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Abstract. Given a degenerate Calabi-Yau variety X equipped with local deformation data, we
construct an almost differential graded Batalin-Vilkovisky algebra PV ∗,∗(X), producing a singular
version of the extended Kodaira-Spencer differential graded Lie algebra in the Calabi-Yau setting.
Assuming Hodge-to-de Rham degeneracy and a local condition that guarantees freeness of the Hodge
bundle, we prove a Bogomolov-Tian-Todorov–type unobstructedness theorem for smoothing of sin-
gular Calabi-Yau varieties. In particular, this provides a unified proof for the existence of smoothing
of both d-semistable log smooth Calabi-Yau varieties (as studied by Friedman [22] and Kawamata-
Namikawa [41]) and maximally degenerate Calabi-Yau varieties (as studied by Kontsevich-Soibelman
[45] and Gross-Siebert [30]). We also demonstrate how our construction yields a logarithmic Frobe-
nius manifold structure on a formal neighborhood of X in the extended moduli space by applying
the technique of Barannikov-Kontsevich [2, 1].

1. Introduction

1.1. Background. Deformation theory plays an indispensable role in algebraic geometry, mirror
symmetry and mathematical physics. Two major approaches are the Čech approach [61] and the
Kodaira-Spencer differential-geometric approach [55]. The latter is particularly powerful in Calabi-
Yau geometry [5, 70, 71]. Given a Calabi-Yau manifold X, the Kodaira-Spencer differential graded

Lie algebra (abbrev. dgLa) (Ω0,∗(X,T 1,0
X ), ∂̄, [·, ·]) can be upgraded to a differential graded Batalin-

Vilkovisky (abbrev. dgBV) algebra (Ω0,∗(X,∧∗T 1,0), ∂̄,∆,∧). The famous Bogomolov-Tian-Todorov
Theorem [4, 66, 67] then yields unobstructedness of deformations, or equivalently, local smoothness
of the moduli space (see also the recent works [50, 49]), as well as a local Frobenius manifold structure
on the extended moduli space by the work of Barannikov-Kontsevich [2, 1].

A degeneration of Calabi-Yau manifolds {Xq} gives a singular Calabi-Yau variety equipped with a
natural log structure in the sense of Fontaine-Illusie and Kato [37]. So, conversely, one should study
smoothing of singular Calabi-Yau varieties via log geometry. This is essential for understanding
compactifications of moduli spaces of Calabi-Yau manifolds. Two fundamental results in this direc-
tion are the existence of smoothing of d-semistable log smooth Calabi-Yau varieties due to Friedman
[22] and Kawamata-Namikawa [41] and that of maximally degenerate Calabi-Yau varieties due to
Kontsevich-Soibelman [45] and Gross-Siebert [30]. In both cases, existence of smoothing was proved
by an order-by-order construction of thickenings, but the methods were entirely different: in the log
smooth case, it was done by proving Hodge-to-de Rham degeneracy and then applying the T 1-lifting
technique, while in the maximally degenerate case, it was done using consistent scattering diagrams
(which actually yields explicit thickenings).

From Quillen, Deligne and Drinfeld (see e.g. [44]), we learned the general philosophy that any
deformation problem should be governed by a dgLa (or more generally, an L∞-algebra); see e.g.
[19, 18, 20, 21, 31, 33, 51, 53, 52, 54, 57]. Employing this framework, Bogomolov-Tian-Todorov–
type theorems have been formulated and proven for smooth (log) Calabi-Yau manifolds, e.g. in
[42, 39, 40, 36, 34, 35, 49]. We therefore want to know if there exists a dgLa (or better, a dgBV
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algebra) controlling the smoothing of singular Calabi-Yau varieties, which in particular can lead to
a unified proof of the above smoothing results.

A hint was given in our earlier work [7, 9], where we implemented (part of) the proposal by
Kontsevich-Soibelman [43] and Fukaya [24] and demonstrated how asymptotic expansions of the

Maurer-Cartan elements of the Kodaira-Spencer dgLa Ω0,∗(X,∧∗T 1,0
X ) (where X is a torus bundle

over a base B) gave rise to consistent scattering diagrams and tropical disk counts as the torus
fibers shrink. Besides deepening our understanding of the Strominger-Yau-Zaslow proposal [64],
this shows that consistent scattering diagrams and tropical counts are encoded in dgLa’s and their
Maurer-Cartan elements.

