). You may assume known that the Fourier transform of e−πx

2
is e−πξ

2
.

6. Let D be the open unit disc {z ∈ C : |z| < 1}.

(a) Prove the following version of Schwarz lemma: if f : D→ D is holomorphic, and f(0) = 0,
then |f(z)| ≤ |z| for all z ∈ D. State also what happens when the last inequality is an
equality at some z0 ∈ D \ {0}, and justify your claim.

(b) Suppose h : D → D is a biholomorphism with h(0) = 0. How can you use the result in
part (a) to say something interesting about h?

7. Let Ω be an open, connected and simply connected subset of C.

(a) Let f be a holomorphic function on Ω.

(i) Show that f has a primitive on Ω, i.e. there exists a holomorphic function F on Ω
such that F ′ = f .

(ii) If, in addition, f(z) 6= 0 for every z ∈ Ω, show that there exists a holomorphic g on
Ω such that eg(z) = f(z) for all z ∈ Ω. Hence show that for any positive integer m,
there exists a holomorphic function h on Ω such that h(z)m = f(z) for all z ∈ Ω.
(g and h are called a logarithm and an m-th root of f on Ω, respectively.)

(b) Suppose Ω 6= C. Using part (a), or otherwise, construct an injective holomorphic map
h : Ω→ C so that the image h(Ω) is a bounded subset of C.

8. (a) Let Ω be a connected open subset of C, and f : Ω → C be a non-constant function on
Ω. Suppose fn : Ω→ C is a sequence of injective holomorphic functions on Ω, such that
for every compact subset K of Ω, the sequence of functions fn converges uniformly to a
function f on K. Show that f injective on Ω.

(b) Explain, in one sentence, how the result in part (a) is used in the proof of the Riemann
mapping theorem.

9. Let D be the open unit disc in the complex plane centered at the origin. F be the family of
holomorphic functions given by

F = {f : D→ D holomorphic and f(0) = 0}.

Show that there exists some g ∈ F such that

g′′(0) = sup
f∈F
|f ′′(0)|,

and find the value of this supremum.



2018-19 First Term MATH4060 3

Additional Exercises about conformal maps

1. Let Ĉ be the extended complex plane C ∪ {∞}. A mapping T : Ĉ→ Ĉ of the form

T (z) =
az + b

cz + d

where a, b, c, d ∈ C with ad − bc 6= 0 is called a Möbius transformation. (Here we interpret
T (∞) = ∞ if c = 0, and interpret T (−d/c) = ∞, T (∞) = a/c if c 6= 0.) Show that the set
of all Möbius transformations form a group under composition; in particular, if

T (z) =
az + b

cz + d
and S(z) =

a′z + b′

c′z + d′
,

then

(T ◦ S)(z) =
Az +B

Cz +D
where

(
A B
C D

)
=

(
a b
c d

)(
a′ b′

c′ d′

)
.

2. A translation is a map of the form z 7→ z + b for some b ∈ C. A (complex) dilation is a map
of the form z 7→ az for some a ∈ C \ {0}. The map z 7→ 1/z is called an inversion. Show
that any Möbius transformation can be written as compositions of translations, (complex)
dilations and inversions.

3. For any quadtuple (z1, z2, z3, z4) ∈ Ĉ4, we define its cross ratio by

[z1, z2, z3, z4] :=
(z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

∈ Ĉ

(This is well-defined if z1, z2, z3, z4 are all distinct and in C; we then extend by continuity to
a continuous function from Ĉ4 to Ĉ. It is called a cross ratio, because it can be written as
z1−z3
z2−z3 : z1−z4

z2−z4 .)

(a) Show that for any distinct z2, z3, z4 ∈ Ĉ, there exists a unique Möbius transformation T
such that T (z2) = 1, T (z3) = 0 and T (z4) = ∞. Indeed, such T is given by the cross
ratio

T (z) = [z, z2, z3, z4].

(b) Show that Möbius transformations preserve the cross ratio; i.e.

[S(z1), S(z2), S(z3), S(z4)] = [z1, z2, z3, z4]

for any Möbius transformation S and any z1, z2, z3, z4 ∈ Ĉ. (Hint: Either use Question 2,
or note that it suffices to show that for fixed distinct z2, z3, z4 ∈ Ĉ, we have

[z, S(z2), S(z3), S(z4)] = [S−1(z), z2, z3, z4] for all z ∈ Ĉ.

This last identity follows from part (a), since the right hand side is a Möbius transfor-
mation that sends S(z2), S(z3), S(z4) to 1, 0,∞ respectively.)

