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2.11 Cauchy integral formula gives
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where w = Re®. Let ( = R*/z. Then |¢| > R, and hence f(w)/(w — () is

z

zZ—w

holomorphic on B(0, R). Then 5- 02# flw)Z=dt = ﬁfaB(o R) i(—i”c)dw = 0. Note
=1+ (zf”w) Summing the two equations gives
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Part b follows from direct computation.

a.

Define v(z) = [ (—uydz+u,dy), which is well defined by simple-connectedness
of D. Then f = wu + v satisfies Cauchy-Riemann equations and hence is
holomorphic. Then Rf = u. For uniqueness, since the difference of the two
holomorphic function has a constant real part (namely 0), the difference is a
constant, and hence the imaginary part is also determined up to a constant.

Apply the formula in 2.11(a) on f defined in (a). Consider the real part.

By mean-value property of the harmonic function log |l — z|, the integral is
2malog |1 — 0] = 0.

By dominated convergence theorem, it suffices to dominate log |1 — ae®| for
0] <7 asa— 17. It is claimed that

£(6) = {ylogw/zu if [0] <&

log|1 — €| +n otherwise

is a such a dominator for suitable €,7 > 0. By integration by parts, it is inte-
grable. It remains to show it indeed dominates the functions. For |#| > ¢ and a
suitable ¢, |ae®® — 1| > |sinf| > |0|/2, and hence |log |1 — a,e?|| < |log|0/2|.
For |0] > &, log|re®| is uniformly continuous on B(0,1)\ {|arg 2| < ¢}, the
convergence is uniform, and hence log |1 — €| + 1 eventually dominates the
functions.
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5.2

. E = {u(r) = maxu} is closed by continuity. It is also open: if u(xy) = maxu,

then by mean-value property, u(z) = maxu for x € 0B(xo, p), and hence by
letting p vary, for © € B(xg,r). Then by connectedness, E is either the whole
set, in which case u is constant; or the empty set, in which case u does not
attain the maximum.

. By compactness, the maximum is attained on . Since it is not attained on €,

it is attained on 2\ Q. The result then follows.

. claim: f(2) = - fB(z ry J if [ is holomorphic on B(z, R).

Parametrizing Cauchy integral formula gives f(z) = % OQW f(z+ pe)dt. Since
dA = pdpdf, the claim then follows by multiplying by p and integrating wrt p

from 0 to R.
By considering z € B(z, s) and R =1 —3s, || f|| 1o(Ds(20)) < m”f”LQ(B(zw))-

. Cover the compact set with finitely many B(z;,;)’s such that B(z;,2r;) C U.

It suffices to show uniform convergence on each B(z;, ;). Since {f,} is Cauchy
in L*(U), it is Cauchy in L?*(B(z;, 2r;)), and hence by part (a), in L=(B(z;,1;)).
The result then follows from the completeness of L> and Morera’s theorem.

1. Since log R = o(R*) as R — oo for every s > 0, nlog|z| < |z|°, and hence

|2"| < exp(|z|™) for large |z| for every s > 0. Therefore, the order is 0.

. Since |exp(bz")| = exp(R(bz")), where u = R(bz") is a polynomial of degree

at most n, and hence u = o(|z|"*¢) for every € > 0, and hence the order is at
most n.

Putting zg = b/7|b|1/nR, such that f(zgr) = exp(|b|R™) > 0. Taking log shows
it is impossible that f(zg) < Aexp(BR" ¢), so the order is indeed n.

3. Consider positive z and take log. The order is co.

5.3 Let t = S

Note that —n?®t + 2|n||z| < —in?t if n > 4|z|/t. Then

|(")(Z‘7')| < Ze—ﬂn2t627r|n\|z|

—1l.n2 _n2
< § e 27rnt+ § e t627r\nHz|

n>4|z|/t n<4|z|/t

< Ze—%ﬂn%_i_ Z e—ﬂn2t6(8ﬂ'/t)|z\2

n<d|z|/t

< Yy Y et
_ O 4 CelE /I
< CeCMQ

Therefore, the order is at most 2. To show equality, observe that O(z + 7|7) =
e~ mT2)Q(2|7). Then O(z 4 k7|7) = e ™=+ 1)Q(2|7). Now, if k is large enough,
|z 4+ k7| < 2k|7|, and in particular, if z € R,

|@(Z+I€T|T>| _ e—7rk2%7—|®<z|7_)| Z 6_7r|2+k7—|2%7—/(4|7‘2)|®<Z|T)|,



The result then follows if ©(-|7) is not identically zero, and hence ©(z|T) # 0 for
some real z. Since O(+|7) is a Fourier series on R with nonzero coefficients, it is not
identically zero. The result then follows.