To construct the desired algebraic structure that governs the smoothing of singular Calabi-Yau
varieties, one major difficulty arises from non-trivial topology change dictated by the residue of
the Gauss-Manin connection in a degeneration of Calabi-Yau manifolds. In particular, the trivial
deformation cannot be a smoothing – this is in sharp contrast with deformations in the smooth case.
Hence one cannot expect to get an ordinary dgLa or dgBV algebra, because otherwise ϕ = 0, which
corresponds to the trivial deformation, would be a Maurer-Cartan solution. What we discovered
here is that, instead, a so-called almost dgBV algebra PV ∗,∗(X) can naturally be constructed from a
singular Calabi-Yau variety X equipped with suitable local smoothing models. This gives a singular
analogue of the Kodaira-Spencer dgBV algebra, (the classical part of) whose associated Maurer-
Cartan equation indeed governs geometric smoothings of such an X.

More precisely, partially motivated by the divisorial log deformation theory of Gross-Siebert [28,
29], we develop an abstract algebraic framework to construct an almost dgBV algebra PV ∗,∗(X)
from suitable local deformation (or thickening) data attached to X via a local-to-global Čech-de
Rham–type gluing procedure (see Theorem 1.1). Such a simplicial construction of PV ∗,∗(X) can
capture the aforementioned nontrivial topology change because the local thickenings are not locally
trivial. It also allows us to directly link the smoothing of singular Calabi-Yau varieties with the
Hodge theory developed in [2, 1, 42, 39, 48]. This will play an important role in future study of
Calabi-Yau moduli and higher genus B-models [11].

In this paper, we give two immediate applications of Theorem 1.1. First, assuming Hodge-to-de
Rham degeneracy and a local condition that guarantees freeness of the Hodge bundle, we prove a
Bogomolov-Tian-Todorov–type unobstructedness theorem for the smoothing of the singular Calabi-
Yau variety X (see Theorem 1.2). Let us emphasize that, once we obtain the correct algebraic
structure, the proof is simply by applying standard techniques in BV algebras [42, 39, 65]. This
is in line with the framework developed by Katzarkov-Kontsevich-Pantev [42, 39]. In particular,
this produces a unified proof for existence of smoothing in both the log smooth and maximally
degenerate cases. Second, under two further assumptions, we are able to construct a logarithmic
Frobenius manifold structure on a formal neighborhood of X in the extended moduli space by
applying the technique of Barannikov-Kontsevich [2, 1] (see Theorem 1.3).

Very recently, Felten, Filip and Ruddat [16] proved that the Hodge-to-de Rham degeneracy as-
sumption and the local condition in Theorem 1.2 both hold for so-called toroidal crossing spaces –
a very general class of spaces that includes both log smooth and maximally degenerate Calabi-Yau
varieties. So Theorems 1.1 and 1.2 imply the existence of smoothing for all these spaces (see [16] for
more details). In particular, the compactified moduli space of Calabi-Yau manifolds should include
such spaces, over which the moduli space is also smooth. In [15], Felten further showed that the
almost dgLa (called, perhaps more appropriately, a pre-dgLa in [15]) we constructed here indeed
governs the log smooth deformation functor. He also gave a nice explanation why ordinary dgLa’s
are not sufficient in controlling deformations of a log smooth morphism. See also [60, 3] for even
more recent applications of our results.
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1.2. Main results. To describe our main results, we need to fix a monoid Q. Also let C[Q] be the
universal coefficient ring equipped with the monomial ideal m = 〈Q \ {0}〉.

1.2.1. A singular analogue of the Kodaira-Spencer dgBV algebra (§2 & §3). Consider a complex
analytic space (X,OX) equipped with a covering V = {Vα}α by Stein open subsets, together with
local deformation or thickening data attached to each Vα, which consist of a kth-order coherent sheaf
of BV algebras (kG∗α,∧, k∆α) over kR := C[Q]/mk+1 that acts on a kth-order coherent sheaf of de

Rham modules (kK∗α,∧, k∂α) (see Definitions 2.14 & 2.20 in §2) for each k ∈ Z≥0.

