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Abstract. We apply the techniques developed in [2] to study smoothings of a pair (X,C∗), where
C∗ is a bounded perfect complex of locally free sheaves over a degenerate Calabi-Yau variety X. In
particular, if X is a projective Calabi-Yau variety admitting the structure of a toroidal crossing space
and with the higher tangent sheaf T 1

X globally generated, and F is a locally free sheaf over X, then
we prove, using the results in [8], that the pair (X,F) is formally smoothable when Ext2(F,F)0 = 0
and H2(X,OX) = 0.

1. Introduction

1.1. Background. After pioneering works of Quillen, Deligne and Drinfeld, it is now a universally
accepted philosophy that any deformation problem over a field of characteristic zero should be
governed by the Maurer-Cartan equation of a differential graded Lie algebra (abbreviated as dgLa)
or L∞-algebra. Lots of works have been done in this direction; see e.g. [9, 10, 11, 12, 25, 26, 28, 30,
34, 35, 36, 37, 39]. In many cases, the existence of an underlying dgLa facilitates the use of algebraic
techniques in solving the relevant geometric deformation problem.

An important problem of such kind is the deformation theory of a pair (X,F), where X is an
algebraic variety and F is a coherent sheaf over X. When X is smooth, this problem has been
studied in detail in [23, 24, 33, 38, 41], and the approach using dgLa was also carried out in [4]
when F is locally free and in [27] when F is a general coherent sheaf. For singular X, the only
known case seems to be when X is a reduced local complete intersection and F is a line bundle as
studied by Wang [45]. On the other hand, when X is a maximally degenerate Calabi-Yau variety
and L is an ample line bundle over X, deformations of the pair (X,L) are closely related to the
study of theta functions on smoothings of X in [17, 21]. Very little is known when X is singular
and F is of higher rank. From the perspective of mirror symmetry, a thorough understanding of the
deformation theory of (X,F), where X is at a large complex structure limit and F is a coherent sheaf
over X, is desirable for investigating the correspondence between B-branes on X and A-branes on
the mirror.

A major difficulty in obtaining smoothings of a singular variety is that there is always nontrivial
topology change in a degeneration while classical deformation theories can only produce equisingular
deformations. In our recent joint work [2] with Leung, we discovered that this difficulty could be
overcome by using Thom-Whitney simplicial constructions to build an almost dgLa L∗(X) over
C[[q]], instead of a genuine dgLa, from a degenerate Calabi-Yau variety X equipped with local
thickening data. The almost condition here means that the differential of L∗(X) squares to 0 only
modulo q – this property reflects precisely the fact that locally trivial deformations are not allowed in
a smoothing.1 This can be regarded as providing a singular version of the extended Kodaira-Spencer
dgLa Ω0,∗(X,∧∗TX)[[q]] for smooth X.

1What we call an almost dgLa here and in [2] is called a pre-dgLa in Felten’s very recent paper [7], where he also
explained why ordinary dgLa’s do not suffice for the purpose of smoothing singular (even log smooth) varieties.
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We prove in [2] that smoothings of X are indeed governed by the Maurer-Cartan equation of
L∗(X), which, under certain assumptions, can be solved by general algebraic techniques [28, 30,
42]. This yields Bogomolov-Tian-Todorov–type unobstructedness theorems [1, 43, 44] and hence
smoothness of the extended moduli space. Our abstract algebraic framework was applied very
recently by Felten-Filip-Ruddat in [8] to obtain smoothings of a very general class of varieties which
includes the log smooth Calabi-Yau varieties studied by Friedman [13] and Kawamata-Namikawa
[29] as well as the maximally degenerate Calabi-Yau varieties studied by Kontsevich-Soibelman [31]
and Gross-Siebert [18, 19, 20].

The goal of this paper is to extend the techniques in [2] to study smoothings of a pair (X,F),
where F is a locally free sheaf on a degenerate Calabi-Yau variety X. Our main result is that, given
local thickenings of F along with the local thickenings of X, there exists an almost dgLa L∗(X,F)
which governs the smoothing of (X,F). We then apply this to the class of smoothable degenerate
Calabi-Yau varieties X obtained in [8]. Under the further assumptions that Ext2(F,F)0 = 0 and that
the pair (X,detF) (where detF denotes the determinant line bundle of F) is formally smoothable,
our results show that the pair (X,F) is also formally smoothable.

In the subsequent joint work [3] with Suen, this smoothability result will be applied to a pair
(X,F), where X is a maximally degenerate K3 surface and F is a locally free sheaf of arbitrary rank
over X associated to a so-called tropical Lagrangian multi-section, which should arise as a tropical
limit of Lagrangian multi-sections in an SYZ fibration of the mirror (cf. [14, 32]). We devise a
combinatorial criterion for checking the condition that Ext2(F,F)0 = 0, thus producing new explicit
examples of smoothable pairs.

1.2. Main results. Before explaining the main result of this paper, let us first state our major
geometric application.

Theorem 1.1. Let X be a projective toroidal crossing space which is Calabi-Yau (in the sense
that ωX ∼= OX) and satisfies the assumption that the higher tangent sheaf T 1

X := Ext1(ΩX ,OX) is
globally generated, and F be a locally free sheaf over X. Then the pair (X,F) is formally smoothable
when Ext2(F,F)0 = 0 and the pair (X,detF) is formally smoothable. In particular, (X,F) is always
formally smoothable if H2(X,OX) = 0 and Ext2(F,F)0 = 0.

Some explanations of this statement are in order:

• A toroidal crossing space is defined in [8, Definition 1.5] (see also the 2nd paragraph of §4).
A typical example is given by a normal crossing space, i.e., a connected variety locally of
the form z0 · · · zk = 0 for (z0, . . . , zn) ∈ Cn+1 where n = dimX. The boundary divisor in a
Gorenstein toric variety is also naturally a toroidal crossing space.
• We say a space or a pair is formally smoothable if there exists a compatible system of

thickenings over C[q]/(qk+1) for k ∈ N; see Definition 4.7 for the precise definition.
• (Formal) smoothability of a projective toroidal crossing space which is Calabi-Yau and such

that T 1
X is globally generated follows from the main results in [8]. Note that the condition

here is weaker than Friedman’s famous notion of d-semistability [13] which requires that T 1
X

is trivial. Theorem 1.1 can be viewed as giving a sufficient condition for formal smoothability
of the pair (X,F) under the assumption that X is formally smoothable.
• More generally, we may let X be a projective toroidal crossing space which is Calabi-Yau and

satisfies the assumptions in [8, Theorem 1.7]. Felten-Filip-Ruddat [8] equipped such X with
a log structure locally modeled by the same types of potentially singular log schemes that
appeared in the Gross-Siebert program [18, 19], and proved the degeneracy of the Hodge-
to-de Rham spectral sequence for the log de Rham complex at the E1 page. This enables
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them to apply the dgBV framework and main results in [2] to prove that X is smoothable
to an orbifold with terminal singularities. Theorem 1.1 applies to such varieties as well.

Theorem 1.1 follows from a more general result concerning the formal smoothability of a pair
(X,C∗), where X is again a projective toroidal crossing space which is Calabi-Yau and C∗ is a
bounded complex of locally free sheaves (of finite rank) over X. We will extend and apply the
abstract algebraic framework in [2] to study this smoothability problem. Throughout this paper,
we work over C and with the polynomial rings R := C[q] and kR := C[q]/(qk+1).

Before describing our main result, let us recall the main ideas behind the construction in [2]. Our
starting point was a degenerate Calabi-Yau variety X, equipped with a covering V = {Vα}α by Stein
open subsets together with a local k-th order thickening kVα over kR for each α and k ∈ N. From
the local model kVα, we obtain a coherent sheaf kG∗α of Batalin-Vilkovisky (BV) algebras2 over kR
on Vα. We further assume that there is another Stein open covering U = {Ui}i∈N forming a basis of
the topology and a biholomorphism kΨαβ,i : kVα|Ui → kVβ|Ui for each triple (Ui;Vα, Vβ) such that
Ui ⊂ Vα∩Vβ. In geometric situations, these higher order patching data always arise from uniqueness

of the local models kVα’s.

However, the biholomorphisms kΨαβ,i’s do not satisfy the cocycle condition on Ui ⊂ Vαβγ :=

Vα ∩ Vβ ∩ Vγ , so we cannot simply glue the sheaves kG∗α’s together. Fortunately, the discrepancies

are always captured by the exponential action of local sections of kG∗α’s. The key idea in [2] is to

consider the Thom-Whitney simplicial construction [6, 47], giving rise to a dg resolution kL∗α (as a
sheaf of dgBV algebras) of kG∗α, which can be regarded as a simplicial replacement of the Dolbeault

resolution. The upshot is that these sheaves kL∗α’s of dgBV algebras, upon suitable modifications of
the various operators like the differential and BV operator, can then be glued together to produce
a global sheaf over X whose global sections give an almost dgBV algebra L∗(X) (meaning that its

differential squares to 0 only modulo q). Morally speaking, the sheaves kL∗α’s can be glued because
they are softer than the sheaves kG∗α’s.

To extend this construction to the case of a pair (X,C∗), we just need to prescribe a local model
for how the singular variety X along with C∗ are being smoothed out over C[q]. So we first assume

that there is a local k-th order thickening (kVα,
kC∗α) of each (Vα,C

∗|Vα) over kR for any k ∈ N. This

so-called geometric lifting datum (see Definition 4.4) gives rise to a coherent sheaf
k
G̃∗α of dgLa’s

(which would be a coherent sheaf of Lie algebras if C∗ = F is a complex concentrated in degree 0). We
further assume that there is a biholomorphism kΨαβ,i : kVα|Ui → kVβ|Ui and a sheaf isomorphism
kΞαβ,i : kC∗α|Ui → kC∗β|Ui compatible with kΨαβ,i for each triple (Ui;Vα, Vβ) such that Ui ⊂ Vα ∩ Vβ:

kC∗α|Ui
kΞαβ,i //

��

kC∗β|Ui

��
kVα|Ui

kΨαβ,i//kVβ|Ui .

This so-called geometric patching datum (see Definition 4.5) gives (non-canonical) identifications

of the local models (kVα,
kC∗α) when their supports overlap. As in [2], we do not require these

patching data to satisfy the cocycle condition on Ui ⊂ Vαβγ := Vα ∩ Vβ ∩ Vγ (which is the case in
geometric situations) and be compatible for different k’s at this stage. Rather, we assume that the

discrepancies are captured by the exponential action of local sections of the sheaves
k
G̃∗α’s.