4. A generalized circle in Ĉ is either a straight line (including the point {∞}), or a circle in C.

(a) Show that any Möbius transformation maps the real axis into a generalized circle. (Hint:
This can be done by a direct computation. Let T be a Möbius transformation. If
w = T (x) for some x ∈ R, then T−1(w) = T−1(w). Writing T−1(w) = aw+b

cw+d for some
a, b, c, d ∈ C shows that w lies on a generalized circle.)
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(b) Suppose z1, z2, z3, z4 ∈ Ĉ. Show that the four points lie on a generalized circle, if and
only if [z1, z2, z3, z4] ∈ R ∪ {∞}. (Hint: Without loss of generality assume that the four
points z1, z2, z3, z4 are distinct. Now let

T (z) := [z, z2, z3, z4]

be the Möbius transformation that maps z2, z3, z4 to 1, 0,∞ respectively. Then

[z1, z2, z3, z4] ∈ R ∪ {∞} ⇔ T (z1) ∈ R ∪ {∞} ⇔ z1 ∈ T−1(R ∪ {∞}),

so one just needs to note that T−1(R∪{∞}) is the generalized circle that passes through
z2, z3, z4.)

(c) Show that any Möbius transformation maps generalized circles to generalized circles.
(Hint: Use part (b) and that Möbius transformations preserve cross ratios. Alternatively,
one can use Question 2. Then one just needs to show, by direct computation, that each
of the three basic kinds of Möbius transformations preserves generalized circles. The only
difficult case is when T (z) = 1/z. But first let C be the circle in C given by the equation
|z − a|2 = r2 for some a ∈ C and r > 0. Dividing by |z|2, and expanding, this equation
can be rewritten as

(|a|2 − r2)
∣∣∣∣1z
∣∣∣∣2 − a

z
− ā

z̄
+ 1 = 0.

Let w = 1/z. Depending on whether r = |a| or not, this is the equation of a straight line
or a circle in the w-plane. Similarly, if C is the straight line given by bz + b̄z̄ = c, then
the equation of C can be rewritten as

c

|z|2
− b

z̄
− b̄

z
= 0,

which is the equation of a circle or a straight line in the w-plane if w = 1/z.)

5. In this question we prove a special case of the so called three-lines lemma, which is useful for
the next question.

Let S be the vertical strip {z ∈ C : a < Re z < b} for some a, b ∈ R. Let f : S → C be
a holomorphic function on S, that extends continuously to the closure S of S. Suppose f
is bounded on S (possibly by some very large constant M). If C is a constant for which
|f(z)| ≤ C for all z on the boundary of S, show that |f(z)| ≤ C for all z ∈ S. (This is a
generalization of the maximum modulus principle to an unbounded domain.)

(Hint: Apply the maximum modulus principle to the function eεz
2
f(z) on S for ε > 0, and

then let ε → 0+. The whole point here being that |eεz2f(z)| → 0 as Im z → ±∞, whenever
ε > 0. You should check that this is indeed the case.)

6. For each r > 1, let Ar be the annuli {z ∈ C : 1 < |z| < r}. The goal of this question is to
show that if r1, r2 are both greater than 1, and r1 6= r2, then there is no biholomorphic map
from Ar1 onto Ar2 .

Suppose f : Ar1 → Ar2 is a biholomorphic map for some r1, r2 > 1. We will show that r1 = r2.

(a) Show that if δ > 0 is sufficiently small, then

either f(A1+δ) ⊂ A√r1 , or f(A1+δ) ⊂ Ar1 \A√r1 .

In the latter case, by replacing f by r2/f , we may reduce to the first case. Hence from
now on, we assume that f(A1+δ) ⊂ A√r1 whenever δ is sufficiently small.
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(b) Show (after the renormalization in part (a)) that

lim
δ→0+

(
max
|z|=1+δ

|f(z)|
)

= 1, and lim
δ→0+

(
min
|z|=r1−δ

|f(z)|
)

= r2.

(c) Write Log for the natural logarithm of the positive number. Show that the map w 7→ ew

maps the vertical strip S := {w ∈ C : 0 < Rew < Log r1} into Ar1 .

(d) Part (c) allows us to define a holomorphic map g : S → Ar2 , by

g(w) = f(ew).

Let α =
Log r2
Log r1

. Show that

|g(w)| = |eαw| for all w ∈ S.

(Hint: Apply the three-lines lemma to the bounded holomorphic functions g(w)/eαw, and
eαw/g(w), on the slightly smaller vertical strip {w ∈ C : η < Rew < Log r1 − η} than S,
and let η → 0+.)

(e) Using part (d), show that there exists a constant c with |c| = 1 such that

f(ew) = ceαw for all w ∈ S.

(f) Show that α is an integer. (Hint: Replace w by w + 2πi in the formula in part (e).)

(g) Conclude that
f(z) = czα for all z ∈ Ar1 .

Since f is injective, it follows that α = 1, and hence r1 = r2.