Then fix another Stein covering U = {Ui}i∈N of X equipped with higher order local patching data,

namely, isomorphisms kψαβ,i : kGα|Ui → kGβ|Ui of sheaves satisfying certain conditions (see Defini-
tion 2.17). In geometric situations, these patching isomorphisms always come from local uniqueness
of the local thickening data, but they are not compatible directly. Fortunately, the differences be-
tween these data are captured by Lie bracket with local sections from kG∗α (see Definition 2.17).

The ordinary Čech approach to deformation theory is done by solving for compatible gluings
kgαβ : kG∗α → kG∗β and understanding the obstructions in doing so. In our situation, instead of

gluing directly, we first take a dg resolution of the sheaf kG∗α, given as a sheaf of dgBV algebras
kPV ∗,∗α determined by the Thom-Whitney construction [69, 14]. Then we solve for gluing morphisms
kgαβ : kPV ∗,∗α → kPV ∗,∗β which satisfy the cocycle condition and are compatible for different orders

k. Morally speaking, this works because the local sheaves kPV ∗,∗α ’s are “softer” than the kG∗α’s.1

Now the upshot is that this gives rise to an almost dgBV algebra (meaning that the derivation is
a differential only in the 0-th order), instead of a genuine dgBV algebra, and it is sufficient for
deducing unobstructedness. Our first main result is the following:

Theorem 1.1 (=Theorem 3.18 + Proposition 3.24 + Theorem 3.34). There exists an almost dif-
ferential graded Batalin-Vilkovisky (abbrev. dgBV) algebra of polyvector fields2

(PV ∗,∗(X), ∂̄,∆,∧)

over C[[Q]] meaning that it satisfies all the required identities for a dgBV algebra except that ∂̄2 =
∂̄∆ + ∆∂̄ = 0 hold only in the 0-th order, i.e. when restricted to 0PV ∗,∗(X) = PV ∗,∗(X) ⊗C[[Q]]

(C[[Q]]/〈Q \ {0}〉).

In geometric situations such as the log smooth case [22, 41] or the maximally degenerate case
[45, 29], this theorem provides the correct analogue of the Kodaira-Spencer dgBV algebra which
controls smoothings of the singular Calabi-Yau variety X.

1.2.2. Unobstructedness (§4 & §5). Now we consider the extended Maurer-Cartan equation

(1.1) (∂̄ + t∆ + [ϕ, ·])2 = 0

for ϕ ∈ PV ∗,∗(X)[[t]], where t is the descendant parameter as in [1]. Using standard techniques in
the theory of BV algebras [42, 39, 65], we prove an unobstructedness theorem under two assumptions:

• the Hodge-to-de Rham degeneracy assumption which says that the cohomology

H∗(0PV (X)[[t]], ∂̄ + t∆)

1In the maximally degenerate case, the local thickenings do not glue (which was why Gross-Siebert [30] needed
consistent scattering diagrams to correct the gluings) but here we observe that the local BV algebras, after taking dg
resolutions, do glue.

2We are using the Thom-Whitney resolution but the operator is written as ∂̄ because it plays the role of the
Dolbeault operator in the differential-geometric approach, and similarly, we write PV ∗,∗(X) because it plays the role
of the complex of polyvector fields.
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is a free C[[t]] module (Assumption 5.4), and
• a local condition which guarantees freeness of the Hodge bundle (Assumption 4.15).

Theorem 1.2 (=Theorem 5.6 + Lemma 5.12 + Proposition 5.14). Under Assumptions 4.15 and 5.4,
the extended Maurer-Cartan equation (1.1) can be solved order by order for ϕ ∈ PV ∗,∗(X)⊗ C[[t]].
In particular, geometric smoothings of X over the formal scheme Spf(C[[Q]]) are unobstructed.