2Or Gerstenhaber algebras, as advocated in [8].
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We can then apply the same technique as in [2] (with a weakened condition to be explained in

§3.3). Namely, by passing to the dg resolution
k
T̃W ∗α of

k
G̃α for each α, we can glue these local

sheaves together to obtain a global sheaf whose global sections produce an almost dgLa kL∗(g̃,C∗)

whose differential
k
∂̄ + kd (where kd is the differential acting on kG∗α that we constructed in [2] and

mentioned above) squares to 0 only modulo q. The associated Maurer-Cartan equation

(1.1) (
k
∂̄ + kd) kϕ+

1

2
[kϕ, kϕ] = 0,

where [·, ·] denotes the Lie bracket of kL∗(g̃,C∗), governs formal smoothings of the pair (X,C∗).

The main result of this paper is as follows.

Theorem 1.2. Let X be as in Theorem 1.1 and C∗ be a bounded complex of locally free sheaves on X
equipped with local thinkening data as described in Definitions 4.4 and 4.5. If Ext2(C∗,C∗)0 = 0 and
the pair (X,detC∗) is formally smoothable, then there exists a system of Maurer-Cartan elements

{kϕ ∈ kL∗(g̃,C∗)}k∈N such that k+1ϕ ≡ kϕ (mod qk+1). In particular, if H2(X,OX) = 0 and
Ext2(C∗,C∗)0 = 0, then the same conclusion holds.

In the case when C∗ is just one locally free sheaf F concentrated in degree 0, we can explicitly
construct a geometric lifting datum (Definition 4.4) and a geometric patching data (Definition 4.5)

by trivializing F =
⊕r

i=1OX |Vα · ei and taking kFα :=
⊕r

i=1
kOα · ei on a Stein open subset Vα; see

the 2nd paragraph of §4.3 for details. To prove Theorem 1.1, we construct a geometric smoothing
of F from the Maurer-Cartan solution ϕ = (kϕ)k∈N obtained in Theorem 1.2 as follows. We take the

dg resolution kTWF∗α of the complex kFα as a sheaf of complexes, and use the gluing morphisms
kg̃αβ : kTWF∗α → kTWF∗β (induced by gluing morphisms kg̃αβ above) to produce a global sheaf of

complexes kF∗(g̃) with differential
k
∂̄ (notice that we do not have kd because C∗ is concentrated in

degree 0) which squares to 0 only modulo q. The Maurer-Cartan solution kϕ, via the natural action

of
k
G̃α on kFα, gives a differential

k
∂̄+ kϕ· for kF∗(g̃) which squares to 0 honestly. The cohomology

sheaf kF := H0(kF∗(g̃),
k
∂̄ + kϕ·) then gives a k-th order thickening of F for each k ∈ N, which are

compatible in the sense that k+1F⊗(k+1R)
kR = kF. This produces the desired formal smoothing of

F of the pair (X,F), and hence proves Theorem 1.1. See §4.3 for more details.

1.3. Outline of the paper. This paper is organized as follows. In §2, we recall the necessary
abstract algebra from [27] for defining the dgLa which controls deformations of a pair. In §3,

we develop the abstract algebraic framework for constructing the almost dgLa kL∗(g̃,C∗) from
prescribed abstract local deformation data, following the approach in [2]. The main result is Theorem
3.30, which is a general theorem on smoothness of Maurer-Cartan functors in this abstract setting.
In §4, we first review how to obtain the abstract local deformation data for a singular variety X
in §4.1. Then the construction of such data for a pair (X,C∗) and the proof of Theorem 1.2 using
Theorem 3.30 are given in §4.2. Finally, in §4.3, we investigate how to obtain a geometric smoothing
of the pair (X,F), where F is a locally free sheaf over X, and proves Theorem 1.1.
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Notation Summary

Notation 1.3. For a Z2-graded vector space V ∗,∗ =
⊕

p,q V
p,q, we write V k :=

⊕
p+q=k V

p,q, and

V ∗ :=
⊕

k V
k. We will simply write V if we do not need to emphasize the gradings.

Notation 1.4. We fix a rank s lattice K together with a strictly convex s-dimensional rational
polyhedral cone QR ⊂ KR := K ⊗Z R. We let Q := QR ∩K and call it the universal monoid. We
consider the ring R := C[Q] and write a monomial element as qm ∈ R for m ∈ Q, and consider the
maximal ideal given by m := C[Q\{0}]. We let kR := R/mk+1 be the Artinian ring for each k ∈ N,

and R̂ := lim←−k
kR be the completion of R. We further equip R, kR and R̂ with the natural monoid

homomorphism Q→ R, m 7→ qm, giving them the structure of a log ring (see [20, Definition 2.11]);

the corresponding log spaces will be denoted as S†, kS† and Ŝ† respectively. In particular, we will
call 0S† the standard Q-log point.

Throughout this paper, we are often dealing with two Čech covers V = (Vα)α and U = (Ui)i∈N
at the same time and also k-th order thickenings, so we will adapt the following (rather unusual)

notations from [2]: The top left hand corner in a notation k♠ refers to the order of ♠, while the
bottom right hand corner is reserved for the Čech indices. We also write ♠α0···α` for the Čech

indices of V and ♠i0···il for the Čech indices of U , and if they appear at the same time, we write
♠α0···α`,i0···il .

2. Abstract algebra for deformations of pairs

Here we review the abstract algebra needed for the deformation theory of pairs from [27]. First
recall that a differential graded Lie algebra (or dgLa) is a triple

(L∗, d, [·, ·]),
where L∗ =

⊕
i∈Z L

i is a graded vector space, [·, ·] : L∗ ⊗ L∗ → L∗ is a graded skew-symmetric

pairing satisfying the Jacobi identity [a, [b, c]] + (−1)|a||b|+|a||c|[b, [c, a]] + (−1)|a||c|+|b||c|[c, [a, b]] = 0
for homogeneous elements a, b, c ∈ L∗, and d : L∗ → L∗+1 is a degree 1 differential satisfying d2 = 0
and the Leibniz rule d[a, b] = [da, b] + (−1)|a|[a, db] for homogeneous elements a, b ∈ L∗; here |a|
denotes the degree of a homogeneous element a.

Let O be a unitary R-algebra and (M∗, dM ) be a bounded cochain complex of free O-modules of
finite rank. Also let DerR(O,O) be the Lie algebra of R-linear derivations on O, and consider an

R-linear Lie algebra homomorphism ι : Ĝ → DerR(O,O) for some Lie algebra (Ĝ, [·, ·]) over R (i.e.

Ĝ is an R-module and [·, ·] is R-linear). To simplify notations, we will write h(r) instead of ι(h)(r)

for h ∈ Ĝ and r ∈ O. The following definition is a slight modification of the one from [27, p.1219,
2nd paragraph after proof of Corollary 3.3]:

Definition 2.1. We treat Ĝ as a dgLa concentrated at degree 0, and let

Ĝ∗(M∗) := {(h, u) ∈ Ĝ × hom∗R(M∗,M∗) | u(rx) = h(r)x+ ru(x) for r ∈ O, x ∈M∗},

where the grading on Ĝ∗(M∗) is inherited from hom∗R(M∗,M∗). We equip Ĝ∗(M∗) with a dgLa
structure by the formulas

d(h, u) := (0, du), [(h1, u1), (h2, u2)] := ([h1, h2], [u1, u2]),
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where du := dM ◦ u + (−1)|u|u ◦ dM . The natural projection from Ĝ∗(M∗) to Ĝ gives a surjective

morphism α : Ĝ∗(M∗)→ Ĝ of dgLa’s called the anchor map.

From its definition, we have Ĝi(M) = homi
O(M∗,M∗) if i 6= 0, and the exact sequence of dgLa’s

(2.1) 0→ hom∗O(M∗,M∗)→ Ĝ∗(M∗)→ Ĝ → 0.

Definition 2.2 (cf. Definition 2.9 in [27]). With (O,M∗) as above, let AutR(O,M∗) be its auto-
morphism group which consists of pairs (Θ, b), where Θ : O → O is an automorphism of R-algebras
and b : M∗ →M∗ is an automorphism of complexes of R-modules, such that b(rm) = Θ(r)b(m) for
r ∈ O and m ∈M∗.

Following the discussion in [27, §2], given any nilpotent element (h, u) in Ĝ0(M), its exponen-
tial (exp(h), exp(u)) (where we abuse notations and simply write h for ι(h)) gives an element in
AutR(O,M∗).

If M is a free O-module of rank m, we write detM :=
∧m
OM . If M∗ is a bounded complex of

finite rank free O-modules, we set detM∗ :=
⊗l=ev
O detM l ⊗O

⊗l=odd
O det(M l)∨ (here ∨ refers to

the dual O-module). For any u ∈ hom0
R(M∗,M∗), we let tr(u) ∈ homR(detM∗, detM∗) be the

natural induced map as defined in [27, Definitions 2.7 and 2.8]. This gives a natural map

tr : Ĝ × hom∗R(M∗,M∗)→ Ĝ × homR(detM∗, detM∗), (h, u) 7→ (h, tr(u)),

which induces a morphism tr : Ĝ∗(M∗) → Ĝ0(detM∗) of dgLa’s (where detM∗ is treated as a
complex concentrated in degree 0).

3. Gluing construction of an almost dgla for smoothing pairs

In this section, we extend and apply the gluing construction developed in [2]. Note that we will
work with almost dgLa’s here instead of the almost dgBV algebras in [2].

3.1. Abstract local deformation and patching data. Let (X,OX) be a d-dimensional compact
complex analytic space. We fix an open cover V = {Vα}α of X which consists of Stein open subsets
Vα ⊂ X. In geometric situations, there will be a local smoothing model kVα over kR of each Vα ⊂ X.
To patch these local models together, we will need another Stein open cover U on X:

Notation 3.1. Fix, once and for all, a cover U of X which consists of a countable collection of
Stein open subsets U = {Ui}i∈N forming a basis of topology. We refer readers to [5, Chapter IX
Theorem 2.13] for the existence of such a cover. Note that an arbitrary finite intersection of Stein
open subsets remains Stein.