5.4 a. Fix z such that |z| is large. Define F} and F} as in the hint, with NV being the
last integer such that Nt — |z] < 1(;gﬂ— 2. Then if |2] is large enough,

1 1
t8|z|§N<N—|—1§ e

2.

We first show that |F5(2)| is bounded between positive constants, or rather, its
log is bounded.

log |Fo(2)| = Z log |1 — e~ 2™,

n>N

Taylor expansion gives
1
5 lwl < [log(1 —w)| < 2fuw|

for |w| < 1/2, and indeed by the choice of N, |e™?™"e?™#| < 1/2, hence
$|G(2)| < log|Fy(2)| < 2|G(z)|, where

G(Z) — § 6727rnt€2mz _ 67271'(N+1)t627r1z.
_ p—2mt
1—e
n>N

Then by maximality of N, we have

g2t 1 1 1
<|G <
2 1 — e 27t — | (Z)| — 921 — g 2nt
Combining,
6—27rt 1
11 omam SloglF2(2)] < =

Boundedness of |Fy(z)| by positive constants then follows.
Now it suffices to consider F}. Since |e™?™e?™#| > 1/2 and hence

|1 . 6727rnt€27r1z| <1+ 6727rnt€27r|z\ < 3627r|z\’

|F1(z)| < H |1 . e—27rnt€27riz|

< 3Ne27TN\z|
1
< exp(~—— (2| log3 + 211
1+2
< exp( i 6(27r\,>:|2))...|z] sufficiently large

Therefore, F' is of order at most 2.



To show the order is indeed 2, let 2, = 1/2 — kt. Then kt < |2z| < (1 +¢)kt
for k sufficiently large. Since

|1 _ e—27rnt627rzz| -1 + 6—27rnt627rkt Z 6—27rnt627rkt’

N
|F1(Z)| > H 6727rnte27rkt

1
=exp(—mN(N + 1)t + 2nNkt)

— &
|2kl (= (1 + &) 2] + 2

> exp(

Tyl

Note that the argument of exp in the last line is a quadratic in |z;| with a
positive exponent if ¢ is sufficiently small. Therefore, |Fy(2;,)| > Aexp(B|z]?),
and the result follows.

b. A factor vanishes precisely when i(z + 2m) = nt, so the function vanishes at
z = —int +m.
For exponent = —2,

-2 1

For exponent < —2, it suffices to consider m,n > 0 by symmetry, and m,n > 0
. o0 )
since )~ 1/5% < o0.

<1
Z!ntml25_+ /nl/ ”tm’26

n,m>0 n m>0
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5.5 Holomorphicity on |z| < M follows from Morera’s theorem and Fubini’s theorem.
To show the order is at most «/(« — 1), by Young’s inequality, which bounds cross
terms,

|t] < Celo] /7Y +eft?,



(The basic Young’s inequality says |ab| < % + % if p¢g>1and 1/p+1/q=1.
Replacing a and b by a/é and &b, where § is chosen according to e, gives |ab| <
C.lalP + €|b|?.)
hence

()| < / o7 (CIaI/ D elaf® gy o Clzfe/ D / e~ (=2l gy

where the integral is a finite number independent of z.

For the reverse inequality, put z = —iR so that the integrand is positive. Then the
integral on R is bounded below by the integral on [M — 1, M], where M = R'/(e=1),
On this interval, the integrand is bounded below by exp(—M*+2rRM) = exp((27—
1)RY/(@=1)) if R is large enough. The result then follows.

5.6 Plug in z = 1/2 into sinmz = w2z [[[1 — (2/n)?].

5.7 a. Taylor approximating log at 1 quadratically gives | log(1+a,) — a,| < Cla,|?, so
the by Cauchy criterion, convergence of either > log(1 + a,) or > a, implies
that of the other whenever Y |a,|? converges.

b. Let 0 <2, <1, 2, = 0but > 22 = oo, say, , = 1/(n + 1)179/2 Let

{xm /2 if m even
Ay =

—:E(m+1)/2 if m odd .

> anm is convergent because it is an alternating sum with terms vanishing at
infinity. The divergence of [[(1+4a,,) follows from that of > log(1+4a,,), which,
by grouping each pair of terms, is Y- log(1 — z2) < —3 Y 22 = —o0.

c. ap=—1and a, =1for n > 1.
5.8 Fix z. Repeated application of the double-angle formula for sine gives

sinz ,sin(z/2")

/

z z/2n

= cos(z/2) cos(z/4)...cos(z/2").

The result follows from letting n — oc.

5.9 Inductively, [[5(1 4 2%) = ZSHI_I 23, The result follows from letting n — oco.