This can be viewed as a singular version of the famous Bogomolov-Tian-Todorov (BTT) theorem
[4, 66, 67]. It also extends the framework put forth by Katzarkov-Kontsevich-Pantev [42, 39] to the
singular case.

We remark that Assumption 4.15 depends on how good the local smoothing models are. If they
are good enough, Theorem 1.2 essentially reduces smoothability of X to validity of the Hodge-to-de
Rham degeneracy (i.e. Assumption 5.4).

1.2.3. Log Frobenius manifold structure (§6). From the almost dgBV algebra PV ∗,∗(X), we can
construct a logarithmic Frobenius manifold structure on a formal neighborhood of X in the extended
moduli space by directly adapting the techniques of Barannikov-Kontsevich [2, 1]. For this purpose,
we need to suitably enlarge our coefficient ring C[Q] to include all the extended moduli parameters.

Firstly, from the log structure on X, we have the complex of log de Rham differential forms
Ω∗ and we can construct the residue action Nν of the Gauss-Manin connection ∇ acting on the
cohomology H∗(X,Ω∗) for each constant vector field on Spec(C[Q]) given by ν ∈ (Qgp)∨ ⊗Z R. We
assume the following:

• the existence of a weight filtration of the form

{0} ⊂ W≤0 ⊂ · · · ⊂ W≤r ⊂ · · · ⊂ Wd = H∗(X,Ω∗)

indexed by half-integer weights r ∈ 1
2Z, which is opposite to the Hodge filtration F•(H∗(X,Ω∗))

(Assumption 6.12), and
• the existence of a compatible trace map tr : H∗(X,Ω∗)→ C such that the associated pairing

0p(α, β) := tr(α ∧ β) is non-degenerate (Assumption 6.18).

Given a versal solution ϕ of the Maurer-Cartan equation (1.1), we consider the C[Q][[t]]
∧

module

H+ := lim←−
k

H∗(kPV ∗,∗(X)[[t]], ∂̄ + t∆ + [ϕ, ·]),

which is equipped with the Gauss-Manin connection ∇ together with a ∇-flat pairing 〈·, ·〉 con-
structed from 0p.

Theorem 1.3 (=Theorem 6.30). The triple (H+,∇, 〈·, ·〉) is a semi-infinite log variation of Hodge
structures in the sense of Definition 6.2. Under Assumption 6.12, we can construct an opposite
filtration H− to the Hodge bundle H+ in the sense of Definition 6.5. Furthermore, there exists
a versal solution to the Maurer-Cartan equation (1.1) such that eϕ/t gives a miniversal section of
the Hodge bundle in the sense of Definition 6.28. Finally, under Assumption 6.18, there exists
a structure of logarithmic Frobenius manifold on the formal neighborhood Spf(C[[Q]]) of X in the
extended moduli space constructed from these data.

1.2.4. Geometric applications (Examples & §7). In a running example throughout the paper and the
last section, we explain how to apply our results to the geometric settings studied by Friedman [22]
and Kawamata-Namikawa [41] (the d-semistable log smooth case in a running example starting from
Example 2.10) and Kontsevich-Soibelman [45] and Gross-Siebert [30] (the maximally degenerate case
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in §7). In both cases, there is a Stein cover (Vα)α of X together with a local toric thickening Vα of
each Vα over Spec(C[Q]):

Vα
� � //

��

Vα

π
��

Spec(C) �
� //Spec(C[Q])

These serve as local models for the smoothing of X.

Let Z ⊂ X be the codimension 2 singular locus of the log-structure of X and write the inclusion
of the smooth locus as j : X \ Z → X.

We take kG∗α and kK∗α as the push-forwards by j of the sheaf of relative log polyvector fields and
the sheaf of total log holomorphic de Rham complex respectively. The higher order patching data
kψαβ,i come from uniqueness of the local models near a point in X. These data fit into our algebraic
framework. Also, both freeness of the Hodge bundle (Assumption 4.15) and Hodge-to-de Rham
degeneracy (Assumption 5.4) hold: see [41, Lemma 4.1] for the log smooth case and [29, Theorems
3.26 & 4.1] for the maximally degenerate case.3 Therefore, we obtain the following corollary.