Definition 3.2. An abstract deformation datum G = (0G∗, {kG∗α}k,α, {
k,l[α}k≥l,α) consists of

• a sheaf 0G∗ of dgLa’s with bounded degrees;
• for each k ∈ Z≥0 and α, a sheaf kG∗α of dgLa’s with bounded degrees on Vα equipped with the

structure of sheaf of kR-modules such that the structures [·, ·] and d are kR-linear, and

• for k ≥ l and each α, a surjective degree-preserving morphism k,l[α : kG∗α → lG∗α of dgLa’s
which induces an isomorphism upon tensoring kG∗α with lR

such that

(1) 0G∗α = 0G∗|Vα;
(2) kG∗α is flat over kR, i.e. the stalk (kG∗α)x is flat over kR for all x ∈ Vα;
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(3) the adjoint homomorphism ad : kG∗α → Der∗
(kR)

(kG∗α, kG∗α) (where Der∗
(kR)

(, ) denotes the

graded space of kR-linear derivations) is injective; and
(4) RΓj(Vα0···α` ,

kGα) = 0 and RΓj(Ui0···il ,
kGα) = 0 for all j > 0, Vα0···α` := Vα0 ∩ · · · ∩ Vα` and

Ui0···il := Ui0 ∩ · · · ∩ Uil with Ui0 , . . . , Uil ⊂ Vα.

Condition (4) in Definition 3.2 is a very mild assumption. It holds when, e.g., kGα is a tensor
product of coherent sheaves with a (possibly infinite dimensional) vector space.

For smoothing of a singular variety X (see §4.1), we take the sheaf
k
Ĝα of of relative log derivations

over kR, which is a sheaf of Lie algebras that controls the local deformations of the log space kVα.

When we consider smoothing of a pair (X,C∗) (see §4.2), we take the sheaf
k
G̃α of dgLa’s, obtained

from
k
Ĝα using the algebraic construction in Definition 2.1, which controls local deformations of

pairs. Here is a caveat: For the case of pairs, condition (3) in Definition 3.2 does not hold, and we
will need to suitably modify this definition as described in §3.3.

Notation 3.3. Given two elements a ∈ k1G∗α, b ∈ k2G∗α and l ≤ min{k1, k2}, we say that a =

b (mod ml+1) if and only if k1,l[α(a) = k2,l[α(b).

Definition 3.4. Given an abstract deformation datum G = (0G∗, {kG∗α}k,α, {
k,l[α}k≥l,α), a patching

datum ψ = {kψαβ,i} (with respect to U ,V) consists of, for each k ∈ N and (Ui;Vα, Vβ) with Ui ⊂
Vαβ := Vα ∩ Vβ, a sheaf isomorphism kψαβ,i : kG∗α|Ui → kG∗β|Ui over kR preserving [·, ·] and d and
fitting into the diagram

kG∗α|Ui
kψαβ,i //

k,0[α
��

kG∗β|Ui
k,0[β
��

0G∗|Ui 0G∗|Ui ,
such that:

(1) kψβα,i = kψ−1
αβ,i,

0ψαβ,i ≡ id;

(2) for k > l and Ui ⊂ Vαβ, there exists k,lbαβ,i ∈ lG0
α(Ui) with k,lbαβ,i = 0 (mod m) such that

(3.1) lψβα,i ◦ k,l[β ◦ kψαβ,i = exp
(

[k,lbαβ,i, ·]
)
◦ k,l[α;

(3) for k ∈ N and Ui, Uj ⊂ Vαβ, there exists kpαβ,ij ∈ kG0
α(Ui ∩ Uj) with kpαβ,ij = 0 (mod m)

such that

(3.2)
(
kψβα,j |Ui∩Uj

)
◦
(
kψαβ,i|Ui∩Uj

)
= exp

(
[kpαβ,ij , ·]

)
; and

(4) for k ∈ N and Ui ⊂ Vαβγ := Vα ∩ Vβ ∩ Vγ, there exists koαβγ,i ∈ kG0
α(Ui) with koαβγ,i =

0 (mod m) such that

(3.3)
(
kψγα,i|Ui

)
◦
(
kψβγ,i|Ui

)
◦
(
kψαβ,i|Ui

)
= exp

(
[koαβγ,i, ·]

)
.

In geometric situations such as smoothing of the variety X, the patching isomorphism kψαβ,i

(note that this is actually denoted as
k
ψ̂αβ,i in §4.1) is induced from the local uniqueness of the local

smoothing model kVα. Equations (3.1), (3.2) and (3.3) say that local automorphisms of the local

models are exponentiation of the Lie bracket with local vector fields k,lbαβ,i’s,
kpαβ,ij ’s and koαβγ,i’s.

The key point is that we do not require the patching isomorphisms kψαβ,i’s to be compatible directly

but rather the discrepancies are captured by the Lie bracket with local sections of the sheaves kG∗α’s.
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Definition 3.5. A morphism f = {kfα}k,α : (G̃ = {
k
G̃∗α}k,α, ψ̃ = {kψ̃αβ,i}) → (G = {kG∗α}k,α, ψ =

{kψαβ,i}) consists of kR-linear morphisms kfα :
k
G̃∗α → kG∗α between sheaves of dgLa’s over Vα

satisfying the following conditions:

(1) for k ≥ l and each α, we have k,l[α ◦ kfα = lfα ◦
k,l
[̃α;

(2) for each k and Ui ⊂ Vαβ, we have kψαβ,i ◦ kfα = kfβ ◦
k
ψ̃αβ,i;

(3) for k > l and Ui ⊂ Vαβ, we have lfα(
k,l
b̃αβ,i) = k,lbαβ,i;

(4) for each k and Ui, Uj ⊂ Vαβ, we have kfα(kp̃αβ,ij) = kpαβ,ij; and

(5) for each k and Ui ⊂ Vαβγ, we have kfα(kõαβγ,i) = koαβγ,i;

here we have used
k,l
[̃α’s,

k
ψ̃αβ,i’s,

k,l
b̃αβ,i’s, kp̃αβ,ij’s and kõαβγ,i’s to denote the deformation and

patching data associated to G̃.

In this paper, we will only be interested in the case that the morphism {kfα}k,α is coming from

either the trace map tr : Ĝ∗(M∗)→ Ĝ0(detM∗) or the anchor map α : Ĝ∗(M∗)→ Ĝ∗ in §2.

Remark 3.6. If we assume the injectivity of the adjoint map ad : kG∗α → Der∗
(kR)

(kG∗α, kG∗α) and

surjectivity of the morphisms kfα’s, then conditions (3)−(5) in Definition 3.5 follow from conditions

(1) − (2) because the elements k,lbαβ,i’s, kpαβ,ij’s and koαβγ,i’s are determined by the maps k,l[α’s

and kψαβ,i’s by the equations in Definition 3.4 and the injectivity of ad.

3.2. Construction of the almost dgLa.

3.2.1. Simplicial sets. To construct the almost dgLa using simplicial methods, we first recall some
standard definitions and facts on the simplicial sets A∗(N•) of polynomial differential forms with
coefficients in C, following the notations from [2, §3.1].

Notation 3.7. We let Mon (resp. sMon) be the category of finite ordinals [n] = {0, 1, . . . , n} in
which morphisms are increasing maps (resp. strictly increasing maps). We denote by di,n : [n−1]→
[n] the unique strictly increasing map which skips the i-th element, and by ei,n : [n + 1] → [n] be
given by ei,n(j) = j if j ≤ i and ei,n(j) = j − 1 if j > i.

Note that every morphism in Mon can be decomposed as a composition of the maps di,n’s and
ei,n’s, and any morphism in sMon can be decomposed as a composition of the maps di,n’s.

Definition 3.8 ([46]). Let C be a category. A (semi-)simplicial object in C is a contravariant functor
A(•) : Mon→ C (resp. A(•) : sMon→ C), and a (semi-)cosimplicial object in C is a covariant function
A(•) : Mon→ C (resp. A(•) : sMon→ C).

Definition 3.9 ([16]). Consider the standard n-simplex Nn := {(x0, . . . , xn) ∈ Rn+1 |
∑n

i=0 xi = 1}.
The space of polynomial differential forms with coefficients in C on Nn is defined as the differential
graded algebra (abbreviated as dga)

A∗(Nn) :=
Sym∗ (C〈x0, . . . , xn, dx0, . . . , dxn〉)

(
∑n

i=0 xi − 1,
∑n

i=0 dxi)
,

where C〈x0, . . . , xn, dx0, . . . , dxn〉 is the graded vector space generated by xi’s and dxi’s with deg(xi) =
0, deg(dxi) = 1, and the degree 1 differential d is defined by d(xi) = dxi and the Leibniz rule.

Given a : [n]→ [m] in Mon, we let a∗ := A(a) : A∗(Nm)→ A∗(Nn) be the unique dga morphism
satisfying a∗(xj) =

∑
i∈[n]:a(i)=j xi and a∗(xj) = 0 if j 6= a(i) for any i ∈ [n]. From this we obtain a

simplicial object in the category of dga’s, which we denote by A∗(N•).
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Notation 3.10. We denote by Mn the boundary of Nn, and let

(3.4) A∗(Mn) := {(α0, . . . , αn) | αi ∈ A∗(Nn−1), d∗i,n−1(αj) = d∗j−1,n−1(αi) for 0 ≤ i < j ≤ n}
be the space of polynomial differential forms on Mn. There is a natural restriction map defined by
β|Mn := (d∗0,n(β), . . . , d∗n,n(β)) for β ∈ A∗(Nn). Similarly, we let Λkn ⊂Mn be the k-th horn, and

(3.5)

A∗(Λkn) := {(α0, . . . , αk−1, αk+1, . . . , αn) | αi ∈ A∗(Nn−1), d∗i,n−1(αj) = d∗j−1,n−1(αi) for 0 ≤ i < j ≤ n}

be the space of polynomial differential forms on Λkn, with a natural restriction map β|Λkn defined in
a similar way.

The following extension lemma will be frequently used in subsequent constructions:

Lemma 3.11 (Lemma 9.4 in [16]). For any ~α = (α0, . . . , αn) ∈ A∗(Mn), there exists β ∈ A∗(Nn)
such that β|Mn = ~α.

Notation 3.12. We let �m,n := Nm × Nn, and

(3.6) A∗(�m,n) := A∗(Nm)⊗C A∗(Nn).

There are two sets of restriction maps: d∗j,m : A∗(�m,n) → A∗(�m−1,n) induced from that on Nm,

and d∗j,n : A∗(�m,n)→ A∗(�m,n−1) induced from that on Nn.

Notation 3.13. We denote by �n the boundary of �n, and let

A∗(�m,n) :=

{
(α0,...,αm,β0,...,βn)

αi∈A∗(�m−1,n), βi∈A∗(�m,n−1)

∣∣∣∣∣ d∗i,m−1(αj)=d∗j−1,m−1(αi) for 0 ≤ i < j ≤ m
d∗i,n−1(βj)=d∗j−1,n−1(βi) for 0 ≤ i < j ≤ n

d∗i,n(αj)=d∗j,m(βi) for 0 ≤ i ≤ n and 0 ≤ j ≤ m

}
be the space of polynomial differential forms on �n. There is a natural restriction map defined by
γ|�m,n := (d∗0,m(γ), . . . , d∗m,m(γ), d∗0,n(γ), . . . , d∗n,n(γ)) for γ ∈ A∗(�m,n).

