THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics 2018-2019 semester 1 MATH4060 week 7 tutorial

Underlined contents were not included in the tutorial because of time constraint, but included here for completeness.

Some properties of function order were discussed. The order of Θ was computed as in exercise 3 of Chapter 5 of Stein and Shakarchi's Complex Analysis. An equivalent definition of function order is given in Proposition 1 as in Chapter IX.2 of Conway's Functions of One Complex Variable. The order of a general Taylor series is computed in Corollary 3 as in problems 3 and 4 of Chapter 5 of Stein and Shakarchi's Complex Analysis.

For the function order of $\Theta(\cdot|\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau} e^{2\pi i n z}$, see solution to Homework 3.

Proposition 1. Let f be an entire function of order ρ . Let $M(r) = \sup_{|z|=r} |f(z)|$. Then

$$
\rho = \limsup \frac{\log \log M(r)}{\log r}
$$

Proof. Denote the limit superior by λ . Recall by definition

 $\rho = \inf \{ \sigma : |f(z)| \leq \exp(A|z|^{\sigma}) \}$ for some positive constants $A, B \}.$

For $\lambda \leq \rho$,

 $|f(z)| \leq A \exp(B|z|^{\sigma})$ $|f(z)| \leq \exp((B+1)|z|^{\sigma})$(if |z| large enough) $M(r) \leq \exp((B+1)r^{\sigma})$ $\log \log M(r) \leq \log B + \sigma \log r$ $\log \log M(r)$ $\log r$ $\leq \frac{\log B}{1}$ $\log r$ $+ \sigma$

The inequality then follows by taking limit superior on both sides and letting $\sigma \to \rho$.

For $\lambda \leq \rho$,

For r large enough,

$$
\frac{\log \log M(r)}{\log r} \le \lambda + \varepsilon
$$

$$
M(r) \le \exp(r^{\lambda + \varepsilon})
$$

$$
|f(z)| \le \exp(|z|^{\lambda + \varepsilon})
$$

Then by definition, $\lambda + \varepsilon \ge \rho$. The result follows by letting $\varepsilon \to 0$.

 \Box

Proposition 2. Let $f(z) = \sum a_n z^n$ be entire. Let $\rho < +\infty$. Then the order of f is at most ρ iff $|a_n|^{1/n} = O(\frac{1}{n^{1/\rho}})$.

Proof. Suppose $|f(z)| \leq Ae^{B|z|^\sigma}$. By Cauchy integral formula, $|a_n| \leq \frac{Ae^{BR^\sigma}}{R^n}$, where differentiating shows the optimal R is $\left(\frac{n}{B\sigma}\right)^{1/\sigma}$. This gives

$$
|a_n|^{1/n} \le A^{1/n} \left(\frac{eB\sigma}{n}\right)^{1/\sigma}
$$

Necessity then follows by letting $\sigma \to \rho$.

Conversely, suppose $|a_n|^{1/n} = O(\frac{1}{n^{1/\rho}})$. Then $|f(z)| \leq \sum_{n \geq 0} (\frac{C}{n^{1/\rho}})^n |z|^n = \sum_{n \geq 0} (\frac{C|z|}{n^{1/\rho}})^n$, and hence

$$
|f(z)| \le \sum \left(\frac{C|z|}{n^{1/\rho}}\right)^n
$$

\n
$$
\le \sum_{n^{1/\rho} \le 2C|z|} \left(\frac{C|z|}{n^{1/\rho}}\right)^n + \sum_{n^{1/\rho} > 2C|z|} \left(\frac{C|z|}{n^{1/\rho}}\right)^n
$$

\n
$$
\le (2C|z|)^{\rho} (C|z|)^{(2C|z|)^{\rho}} + \sum (1/2)^n
$$

\n
$$
\le \exp(\rho \log(2C|z|) + 2C|z|^{\rho} \log(C|z|)) + 2
$$

\n
$$
\le \exp(2C|z|^{\rho+\epsilon})
$$

The result then follows by letting $\varepsilon \to 0$.

Corollary 3. Let $f(z) = \sum a_n z^n$ be entire and of order ρ , not necessarily finite. The order of f is given by

$$
\limsup -\frac{n\log n}{\log|a_n|}
$$

 \Box