Corollary 1.4 (see Corollaries 5.15 and 7.8). In both the log smooth and maximally degenerate
cases, the complex analytic space (X,OX) is smoothable, i.e. there exists a kth-order thickening
(kX, kO) over kS† locally modeled on kVα for each k ∈ Z≥0, and these thickenings are compatible.

For the construction of log Frobenius manifold structures on the extended moduli spaces in these
cases, see Corollaries 6.31 and 7.10.

As mentioned above, the recent work [16] by Felten-Filip-Ruddat has shown that our results are
applicable to the much more general class of toriodal crossing spaces. See also [8, 10] for extension
of this algebraic framework to smoothing of pairs.
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Notation Summary

Notation 1.5. We fix a rank s lattice K together with a strictly convex s-dimensional rational
polyhedral cone QR ⊂ KR := K ⊗Z R. We let Q := QR ∩ K and call it the universal monoid.
We consider the ring R := C[Q] and write a monomial element as qm ∈ R for m ∈ Q, and
consider the maximal ideal given by m := C[Q\{0}]. We consider the Artinian ring kR := R/mk+1

3 There was a gap in the proof of [29, Theorem 4.1] discovered by Felten-Filip-Ruddat, but it was filled by them in
[16]; see [16, Theorem 1.10] for details.
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and the completion R̂ := lim←−k
kR of R. We further equip R, kR and R̂ with the natural monoid

homomorphism Q→ R, m 7→ qm, giving them the structure of a log ring (see [30, Definition 2.11]);

the corresponding log spaces will be denoted as S†, kS† and Ŝ† respectively.

Furthermore, we let Ω∗
S†

:= R ⊗C
∧∗KC, kΩ∗

S†
:= kR ⊗C

∧∗KC and Ω̂∗
S†

:= R̂ ⊗C
∧∗KC (here

KC = K⊗Z C) be the spaces of log de Rham differentials on S†, kS† and Ŝ† respectively. We write
1⊗m as d log qm for m ∈ K, and these spaces are equipped with the de Rham differential ∂ satisfying
∂(qm) = qmd log qm. We also denote by ΘS† := R ⊗C K∨C, ΘS† and Θ̂S†, respectively, the spaces of
log derivations, which are equipped with a natural Lie bracket [·, ·]. We write 1⊗n as ∂n with action
∂n(qm) = (m,n)qm, where (m,n) is the natural pairing between KC and K∨C.

For a Z2-graded vector space V ∗,∗ =
⊕

p,q V
p,q, we write V k =

⊕
p+q=k V

p,q, and V ∗ =
⊕

k V
k if

we only care about the total degree. We also simply write V if we do not need the grading.

Throughout this paper, we are dealing with two Čech covers V = (Vα)α, U = (Ui)i∈Z+ and also

kth-order thickenings at the same time, so we will adapt the following (rather unusual) notational

convention: The top left corner in k♠ refers to the order of ♠. The bottom left corner in •♠ stands
for something constructed from the Koszul filtration on •Kα’s (as in Definitions 2.9 and 2.20), where
• can be r, r1 : r2 or ‖ (meaning relative forms). The bottom right corner is reserved for the Čech
indices; we write ♠α0···α` for the Čech indices of V and ♠i0···il for the Čech indices of U , and if they
appear at the same time, we write ♠α0···α`,i0···il .

2. The abstract algebraic setup

2.1. BV algebras and modules.

Definition 2.1. A graded Batalin-Vilkovisky (abbrev. BV) algebra is a unital Z-graded commu-
tative C-algebra (V ∗,∧) together with a degree 1 operator ∆ such that ∆(1) = 0, ∆2 = 0 and the

operator δv : V ∗ → V ∗+|v|+1 defined by δv(w) := ∆(v∧w)−∆(v)∧w−(−1)|v|v∧∆(w) is a derivation
of degree |v|+ 1 for any homogeneous element v ∈ V ∗ (here |v| denotes the degree of v).