Lemma 3.14. For any (α0, . . . , αm, β0, . . . , βn) ∈ A∗(�m,n), there exists γ ∈ A∗(�m,n) such that
γ|�m,n = (α0, . . . , αm, β0, . . . , βn).

This variation of Lemma 3.11 can be proven by the same technique as in [16, Lemma 9.4].

3.2.2. Gluing morphisms. On V = Vα0···α` , we consider the covering U = Uα0···α` := {Ui | Ui ⊂
Vα0···α` parametrized by the mult-index set I := {(i0, . . . , il) | Uij ∈ Uα0···α`}. Assuming that U is
an acyclic cover for a sheaf Gp on V for each p, we have the following definition.

Definition 3.15 (see e.g. [47, 6, 9]). The Thom-Whitney complex is defined as TW ∗,∗(G) :=⊕
p,q TW

p,q(G), where

TW p,q(G) :=
{

(ϕi0···il)(i0,...,il)∈I
∣∣ ϕi0···il ∈ Aq(Nl)⊗C Gp(Ui0···il), d

∗
j,l(ϕi0···il) = ϕi0···̂ij ···il |Ui0···il

}
.

It is a dgLa with the Lie bracket [·, ·] and differential ∂̄ + d defined component-wise by

[αI ⊗ vI , βI ⊗ wI ] := (−1)|vI ||βI |(αI ∧ βI)⊗ [vI , wI ],

∂̄(αI ⊗ vI) := (dαI)⊗ vI , d(αI ⊗ vI) = (−1)|αI |αI ⊗ (dvI)

for αI , βI ∈ A∗(Nl) and vI , wI ∈ G∗(UI), where l = |I| − 1.

The complex TW p,∗(G) (resp. the total complex TW ∗(G)) is quasi-isomorphic to the Čech com-
plex Č∗(U , Gp) (resp. the total Čech complex Č∗(U , G∗)).

Remark 3.16. We use the notation ∂̄ since it plays the role of the Dolbeault operator in the classical
deformation theory of complex manifolds.
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Notation 3.17. Equipping G∗ := A∗(Nn)⊗kG∗αi |Vα0···α` with the natural dgLa structure ([·, ·], kdαi,Nn),

we let kTW ∗,∗αi;α0···α`(Nn) := TW ∗,∗(G), which is equipped with the differential
k
∂̄αi + kdαi,Nn and the

Lie bracket [·, ·]. It is naturally equipped with the face map

d∗j,n : kTW ∗,∗αi;α0···α`(Nn)→ kTW ∗,∗αi;α0···α`(Nn−1)

and the restriction map rαj defined component-wise by

rαj ((ϕI)I∈I) = (ϕI)I∈I′

for (ϕI)I∈I ∈ kTW ∗,∗αi;α0···α̂j ···α`(Nn), where I ′ = {(i0, . . . , il) ∈ I | Uij ⊂ Vα0···α`}.

For each k ∈ N and any pair Vα, Vβ ∈ V, a gluing isomorphism

(3.7) kgαβ(Nn) : kTW ∗,∗α;αβ(Nn)→ kTW ∗,∗β;αβ(Nn)

is a collection of maps (kgαβ,I(Nn))I∈I such that for ϕ = (ϕI)I∈I ∈ kTW ∗,∗α;αβ(Nn) with ϕI ∈
A∗(Nl) ⊗ A∗(Nn) ⊗ kG∗α(UI), we have

(
kgαβ(Nn)(ϕ)

)
I

= kgαβ,I(Nn)(ϕI). It is required to preserve
the algebraic structures and satisfy the following condition:

Condition 3.18. (1) for Ui ⊂ Vα ∩ Vβ, we have

(3.8) kgαβ,i(Nn) = exp([kaαβ,i(Nn), ·]) ◦ kψαβ,i

for some element kaαβ,i(Nn) ∈ A0(Nn)⊗ kG0
β(Ui) with kaαβ,i(Nn) = 0 (mod m);

(2) for Ui0 , . . . , Uil ⊂ Vα ∩ Vβ, we have

(3.9) kgαβ,i0···il(Nn) = exp([kϑαβ,i0···il(Nn), ·]) ◦
(
kgαβ,i0(Nn)|Ui0···il

)
,

for some element kϑαβ,i0···il ∈ A0(Nl)⊗A0(Nn)⊗kG0
β(Ui0···il) with kϑαβ,i0···il(Nn) = 0 (mod m);

(3) the elements kϑαβ,i0···il’s satisfy the relation:

(3.10) d∗j,l(
kϑαβ,i0···il(Nn)) =

{kϑαβ,i0···îj ···il(Nn) for j > 0,

kϑαβ,î0···il(Nn)� kφαβ,i0i1(Nn) for j = 0,

where � refers to the Baker-Campbell-Hausdorff product, and kφαβ,i0i1(Nn) ∈ A0(Nn) ⊗
kG0

β(Ui0i1) is the unique element such that

exp([kφαβ,i0i1(Nn), ·]) kgαβ,i0(Nn) = kgαβ,i1(Nn).

Remark 3.19. Note that there are two different simplices in play in Notation 3.17 and Condition
3.18: the l-simplex Nl in defining the Thom-Whitney complex TW p,q(G) in Definition 3.15, and
another n-simplex Nn in defining G∗ and kTW ∗,∗αi;α0···α`(Nn) in Notation 3.17. To simplify notations,
we will suppress the dependence on Nn in the rest of this paper when there is no danger of confusion.

Fixing Nn (which we omit the following notations), then for any triple Vα, Vβ, Vγ ∈ V, we define

the restriction of kgαβ to kTW ∗,∗α;αβγ as the unique map kgαβ : kTW ∗,∗α;αβγ →
kTW ∗,∗β;αβγ that fits into

the following diagram

kTW ∗,∗α;αβ

rγ //

kgαβ
��

kTW ∗,∗α;αβγ

kgαβ
��

kTW ∗,∗β;αβ

rγ //kTW ∗,∗β;αβγ .
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Definition 3.20. For a fixed Nn, a collection g(Nn) = (kgαβ(Nn))k,αβ (or simply g = (kgαβ)k,αβ
when the dependence on Nn is clear) satisfying Condition 3.18 is said to be a compatible gluing
morphism over Nn if in addition the following conditions are satisfied:

(1) 0gαβ = id for all α, β;
(2) (compatibility between different orders) for each k ∈ N and any pair Vα, Vβ ∈ V,

(3.11) kgαβ ◦ k+1,k[α = k+1,k[β ◦ k+1gαβ;

(3) (cocycle condition) for each k ∈ N and any triple Vα, Vβ, Vγ ∈ V,

(3.12) kgγα ◦ kgβγ ◦ kgαβ = id

when kgαβ, kgβγ and kgγα are restricted to kTW ∗,∗α;αβγ, kTW ∗,∗β;αβγ and kTW ∗,∗γ;αβγ respectively.

For any a : [m]→ [n] and the corresponding pull back a∗ : A∗(Nn)→ A∗(Nm), there is a naturally
induced data a∗(g(Nn)) = (a∗(kgαβ(Nn)))k,αβ as a compatible gluing morphism over Nm.

Definition 3.21. The simplicial set of compatible gluing morphisms G(N•) : Mon→ Sets is defined
by letting G(Nn) be the set of compatible gluing morphisms over Nn.

3.2.3. The Čech-Thom-Whitney complex. Given a compatible gluing morphism g(Nn) over Nn, we

construct a Čech-Thom-Whitney complex
kČ∗(TW, g,Nn) (or simply

kČ∗(TW, g) when the depen-
dence on Nn is clear) for each k ∈ N.

Definition 3.22. For each Nn and ` ∈ N, we let kTW ∗,∗α0···α`(g,Nn) ⊂
⊕`

i=0
kTW ∗,∗αi;α0···α`(Nn) be

the set of elements (ϕ0, · · · , ϕ`) such that ϕj = kgαiαj (Nn)(ϕi). Then the k-th order Čech-Thom-

Whitney complex
kČ∗(TW ∗,∗, g,Nn) over X is defined by

kČ`(TW p,q, g,Nn) :=
∏

α0···α`

kTW p,q
α0···α`(g,Nn)

and
kČ`(TW ∗,∗, g,Nn) :=

⊕
p,q

kČ`(TW p,q, g) for each k ∈ N. It is equipped with the Čech differen-

tial kδ` :=
∑`+1

j=0(−1)jrj,`+1 :
kČ`(TW, g,Nn)→ kČ`+1(TW, g,Nn), where rj,` :

kČ`−1(TW, g,Nn)→
kČ`(TW, g,Nn) is the natural restriction map defined component-wise by rj,` : kTW ∗,∗α0···α̂j ···α`(g,Nn)→
kTW ∗,∗α0···α`(g,Nn) coming from Notation 3.17.

For each Nn, we set kL∗,∗(g,Nn) := ker(kδ0) (or simplified as kL∗,∗(g) when the dependence of

Nn is clear). We denote the natural inclusion kL∗,∗(g) → kČ0(TW ∗,∗, g) by kδ−1, so we have the
following sequence of maps

(3.13) 0→ kLp,q(g)→ kČ0(TW p,q, g)→ kČ1(TW p,q, g)→ · · · → kČ`(TW p,q, g)→ · · · .

For each Nn, ` ∈ N and k ≥ l, there is a natural map k,l[ :
kČ`(TW p,q, g)→ lČ`(TW p,q, g) defined

component-wise by the map k,l[αj : kTW p,q
αj ;α0···α` → lTW p,q

αj ;α0···α` obtained from k,l[α : kG∗α → lG∗α
in Definition 3.2. We then define Č`(TW p,q, g) := lim←−k

kČ`(TW p,q, g) as the inverse limit along these

maps and set Č`(TW, g) :=
⊕

p,q Č`(TW p,q, g). Similarly, we have the natural maps k,l[ : kLp,q(g)→
lLp,q(g), and we can define Lp,q(g) also by inverse limits and set L∗,∗(g) :=

⊕
p,q L

p,q(g).