Definition 2.2. A differential graded Batalin-Vilkovisky (abbrev. dgBV) algebra is a graded BV
algebra (V ∗,∧,∆) together with a degree 1 operator ∂̄ satisfying

∂̄(α ∧ β) = (∂̄α) ∧ β + (−1)|α|α ∧ (∂̄β), ∂̄2 = ∂̄ ∆ + ∆∂̄ = 0.

Definition 2.3. A differential graded Lie algebra (abbrev. dgLa) is a triple (L∗, d, [·, ·]), where
L =

⊕
i∈Z L

i, [·, ·] : L∗ ⊗ L∗ → L∗ is a graded skew-symmetric pairing satisfying the Jacobi identity

[a, [b, c]] + (−1)|a||b|+|a||c|[b, [c, a]] + (−1)|a||c|+|b||c|[c, [a, b]] = 0 for homogeneous elements a, b, c ∈ L∗,
and d : L∗ → L∗+1 is a degree 1 differential satisfying d2 = 0 and the Leibniz rule d[a, b] =

[da, b] + (−1)|a|[a, db] for homogeneous elements a, b ∈ L∗.

Given a BV algebra (V ∗,∧,∆), the map [·, ·] : V ⊗ V → V defined by [v, w] = (−1)|v|δv(w) is
called the associated Lie bracket.4 Using this bracket, the triple (V ∗[−1],∆, [·, ·]) forms a dgLa.

Notation 2.4. Given a nilpotent graded Lie algebra L∗, we define a product � by the Baker-
Campbell-Hausdorff formula: v�w := v+w+ 1

2 [v, w]+ · · · for v, w ∈ V ∗. The pair (L∗,�) is called
the exponential group of L∗ and is denoted by exp(L∗).

4For polyvector fields on a Calabi-Yau manifold, we have [·, ·] = −[·, ·]sn, where [·, ·]sn is the Schouten-Nijenhuis
bracket; see e.g. [32, §6.A].
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Lemma 2.5 (see e.g. §1 in [53]). For a dgLa (L∗, d, [·, ·]), we consider the endomorphism adϑ := [ϑ, ·]
for an element ϑ ∈ L0 such that adϑ is nilpotent. Then we have the formula

eadϑ(d+ [ξ,−])e−adϑ = d+ [eadϑ(ξ), ·]− [
eadϑ − 1

adϑ
(dϑ), ·]

for ξ ∈ L∗. For a nilpotent element ϑ ∈ L0, we define the gauge action

exp(ϑ) ? ξ := eadϑ(ξ)− eadϑ − 1

adϑ
(dϑ)

for ξ ∈ L∗. Then we have exp(ϑ1)? (exp(ϑ2) ? ξ) = exp(ϑ1�ϑ2)?ξ, where � is the Baker-Campbell-
Hausdorff product as in Notation 2.4.

Definition 2.6 (see e.g. [46]). A BV module (M∗, ∂) over a BV algebra (V ∗,∧,∆) is a complex of
C-vector spaces equipped with a degree 1 differential ∂ and a graded action by (V ∗,∧), denoted as

ιv = vy : M∗ → M∗+|v| (for a homogeneous element v ∈ V ∗) and called the interior multiplication

or contraction by v, such that if we let (−1)|v|Lv := [∂, vy] := ∂ ◦ (vy)− (−1)|v|(vy) ◦ ∂, where [·, ·]
is the graded commutator for operators, then [Lv1 , v2y] = [v1, v2]y.

Given a BV module (M∗, ∂) over (V ∗,∧,∆), we have [∂,Lv] = 0 and L[v1,v2] = {Lv1 ,Lv2}, where

{·, ·} stands for graded commutator for operators, and Lv1∧v2 = (−1)|v2|Lv1 ◦ (v2y) + (v1y) ◦ Lv2 .
Definition 2.7. A BV module (M∗, ∂) over (V ∗,∧,∆) is called a de Rham module if there is
a unital differential graded algebra (abbrev. dga) structure (M∗,∧, ∂) such that vy(w1 ∧ w2) =

(vyw1) ∧ w2 + (−1)|w1|w1 ∧ (vyw2) for v ∈ V −1 (i.e. vy acts as a derivation) and vy(w1 ∧ w2) =
(vyw1) ∧ w2 = w1 ∧ (vyw2) for v ∈ V 0. If in addition there is a finite decreasing filtration of BV
submodules {0} = NM

∗ ⊂ · · · ⊂ rM
∗ ⊂ · · · ⊂ 0M

∗ = M∗, then we call it a filtered de Rham
module.5

Given a de Rham module (M∗, ∂) over (V ∗,∧,∆), it is easy to check that for v ∈ V −1, Lv acts
as a derivation, i.e. Lv(w1 ∧ w2) = (Lvw1) ∧ w2 + w1 ∧ (Lvw2).

Lemma 2.8. Given a BV algebra (V ∗,∧,∆) acting on a BV module (M∗, ∂), both with bounded
degree, together with an element v ∈ V −1 such that the operator v∧ is nilpotent and an element ω
such that ∂ ω = 0 and satisfying ∆(α)y ω = ∂(αy ω), we have the following identities

exp([∆, v∧])(1) = exp
( ∞∑
k=0

δkv
(k + 1)!

(∆v)
)
, exp([∂, vy]) ω = exp

( ∞∑
k=0

δkv
(k + 1)!

(∆v)
)
y ω,

where δv is the operator defined in Definition 2.1.

Proof. To prove the first identity, notice that [∆, v∧] = δv + (∆v)∧ and

exp

( ∞∑
k=0

δkv
(k + 1)!

(∆v)

)
= 1 +

∑
m≥1

∑
0≤k1<···<km,
s1,··· ,sm>0

( δ
k1
v

(k1+1)!(∆v))s1 · · · ( δkmv
(km+1)!(∆v))sm

(s1!) · · · (sm!)

So it suffices to establish the equality

(δv + (∆v)∧)L

L!
(1) =

∑
0≤k1<···<km, s1,··· ,sm>0:
(k1+1)s1+···(km+1)sm=L

(
δ
k1
v

(k1+1)!(∆v)
)s1
· · ·
(

δkmv
(km+1)!(∆v)

)sm
(s1!) · · · (sm!)

,

5This is motivated by the de Rham complex equipped with the Koszul filtration associated to a family of varieties;
see e.g. [56, Chapter 10.4].
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which can be proven by induction on L. Essentially the same proof gives the second identity. �

2.2. The 0th-order data. Let (X,OX) be a d-dimensional compact complex analytic space.

Definition 2.9. A 0th-order datum over X consists of:

• a coherent sheaf of graded BV algebras (0G∗, [·, ·],∧, 0∆) over X (with −d ≤ ∗ ≤ 0), called
the 0th-order complex of polyvector fields, such that 0G0 = OX and the natural Lie algebra
morphism 0G−1 → Der(OX), v 7→ [v, ·] is injective,
• a coherent sheaf of dga’s (0K∗,∧, 0∂) over X (with 0 ≤ ∗ ≤ d+ s) endowed with a dg module

structure over the dga 0Ω∗
S†

, called the 0th-order de Rham complex, and equipped with the

natural filtration 0
•K∗ defined by 0

sK∗ := 0Ω≥s
S†
∧ 0K∗ (here ∧ denotes the dga action),

• a de Rham module structure on 0K∗ over 0G∗ such that [ϕy, α∧] = 0 for any ϕ ∈ 0G∗ and
α ∈ 0Ω∗

S†
, and

• an element 0ω ∈ Γ(X, 0
0Kd/ 0

1Kd) with 0∂(0ω) = 0, called the 0th-order volume element

such that

(1) the map y 0ω : (0G∗[−d], 0∆)→ (0
0K∗/ 0

1K∗, 0∂) is an isomorphism, and
(2) the map 0

rσ
−1 : 0Ωr

S†
⊗C (0

0K∗/ 0
1K∗[−r]) → 0

rK∗/ 0
r+1K∗, given by taking wedge product by

0Ωr
S†

(here [−r] is the upshift of the complex by degree r), is also an isomorphism.