For each a : [m]→ [n] with the corresponding pullback a∗ : A∗(Nn)→ A∗(Nm), there are naturally

induced maps a∗ :
kČ`(TW p,q, g,Nn) → kČ`(TW p,q, g,Nm) and a∗ : kLp,q(g,Nn) → kLp,q(g,Nm)

defined using the induced gluing morphisms a∗(g(Nn)).
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Definition 3.23. Fixing a compatible gluing morphism g(Nn) = (kgαβ(Nn)) over Nn, a compatible

differential is an element d(Nn) = lim←−k
kd(Nn) (or d = lim←−k

kd by dropping its dependence on Nn),

where kd(Nn) = (kdα(Nn))α ∈
kČ`(TW 1, g,Nn), such that, for each k, we have

(3.14) kgβα(Nn) ◦ (
k
∂̄β + kdβ,Nn + [kdβ(Nn), ·]) ◦ kgαβ(Nn) =

k
∂̄α + kdα,Nn + [kdα(Nn), ·].

For each a : [m]→ [n], there is an induced compatible differential a∗(d(Nn)) for a∗(g(Nn)).

Definition 3.24. We define the simplicial set of compatible morphisms and differentials G(N•) :
Mon → Sets by setting G(Nn) := {(g(Nn), d(Nn))}, where d(Nn) is a compatible differential for a
compatible gluing morphism g(Nn).

There is a natural morphism of simplicial sets G(N•) → G(N•) defined by forgetting the differ-
ential. The results in [2, §3.3-3.5] can now be summarized as follows:

Lemma 3.25 ([2]). The simplicial sets G(N•) and G(N•) are non-empty (meaning that G(N0) 6= ∅
and G(N0) 6= ∅) and contractible (i.e., given an element g = (g0, . . . , gn) in the boundary G(Mn) :=
{(g0, . . . , gn) | gi ∈ G(Nn−1), d∗i,n−1(gj) = d∗j,n−1(gi)}, there exists g̃ ∈ G(Nn) such that d∗j,n(g̃) = gj,

and similarly for G(N•)).

With a compatible differential d over Nn, the local operators (∂̄α + dα + [dα, ·])α glue to give a
global differential operator dd on L∗(g) while the Lie brackets glue together automatically, thus
producing a dgLa.

Consider the category AR of local Artinian R-algebras with residue field C. With (A,mA) ∈ AR
and (g(Nn), d(Nn)) ∈ G(Nn), we let AL∗(g,Nn) := kL∗(g,Nn)⊗(kR) A (or simply AL∗(g)) for large

enough k such that mk+1 ·A ⊂ {0} and equip it with the differential AdNn (or simply Ad). We use
A,B[ : AL∗(g)→ BL∗(g) to denote the naturally induced map from a morphism A→ B in AR.

Definition 3.26. For a fixed Nn, an element ϕ ∈ AL1(g) such that ϕ = 0 (mod mA) is called a
Maurer-Cartan element if it satisfies the Maurer-Cartan equation:

(3.15) ddϕ+
1

2
[ϕ,ϕ] = 0.

Given a : [m] → [n] and any Maurer-Cartan element ϕ, a∗(ϕ) is also a Maurer-Cartan element
(with respect to a∗(g(Nn), d(Nn))). Following [15, 22], we define the Maurer-Cartan simplicial set
AMC(N•) over A by setting

AMC(Nn) := {(g(Nn), d(Nn), ϕ) | (g(Nn), d(Nn)) ∈ G(Nn), ϕ satisfies (3.15)} .
The following lemma is parallel to the results from [15, 22].

Lemma 3.27. The Maurer-Cartan simplicial set AMC(N•) is a Kan complex.

Proof. Given (gi, di,
Aϕi) ∈ AMC(Nn−1) for 0 ≤ i ≤ n and i 6= k such that d∗i,n−1(gj , dj ,

Aϕj) =

d∗j−1,n−1(gi, di,
Aϕi) for 0 ≤ i < j ≤ n and i, j 6= k, we need to construct (g, d,Aϕ) ∈ AMC(Nn)

so that d∗i,n(g, d,Aϕ) = (gi, di,
Aϕi). The existence of (g, d) follows from the contractibility of

G(N•). For Aϕ, we assume that h : A → B is a small extension and that Bϕ has already been

constructed such that d∗i,n(Bϕ) = A,B[(Aϕi). By the discussion in [2, §3.4], one can always construct
Aϕ̂ ∈ AL1(g,Nn) such that d∗i,n(Aϕ̂) = Aϕi. Therefore dNn(Aϕ̂) + 1

2 [Aϕ̂,Aϕ̂] = AO with [AO] ∈
H2(A∗(Nn) ⊗ 0G∗) ⊗C (mA/ ker(h)) (note that the local sheaves 0G∗α’s glue to give a global sheaf
0G∗ over X). Now the natural restriction map A∗(Nn) → A∗(Λkn) to the k-th horn Λkn is a quasi-
isomorphism, thus inducing an isomorphism H2(A∗(Nn) ⊗ 0G∗) → H2(A∗(Λkn) ⊗ 0G∗). As a result,
we have the obstruction class [AO] = 0, giving the desired AϕNn . �
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Given an algebra homomorphism c : A→ B, there is a natural map c(N•) : AMC(N•)→ BMC(N•)
of simplicial sets. These can be packed together as the simplicial Maurer-Cartan functor •MC(N•) :
AR → sSet from AR to the category sSet of simplicial sets. By taking the connected component
π0(AMC(N•)) of simplicial sets, we obtain the ordinary Maurer-Cartan functor π0(•MC(N•)) defined
by A 7→ π0(AMC(N•)).

3.2.4. Morphism of dgLa’s. A morphism f = {kfα}k,α : G̃ = {
k
G̃∗α}k,α → G = {kG∗α}k,α of patching

data (Definition 3.5) naturally induces a morphism of dgLa’s on the corresponding local Thom-

Whitney complexes kfαi :
k
T̃W ∗,∗αi;α0···α`(Nn)→ kTW ∗,∗αi;α0···α`(Nn) constructed from component-wise

maps kfαi : A∗(Nl)⊗A∗(Nn)⊗
k
G̃∗αi(Ui0···il)→ A

∗(Nl)⊗A∗(Nn)⊗ kG∗αi(Ui0···il).

Lemma 3.28. Given a compatible gluing morphism g̃ = (kg̃αβ)k,αβ for G̃ which satisfies Condition

3.18 with the elements kãαβ,i’s and
k
ϑ̃αβ,i0···il’s over Nn, we define g := f (g̃) over Nn by setting

kaαβ,i := kfβ(kãαβ,i) and kϑαβ,i0···il := kfβ(
k
ϑ̃αβ,i0···il). Then g is a compatible gluing morphism for

G over Nn.

Proof. From its construction, we see that kgαβ ◦ kfα = kfβ ◦ kg̃αβ. With
k
φ̃αβ,ij ’s and kφαβ,ij ’s in

Condition 3.18, we observe the relation

exp
(

[
k
φ̃αβ,ij , ·]

)
= exp

(
[kãαβ,j , ·]

)
◦ exp

(
[kp̃βα,ji, ·]

)
◦ exp

(
[− kãαβ,i, ·]

)
,

which gives
k
φ̃αβ,ij = kãαβ,j�kp̃βα,ji�(− kãαβ,i) by the injectivity of the map

k
G̃0
β ↪→ Der0

(kR)
(
k
G̃∗β,

k
G̃∗β),

and similarly for the elements kφαβ,ij ’s,
kaαβ,i’s and kpβα,ji’s. So we have kfβ(

k
φ̃αβ,ij) = kφαβ,ij ,

which shows that kϑαβ,i0···il satisfies the relation (3.10).

For the cocycle condition in Definition 3.20, we first consider the elements kgαβ,i’s. A direct
computation gives

kgγα,i ◦ kgβγ,i ◦ kgαβ,i =

exp([kaγα,i, ·]) ◦ exp([kψγα,i(
kaβγ,i), ·]) ◦ exp([kψγα,i ◦ kψβγ,i(kaαβ,i), ·]) ◦ kψγα,i ◦ kψβγ,i ◦ kψαβ,i,

and the cocycle condition is equivalent (under the injection kG0
β ↪→ Der0

(kR)
(kG∗β,

kG∗β)) to

kaγα,i � kψγα,i(
kaβγ,i)� kψγα,i ◦ kψβγ,i(kaαβ,i)� koαβγ,i = 0.

Since kfα is a morphism of dgLa’s, kgαβ,i’s satisfy the cocycle condition since kg̃αβ,i’s do. For general
kgαβ,i0···il ’s, notice that the cocycle condition is equivalent to

kϑγα,i0···il �
kgγα,i0(kϑβγ,i0···il)�

kgβα,i0(kϑαβ,i0···il) = 0,

which also follows from the fact that kfα preserves the graded Lie algebra structure. The condition
(2) in Definition 3.20 can be proved similarly. �

Now for a map a : [m] → [n] in Mon, we have f (a∗(g̃)) = a∗ (f(g̃)) as compatible gluing

morphisms over Nm. Hence f induces a morphism f : G̃→ G of simplicial sets, where G̃ is the one

associated to G̃.

A morphism f also induces a map kf :
kČ`(T̃W , g̃) → kČ`(TW, g) between the Čech-Thom-

Whitney complexes which is naturally compatible with k,l[’s and kδ’s (here we use the notations
k,l[ and kδ for both G̃ and G). Suppose we have a compatible differential d̃ for g̃ over Nn, then
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d := f(d̃) := lim←−k
kf(

k
d̃) is a compatible differential for f (g̃) over Nn. Therefore, it gives a morphism

f : L∗(g̃)→ L∗(g) of the corresponding dgLa’s. In this way f also induces maps f : G̃(N•)→ G(N•)

and Af :
A
M̃C(N•) → AMC(N•) of simplicial sets, for every A ∈ AR. The latter morphisms can be

packed together to give a natural transformation f :
•
M̃C(N•)→ •MC(N•).

Definition 3.29 (Definition 1.37 in [39]). We say the Maurer-Cartan functor •MC(N•) (and sim-

ilarly for
•
M̃C(N•)) is smooth if the natural restriction map A,B[ : AMC(N•) → BMC(N•) is a

surjective Kan fibration (see [46, Fibrations 8.2.9] for a definition of Kan fibration).

With f : G̃ → G as above, we say the associated natural transformation f :
•
M̃C(N•)→ •MC(N•)

is smooth if, for every surjective map A→ B in AR, the naturally induced map

(3.16) A,Bf :
A
M̃C(N•)→

B
M̃C(N•)×(BMC(N•))

AMC(N•)

is a surjective Kan fibration.

The above smoothness condition will imply the smoothness of the ordinary Maurer-Cartan functor

π0(•MC(N•)), and similarly for the natural transformation π0(f) : π0(
•
M̃C(N•))→ π0(•MC(N•)).

The local sheaves
0
G̃∗α’s and G∗α’s glue to give global sheaves

0
G̃ and 0G of dgLa’s over X, and the

morphisms 0fα’s glue to give a morphism 0f :
0
G̃∗α → 0G∗α of sheaves of dgLa’s. Let 0R := ker(0f)

be the kernel subsheaf. Then both 0L∗(g̃,Nn) and 0L∗(g,Nn) are independent of the choice of the

gluing morphism and compatible differential, and they are quasi-isomorphic to TW ∗(
0
G̃)⊗CA∗(Nn)

and TW ∗(0G)⊗CA∗(Nn) respectively. If we further assume that each kfα :
k
G̃∗α → kG∗α is a surjective

morphism of sheaves, then we obtain the following exact sequence of dgLa’s:

0 //TW ∗(0R)⊗C A∗(Nn) //

∼=
��

TW ∗(
0
G̃)⊗C A∗(Nn) //

∼=
��

TW ∗(0G)⊗C A∗(Nn) //

∼=
��

0

0 //0K∗(Nn) //0L∗(g̃,Nn) //0L∗(g,Nn) //0,

where 0K∗(Nn) is the kernel dgLa of the natural map 0L∗(g̃,Nn) → 0L∗(g,Nn) and the vertical
arrows are all quasi-isomorphisms of dgLa’s.

Theorem 3.30. Suppose f : G̃ → G is a morphism between abstract deformation data such that each
kfα :

k
G̃∗α → kG∗α is a surjective morphism of sheaves and the hypercohomology group H2(X, 0R∗) =

0. Then f :
•
M̃C(N•) → •MC(N•) is smooth. In particular,

•
M̃C(N•) is smooth if •MC(N•) is

smooth

Proof. It suffices to consider a small extension h : A → B. A general element in the target of the
map (3.16) can be represented by Maurer-Cartan solutions (Bϕ̃Nn ,

AϕNn) with respect to the glu-
ing morphisms (g̃(Nn), g(Nn)) and compatible differentials (d̃(Nn), d(Nn)), where (g(Nn), d(Nn)) =

f(g̃(Nn), d̃(Nn)) and f(BϕNn) = A,B[(AϕNn). Given Maurer-Cartan solutions Aϕ̃i ∈ AL1(g̃,Nn−1)
for 0 ≤ i ≤ n and i 6= k with respect to the gluing morphism d∗i,n(g̃(Nn)) and compatible differential

d∗i,n(d̃(Nn)) such that d∗i,n(Bϕ̃Nn) = A,B[(Aϕ̃i) and d∗i,n−1(Aϕ̃j) = d∗j−1,n−1(Aϕ̃i), we need to construct

an element Aϕ̂Nn ∈ AL1(g̃,Nn) lifting Bϕ̃Nn , and satisfying f(Aϕ̂Nn) = AϕNn and d∗i,n(Aϕ̂Nn) = Aϕ̃i.

By the discussion in [2, §3.4], we can construct a lifting AuNn ∈ AL1(g̃,Nn) of Bϕ̃Nn satisfying

f(AuNn) = AϕNn . Letting Aui = d∗i,n(AuNn) for i 6= k, we have A,B[(Aϕ̃i − Aui) = 0 and Af(Aϕ̃i −
Aui) = 0 which implies that Awi := Aϕ̃i − Aui lies in TW ∗,∗(0R)⊗CA∗(Nn−1)⊗C (mA/ ker(h)). We
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can construct Av ∈ TW ∗,∗(0R)⊗C A∗(Nn)⊗C (mA/ ker(h)) such that d∗i,n(Av) = Awi and therefore

the modification Aϕ̂Nn = Au + Av will have the desired properties.

We have AdNn(Aϕ̂Nn) + 1
2 [Aϕ̂Nn ,

Aϕ̂Nn ] = AONn ∈ TW ∗,∗(0R) ⊗C A∗(Nn) ⊗C (mA/ ker(h)) with
0dNn(AONn) = 0, and hence representing a cohomology class satisfying [(AONn)|Λkn ] = 0. Using the

fact that the natural restriction map A∗(Nn)→ A∗(Λkn) to the k-th horn is a quasi-isomorphism, we
have AONn = 0dNn(AcNn). This allows us to define a Maurer-Cartan element Aϕ̃Nn = Aϕ̂Nn−AcNn ∈
A
M̃C(Nn) as desired. This completes the proof that the map in (3.16) is a Kan fibration.

Now it remains to show that the map A,Bf :
A
M̃C(N0) →

B
M̃C(N0) ×(BMC(N0))

AMC(N0) on

the 0-simplex N0 is surjective for a small extension h : A → B. Again an element in the target
can be written as (Bϕ̃N0 ,

AϕN0) with respect to the gluing morphisms (g̃(N0), g(N0)) and compat-
ible differentials (d̃(N0), d(N0)), and what we need is a lifting Aϕ̃N0 as an element of the domain.

As above, we can construct a lifting Aϕ̂Nn ∈ AL1(g̃,N0) of (Bϕ̃N0 ,
AϕN0) and get the obstruction

(AONn) ∈ TW ∗(0R) which represents a cohomology class in H2(TW ∗(0R)). From the assumption,
we have H2(TW ∗(0R)) = H2(X, 0R∗) = 0, forcing the obstruction to be zero. This proves the
smoothness of A,Bf , and the second statement follows from the first one. �

3.3. Weakened assumption in Definition 3.2. In this subsection, we explain the modification
needed when condition (3) in Definition 3.2 is not satisfied – this is essential for application of the
results of this section to smoothing of pairs in §4.2 because the dgLa in Definition 2.1 indeed does
not satisfy this condition.

The condition (3) in Definition 3.2 can be weakened as follows: Consider the adjoint homo-
morphisms ad : 0G∗ → Der∗(0G∗, 0G∗) and ad : kG∗α → Der∗

(kR)
(kG∗α, kG∗α), where Der∗

(kR)
(, ) de-

notes the graded vector space of kR-linear derivations. Let ad(0G∗) and ad(kG∗α) be their im-
age sheaves of dgLa’s respectively, which are equipped with the naturally induced morphisms
k,l[α : ad(kG∗α) → ad(lG∗α). Then condition (3) in Definition 3.2 can be weakened to the follow-
ing condition:

(3′) ad(0G∗), {ad(kG∗α)}k,α, {k,l[α}k≥l,α satisfy conditions (1), (2) and (4) in Definition 3.2.

With this weakened condition, Condition 3.18 and Definition 3.23 need to be adjusted: First,
Condition 3.18 should be modified by only requiring the elements kaαβ,i(Nn)’s, kϑαβ,i0···il(Nn)’s and
kφαβ,i0i1(Nn)’s to take values in ad(kG∗α), and the equation (3.10) to hold in ad(kG∗α). The gluing

morphism kgαβ(Nn) will remain well defined as it involves only Lie brackets with those elements.

Similarly, in Definition 3.23, we only require the elements kdα(Nn)’s to take values in ad(kG∗α), which
is enough for making sense of the equation (3.14).

Only Lemmas 3.25 and 3.28 involve the original condition (3) in Definition 3.2. But we observe
that, under the new condition (3′), their proofs are not altered at all: Lemma 3.25, which we

extract from [2], involves solving for the elements kaαβ,i(Nn)’s and kϑαβ,i0···il(Nn)’s in Condition

3.18, and the elements kdα(Nn)’s in Definition 3.23. Under condition (3′), these elements can only
be defined with values in the sheaves ad(kG∗α)’s, but this will be enough because we observe that
the compatibility conditions in Definitions 3.20 and 3.23 only involve the values of these elements
in the sheaves ad(kG∗α)’s. Similarly, in the proof of Lemma 3.28, these elements only take values in

ad(
k
G̃∗α)’s and ad(kG∗α)’s and the equality involving them will hold in ad(

k
G̃∗α)’s and ad(kG∗α)’s, but

these are already enough for our purposes.
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4. Smoothing of pairs

In this section, we construct the abstract local deformation data G̃ for a pair (X,C∗), which would

come with a natural forgetful morphism f : G̃ → G sending G̃ to the abstract local deformation data
G associated to X constructed in [8].

Throughout this section, we fix Q = N. Let X be a d-dimensional projective toroidal crossing
space over C. According to [8, Definition 1.5], a toroidal crossing space is defined as an algebraic
space over C together with a sheaf of monoids P with global section 1 ∈ Γ(X,P) such that, locally
at every point x ∈ X, there is a smooth map to the boundary divisor Dx in the affine toric variety
Vx = Spec C[Px] mapping 1x to the monomial in Px whose divisor is Dx and so that P is isomorphic
to the pullback of PVx ; here PVx is the sheaf of monoids defined by PVx := Px/a−1(O×Vx) where Px
denotes the constant sheaf and a : Px → OVx is the map p 7→ zp. This notion was introduced

by Schröer-Siebert [40]. We assume that the higher tangent sheaf T 1
X = Ext1(ΩX ,OX) is globally

generated. Then [8, Theorem 6.8 and Proposition 6.9] furnish X with a log structure, or what they
call the structure of a log toroidal family over the standard N-log point 0S†. We will denote the log
scheme by X† if we want to emphasize its log structure.

Let Z ⊂ X be the codimension 2 singular locus of the log structure (i.e., X† is log smooth away
from Z), and write j : X \Z → X for the inclusion. Also let W ∗

X†/ 0S†
= j∗Ω

∗
(X\Z)†/ 0S†

be the push

forward of the sheaf of relative log differential forms on X \ Z over 0S†. We further assume the
Calabi-Yau condition, namely, ωX ∼= OX (which is equivalent to the condition that W d

X†/ 0S†
∼= OX

by [8, Lemma 6.11.]).

4.1. Construction of abstract deformation data for a space. Here we recall the construction

of the abstract deformation data Ĝ from [2, §8] concerning the smoothing of X.3

Notation 4.1. Following [8, §3], we take an elementary (log) toroidal crossing datum (Q ⊂ P,F)
consisting of monoids Q, P with an injection Q ↪→ P and a collection F of facets of P containing
all facets that do not contain Q. We have the corresponding analytic schemes V = Spec(C[P ])an,
which is equipped with the divisorial log structure induced from the toric divisor V corresponding
to F , and V = Spec(C[Q])an, which is equipped with the pullback log structure from V. There is a
log morphism π : V† → S†, induced from the natural monoid morphism Q = N → P , and a fiber
diagram of log analytic schemes

(4.1) V † �
� //

��

V†

π
��

0S† �
� //S†.

As described in [8, §13], for every point x ∈ X, there are some monoids Q and P as in Notation
4.1, from which we can construct V ⊂ V, together with a neighborhood Vx of x which can be
identified with an open subset Vx ⊂ V , where Vx can further be chosen to be Stein. We fix an open
covering V by Stein open subsets Vα’s, where Vα = Vx for some x ∈ X which comes with a local

k-th order thickening kV†α’s in V†α over kS†. We will abuse notations and write j : Vα \ Z → Vα.

Following [2, §8] (and using notations from [18]), we construct an abstract deformation datum G
as follows:

3Note that it was denoted as G (not Ĝ) in [2].
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Definition 4.2. (1) the sheaf
0
Ĝ∗ of dgLa’s is given by the push forward

0
Ĝ∗ := j∗(ΘX†/ 0S†)

of the analytic sheaf of relative log vector fields concentrated at degree 0, equipped with the
natural Lie bracket;

(2) for each k ∈ Z≥0 and α, the sheaf
k
Ĝ∗α of dgLa’s is given by the push forward

k
Ĝ∗α :=

j∗(ΘkV†α/
kS†

) of the analytic sheaf of relative log vector fields concentated at degree 0, equipped

with the natural Lie bracket;

(3) for k ≥ l and each α, the morphism k,l[α : j∗(ΘkV†α/
kS†

) → j∗(ΘlV†α/
lS†

) is obtained from

the isomorphism j∗(ΘkV†α/
kS†

)⊗(kR)
lR ∼= j∗(ΘlV†α/

lS†
).

Conditions (1) − (2) in Definition 3.2 can be easily checked from the definition of the data.

Condition (4) follows from the fact that the
k
Ĝα’s are coherent sheaves ([8, Lemma 2.4]). To verify

condition (3), it suffices to consider
0
Ĝ∗ since

k
Ĝ∗α is a sheaf of free kR-modules with [·, ·] being

kR-linear. Moreover, condition (3) is a local statement which can be checked on X \ Z away from
the singular locus Z. Since X \ Z is log smooth over 0S†, this can be done directly on log smooth
charts covering X \ Z.

As for the patching datum, consider x ∈ Vαβ and a Stein open subset U ⊂ Vαβ containing x. Then

the two thickening kVα and kVβ can be identified via an isomorphism kΨαβ,U : kVα|U → kVβ|U as

log schemes over kS† by [8, Theorem 6.13] (cf. also [19, Lemma 2.15]) as in [2, §8]. Taking an open
covering U as in Notation 3.1, we have the following definition.

Definition 4.3. For each k ∈ N and triple (Ui;Vα, Vβ) with Ui ⊂ Vαβ, let kΨαβ,i be the following
isomorphism of log schemes:

kV†α|Ui
kΨαβ,i //

πα
��

kV†β|Ui
πβ

��
kS† kS†.

The isomorphism of sheaves
k
ψ̂αβ,i : j∗(ΘkV†α/

kS†
)|Ui → j∗(ΘkV†β/

kS†
)|Ui which appears in Definition

3.4 is taken to be that induced by kΨαβ,i.

The existence of the vector fields
k,l
b̂αβ,i,

kp̂αβ,ij and kôαβγ,i in Definition 3.4 follows from the
analytic version of [19, Theorem 2.11] (we can use this theorem because the local models appearing

in [8] are the same as those in [19]), which implies that any log automorphism of the space kV†α|Ui
(resp. kV†α|Uij ) fixing X|Ui (resp. X|Uij ) is obtained by exponentiating the action of a vector field
in ΘkV†α/

kS†
(Ui) (resp. ΘkV†α/

kS†
(Uij)).

4.2. Construction of abstract deformation data for a pair. We now proceed to construct

the abstract deformation data G̃ associated to the pair (X,C∗). By passing to the determinant line
bundle, we obtain the abstract deformation data G associated to the pair (X,detC∗) and also a

forgetful morphism f : G̃ → G, so that we can apply Theorem 3.30. We will need extra data about
smoothing of C∗ along with X. Using the open covering {Vα}α and the thickenings kVα’s in §4.1
and letting kOα := OkVα

, we introduce the following definition:

Definition 4.4. A geometric lifting datum ({kC∗α}k,α, {
k,l[α}k≥l,α) of C∗ consists of

• for each k ≥ 0 and α, a perfect complex kC∗α of kOα-modules over kVα, and
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• for k ≥ l and each α, a morphism k,l[α : kC∗α → lC∗α of complexes of kOα-modules (here lC∗α
is treated as an kOα-module via the natural homomorphism k,l[α : kOα → lOα)

such that 0C∗α = C∗|Vα, and k,l[α is an isomorphism upon tensoring with lR over kR.

From a geometric lifting datum, we can construct an abstract deformation data G̃ as defined in

Definition 3.2 as follows. On each Vα, we define the sheaf
k
G̃∗α of Lie algebras as the subsheaf of

k
Ĝα ×Hom∗kR(kC∗α,

kC∗α) whose stalk at x is given by
k
Ĝ∗α,x(kC∗x) as in Definition 2.1, which comes

with the natural morphism of sheaves of Lie algebras k,l[α :
k
G̃∗α →

l
G̃∗α. There is a natural exact

sequence of sheaves of Lie algebras

(4.2) 0→ Hom∗kOα(kC∗α,
kC∗α)→

k
G̃∗α →

k
Ĝ∗α → 0.

Conditions (1), (2), (4) in Definition 3.2 follow immediately from this exact sequence. Condition
(3) does not hold since ker(ad) = kOα · IdkC∗α (i.e., multiples of the identity endomorphism in

Hom∗
(kOα)

(kC∗α,
kC∗α)). In this case one can easily check that ad

(
k
G̃∗α
)

satisfies conditions (1), (2), (4)

in Definition 3.2, so we obtain an abstract deformation datum G̃ under the weakened assumption

as described in §3.3. Now, we take kGα to be the subsheaf of
k
Ĝα×HomkR(det kC∗α,det kC∗α) whose

stalk at x is given by
k
Ĝα,x(det kC∗x) as described in §2.

Next, using the geometric isomorphisms kΨαβ,i : kV†α|Ui → kV†β|Ui between log schemes over kS†

described in §4.1, we introduce the following notion of a geometric patching datum:

Definition 4.5. A geometric patching datum for ({kC∗α}k,α, {
k,l[α}k≥l,α) consists of, for each k ∈ N

and (Ui;Vα, Vβ) with Ui ⊂ Vαβ := Vα ∩ Vβ, an isomorphism

kΞαβ,i : kC∗α|Ui → kC∗β|Ui
of complexes of sheaves of modules which is compatible with the isomorphism kΨ∗βα,i : kOα|Ui →
kOβ|Ui of sheaves of rings, such that 0Ξαβ,i = id.

Given a geometric patching datum {kΞαβ,i} of ({kC∗α}k,α, {
k,l[α}k≥l,α), we get an isomorphism

k
ψ̃αβ,i : HomkR(kC∗α,

kC∗α)|Ui → HomkR(kC∗β,
kC∗β)|Ui of sheaves obtained via kΞαβ,i’s. Putting this

together with
k
ψ̂αβ,i :

k
Ĝα|Ui →

k
Ĝβ|Ui , we obtain an isomorphism

k
ψ̃αβ,i :

k
Ĝα|Ui ×HomkR(kC∗α,

kC∗α)|Ui →
k
Ĝβ|Ui ×HomkR(kC∗β,

kC∗β)|Ui

of sheaves over Vα. It induces the corresponding isomorphism
k
ψ̃αβ,i :

k
G̃∗α|Ui →

k
G̃∗β|Ui of sheaves of

dgLa’s over Vα, producing a patching datum for G̃ = {
k
G̃α}k,α. By repeating the same construction

for the geometric patching datum det kΞαβ,i : det kC∗α|Ui → det kC∗β|Ui , we obtain the isomorphism
kψαβ,i : kG∗α|Ui → kG∗β|Ui of sheaves of dgLa’s.

We should indicate how to construct the elements
k,l
b̃αβ,i’s,

kp̃αβ,i’s and kõαβγ,i’s. For kõαβγ,i’s,

we observe that kΞγα,i ◦ kΞβγ,i ◦ kΞαβ,i : kC∗α|Ui → kC∗α|Ui is an automorphism of complexes,

which is compatible with the natural automorphism kΨ∗αγ,i ◦ kΨ∗γβ,i ◦
kΨ∗βα,i : Oα|Ui → Oα|Ui .

Since 0Ξγα,i ◦ 0Ξβγ,i ◦ 0Ξαβ,i = id, we can define kõαβγ,i :=
(
koαβγ,i, log(kΞγα,i ◦ kΞβγ,i ◦ kΞαβ,i)

)
∈

k
G̃0
α(Ui). Similarly, we define

k,l
b̃αβ,i :=

(
k,lbαβ,i, log(lΞβα,i ◦ (kΞαβ,i ⊗(kR)

lR))
)

and kp̃αβ,ij :=
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kpαβ,ij , log(kΞβα,j |Uij ◦ kΞαβ,i|Uij )

)
. Therefore we obtain a patching data ψ̃ for G̃. Repeating

the above for det kΞαβ,i produces the patching datum for G. The trace map tr :
k
Ĝ∗α(kC∗α) →

k
Ĝ0
α(det kC∗α) described in §2 gives kfα :

k
G̃∗α → kGα which is a surjective morphism of sheaves of

dgLa’s. One can easily check conditions (1) − (5) in Definition 3.5. We thus obtain a morphism

f : (G̃, ψ̃)→ (G, ψ).

Let
•
M̃C(N•) and •MC(N•) be the Maurer-Cartan functors associated to the deformation data

(G̃, ψ̃) and (G, ψ) respectively.

Corollary 4.6. Let X be a projective toroidal crossing space which is Calabi-Yau and with T 1
X :=

Ext1(ΩX ,OX) globally generated. Let C∗ be a bounded complex of locally free sheaves (of finite rank)

over X. Suppose the pair (X,C∗) is equipped with a geometric lifting datum ({kC∗α}k,α, {
k,l[α}k≥l,α)

(Definition 4.4) and a geometric patching datum {kΞ∗αβ,i}k,αβ,i (Definition 4.5). If Ext2(C∗,C∗)0 = 0,

then the morphism f :
•
M̃C(N•)→ •MC(N•) between Maurer-Cartan functors is smooth.

Proof. The statement follows from Theorem 3.30 as we have H2(X, 0R) = Ext2(C∗,C∗)0 = 0. �

In geometric situations, we are interested in the following notion concerning smoothing of geo-
metric objects.

Definition 4.7. We say that a variety X is formally smoothable if for every k ∈ N, there exists
a flat family of log schemes π : kX† → kS† such that X† = 0X†, k+1X† ×(k+1S†)

kS† = kX† and
kX†|Vα = kV†α for every α and k ∈ N.

A pair (X,C∗) is said to be formally smoothable if for every k ∈ N, there exists a pair (kX, kC∗),

where π : kX† → kS† is a flat family of log schemes as above and kC∗ is a bounded complex of locally
free sheaves on kX†, such that k+1C∗ ⊗(k+1R)

kR = kC∗ and kC∗|Vα = kC∗α for every α and k ∈ N.

Suppose that X is formally smoothable. Then the isomorphism kV†α|Vαβ ∼= kX† ∼= kV†β|Vαβ
induces an isomorphism

k
Ĝα|Vαβ ∼=

k
Ĝβ|Vαβ , which can be further passed to the associated Thom-

Whitney resolutions to give a set of compatible gluing morphisms kĝ′αβ : kTWα;αβ → kTW β;αβ over

N0. Taking
k
d̂′α = 0 gives a set of compatible differentials with respect to kĝ′αβ’s over N0. Now

kϕ̂′ = 0 will be a Maurer-Cartan element over kR with respect to (ĝ′, d̂′) for each k. If we have
another set of compatible gluing morphisms and differentials (ĝ, d̂), then Lemma 3.25 gives a set of
compatible gluing morphisms and differentials (ĝ(N1), d̂(N1)) connected to (ĝ′, d̂′). Making use of

Lemma 3.27, we can then inductively construct a system of Maurer-Cartan elements kϕ̂′s such that
k+1ϕ̂ ≡ kϕ̂ (mod qk+1), with respect to (ĝ, d̂). Similarly, if (X,C∗) is formally smoothable, then for
any set of compatible gluing morphisms and differentials (g, d), we have a system of Maurer-Cartan
elements kϕ’s such that k+1ϕ ≡ kϕ (mod qk+1).

Proof of Theorem 1.2. Under the assumption that the pair (X,det(C∗)) is formally smoothable,

we have a compatible system of Maurer-Cartan elements {kφ}k∈N by the above discussion. Since

f :
•
M̃C(N•)→ •MC(N•) is smooth by Corollary 4.6, we can then inductively construct the desired

compatible system of Maurer-Cartan elements.

To prove the second statement, we assume instead that H2(X,OX) = 0. Then we can consider

the Maurer-Cartan functor
•
M̂C(N•) associated to the deformation datum (Ĝ, ψ̂). The anchor map

described in Definition 2.1 gives a map
k
f̂α :

k
Ĝ0
α(det kC∗α)→

k
Ĝα for each α, which patch together
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to give a morphism f̂ : (G, ψ)→ (Ĝ, ψ̂) between abstract deformation data, thereby inducing a map

f̂ : •MC(N•)→
•
M̂C(N•) between the associated Maurer-Cartan functors. Applying Theorem 3.30

to f̂ and noting that H2(X, 0R∗) = H2(X,OX) = 0, we conclude that f̂ : •MC(N•)→
•
M̂C(N•) is

smooth. Notice that the toroidal crossing space X is formally smoothable by the results in [2, 8]. So
by repeating the argument in the paragraph right before this proof, we can construct a compatible
system of Maurer-Cartan elements {kφ}k∈N, from which we can deduce the result by arguing as in
the proof of the first statement. (By the discussion in §4.3, which is independent from the proof here,
we can actually construct a formal smoothing of the pair (X,detC∗) from the system of Maurer-

Cartan elements {kφ}k∈N. So the second statement of Theorem 1.2 is indeed a special case of the
first one.) �

4.3. Proof of Theorem 1.1 – geometric smoothing from Maurer-Cartan solutions. In
this subsection, we explain how to apply the technique in [2, §5.3] to the compatible set of Maurer-
Cartan elements constructed in Theorem 1.2 to construct a geometric formal smoothing of the pair
(X, F), where X is as in Theorem 1.1 and F is a locally free sheaf on X to be regarded as a complex
concentrated in degree 0.

First of all, if C∗ consists of just one locally free sheaf F of rank r concentrated at a fixed degree
(which, without loss of generality, can be assumed to be zero), then we can construct a geometric
lifting datum and a geometric patching datum for F as follows. On a Stein open subset Vα, we

can trivialize F =
⊕r

i=1OX |Vα · ei and take Fα :=
⊕r

i=1
kOα · ei. Then k,l[α is simply given by

identifying the frame {ei} in both trivializations and taking the restriction k,l[α : kOα → lOα on
the coefficients. This gives a geometric lifting datum. Furthermore, one can write 0Ξαβ,i(es) =∑r

t=1Atset in terms of matrices Ats ∈ OX(Ui). We can then construct a patching datum by setting
kΞαβ,i(es) :=

∑r
t=1

kAtset, where kAts ∈ kOβ(Ui) are elements lifting Ats, and then extend linearly

to make it compatible with the map kΨ∗βα,i : kOα|Ui → kOβ|Ui .

To prove Theorem 1.1, we first assume that Ext2(F,F)0 = 0 and that the pair (X,detF) is
formally smoothable. For the rest of this section, we restrict our attention to the 0-simplex N0 (and

will omit N0 from our notations). Let g̃ = (kg̃αβ) be a compatible gluing morphism for (G̃, ψ̃) over

N0, which is given by kãαβ,i’s,
k
ϑ̃αβ,i0···il ’s and

k
ψ̃αβ,i’s as in Condition 3.18 and Definition 3.20. It

determines a compatible gluing morphism ĝ for (Ĝ, ψ̂) with data kâαβ,i’s,
k
ϑ̂αβ,i0···il ’s and

k
ψ̂αβ,i’s

from the natural morphism khα :
k
G̃α →

k
Ĝα in (4.2)). Furthermore, we fix a compatible differential

d̃ = (
k
d̃α) for g̃ which determines d̂ = h(d̃) for ĝ. By Theorem 1.2, there is a Maurer-Cartan solution

kϕ = (kϕα)α of the dgLa kL(g̃,F) for each k ∈ N such that k,l[(kϕ) = lϕ.

Similar to Definitions 3.15 and 3.22, we define

kTWO∗α(W ) :=
{

(φi0···il)(i0,...,il)∈I | φi0···il ∈ A
∗(Nl)⊗ kOαj (Ui0···il), d

∗
j,l(φi0···il) = φi0···̂ij ···il |Ui0···il

}
,

kTWF∗α(W ) :=
{

(φi0···il)(i0,...,il)∈I | φi0···il ∈ A
∗(Nl)⊗ kFα(Ui0···il), d

∗
j,l(φi0···il) = φi0···̂ij ···il |Ui0···il

}
,

where I = {(i0, · · · , il) | Uij ⊂W} is a covering for an open subset W ⊂ Vα. For W ⊂W ′, we have
the restriction map rW,W ′ defined by

rW,W ′
(

(φI)I∈I

)
= (φI)I∈I′ ,

where I ′ = {(i0, . . . , il) ∈ I | Uij ⊂ W ′} as in Notation 3.17. We equip kTWO∗α and kTWF∗α with

the operator
k
∂̄α+(

k
d̃α+kϕα)· where the action is defined via the natural actions of

k
G̃α on kOα and
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kFα respectively. This turns kTWO∗α into a presheaf of dga’s over Vα and kTWF∗α into a presheaf
of dg modules over kTWO∗α.

We can define a gluing morphism

kĝαβ(φi0···il) = exp(
k
ϑ̂αβ,i0···il ·) ◦ exp(kâαβ,i·) ◦ kΨ∗βα,i0(φi0···il)

for (φi0···il) ∈ kTWO∗α|Vαβ using this action. The compatibility of the gluing morphism ĝ allows us

to glue these presheaves together to obtain a presheaf kO∗(ĝ) of dga’s. Similarly, by letting

kg̃αβ(φi0···il) = exp(
k
ϑ̃αβ,i0···il ·) ◦ exp(kãαβ,i·) ◦ kΞαβ,i0(φi0···il),

we obtain a gluing homomorphism kg̃αβ : kTWF∗α|Vαβ →
kTWF∗β|Vαβ . This gives complexes kO∗(g)

and kF∗(g̃), where the operator
k
∂̄ + kϕ is defined by gluing the local operators

k
∂̄α +

k
d̃α + kϕα·

together. Therefore we obtain a global presheaf kF∗(g̃) of dg modules over the global presheaf kO∗(g)

of dga’s. The above construction is compatible with the natural maps k,l[ : kO∗(g) → lO∗(g) and
k,l[ : kF∗(g̃)→ lF∗(g̃) induced by k,l[α locally.

On the Stein open subset Vα, we notice that
k
∂̄α +

k
d̃α + kϕα· is gauge equivalent to

k
∂̄α via

an element kϑα ∈ kTW 0,0
α . Conjugating with the automorphism exp(kϑα·) acting on kTWF∗α, and

similarly on kTWO∗α, for each α, we obtain a gluing morphism kgαβ : kTWF∗α|Vαβ →
kTWF∗β|Vαβ ,

which fit into the following commutative diagram:

kTWF∗α|Vαβ
k g̃αβ //

exp(kϑα·)
��

kTWF∗β|Vαβ
exp(kϑβ ·)
��

(kTWF∗α|Vαβ ,
k
∂̄α)

kgαβ //(kTWF∗β|Vαβ ,
k
∂̄β)

;

here we emphasize that kgαβ identifies the differentials
k
∂̄α and

k
∂̄β.

Now for any Stein open subset U ⊂ Vα, we define

kF(U) := H0(kTWF∗α(U),
k
∂̄α).

Then the maps kgαβ : kFα|Vαβ →
kFβ|Vαβ give isomorphisms of sheaves which satisfy the cocycle

condition. Therefore we obtain a global sheaf kF. Similarly, the isomorphisms kgαβ : kOα|Vαβ →
kOβ|Vαβ produce the global structure sheaf kO, which defines a k-th order thickening of X. The
kO-module kF is then a k-th order thickening of F. In conclusion, we obtain a k-th order thickening
(kO, kF) of the pair (X,F) over kR = C[q]/(qk+1) for each k ∈ N such that k+1O ⊗(k+1R)

kR = kO
and k+1F⊗(k+1R)

kR = kF, so that the limit lim←−k(
kO, kF) gives a formal smoothing of (X,F).

If we assume that H2(X,OX) = 0, instead of formal smoothability of the pair (X,detF), then
(proof of) Theorem 1.2 still gives the required compatible set {kϕ}k∈N of Maurer-Cartan elements,
so the pair (X,F) is again formally smoothable.
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