Note that (0K∗,∧, 0∂) is a filtered de Rham module over 0G∗ using the filtration 0
•K∗, and the map

0
rσ
−1 is an isomorphism of BV modules. We write (0

‖K∗,
0∂) := (0

0K∗/ 0
1K∗, 0∂) and 0

rσ :=
(

0
rσ
−1
)−1

.

Example 2.10. We will use the d-semistable log smooth case [41] (or simply, the log smooth case)
as the running example throughout this paper. Following [41, §2], we take a projective d-dimensional
simple normal crossing variety (X,OX).6 Let Q = Ns and write R = C[[t1, . . . , ts]], where s is the
number of connected components of D = ∪si=1Di := Sing(X). There exists a log structure on X over
the Q-log point 0S†, making it a d-semistable log variety X† over 0S†; we further require it to be log
Calabi-Yau. In this case,

• the 0th-order complex of polyvector fields is given by the analytic sheaf of relative log polyvec-
tor fields 0G∗ :=

∧−∗ΘX†/ 0S† equipped with the natural product structure;7

• the 0th-order de Rham complex is given by the analytic sheaf of total log differential forms
0K∗ := Ω∗

X†/C,8 which is a locally free sheaf (in particular coherent) of dga’s, and equipped

with a natural dga structure over 0Ω∗
S†

inducing the filtration in Definition 2.9;

• the volume element 0ω is given via the trivialization Ωd
X†/ 0S†

∼= OX coming from the Calabi-

Yau condition, and then 0G∗ is equipped with the BV operator defined by 0∆(ϕ)y 0ω :=
0∂(ϕy 0ω).

These data satisfies all the conditions in Definition 2.9. For example, the map 0
rσ : 0Ωr

S†
⊗C

(0
0K∗/ 0

1K∗[−r])→ 0
rK∗/ 0

r+1K∗ given by taking wedge product in Ω∗
X†/C is an isomorphism of sheaves

of BV modules.

6In a discussion with T. Sano, we realised that the projectivity assumption was not necessary for studying smoothing
of X, as indicated in [17, 60].

7In [41], the sheaf of relative log derivations was denoted as TX/A(log).
8In [41], the sheaf of total log differential forms was denoted as Ω∗X/C(log).
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Definition 2.9 is actually an extraction of the abstract properties of the sheaves in Example 2.10
that are necessary for our construction and such that they hold even beyond the case of log smooth
Calabi-Yau varieties; see §7 for definition of the 0th-order datum in the maximally degenerate case.

Also note that our filtration 0
•K∗ is motivated by the Koszul filtration from the variation of Hodge

structures (see e.g. [56]) so that 0
‖K∗ is the sheaf 0K∗ := Ω∗

X†/ 0S†
of relative log differential forms

over 0S†.

Now we consider the hypercohomology H∗(0
‖K∗,

0∂) of the complex of sheaves (0
‖K∗,

0∂).

Definition 2.11. For each r ∈ 1
2Z, let F≥rHl be the image of the linear map Hl(0

‖K≥p,
0∂) →

Hl(0
‖K∗,

0∂), where p is the smallest integer such that 2p ≥ 2r + l − d.9 Then

0 ⊂ F≥d ⊂ F≥d−
1
2 ⊂ · · · ⊂ F≥r ⊂ · · · ⊂ F≥0 = H∗(0

‖K
∗, 0∂)

is called the Hodge filtration.

We have the following exact sequence of sheaves from Definition 2.9

(2.1) 0→ 0Ω1
S† ⊗

0
‖K
∗[−1] ∼= 0

1K∗/ 0
2K∗ → 0

0K∗/ 0
2K∗ → 0

‖K
∗ ∼= 0

0K∗/ 0
1K∗ → 0

Definition 2.12. Take the long exact sequence associated to the hypercohomology of (2.1), we obtain
the 0th-order Gauss-Manin (abbrev. GM) connection:

(2.2) 0∇ : H∗(0
‖K
∗, 0∂)→ 0Ω1

S† ⊗H∗(0
‖K
∗, 0∂).

Note that the 0th-order GM connection is actually the residue of the usual GM connection.

Proposition 2.13. Griffith’s transversality holds for 0∇, i.e.

0∇(F≥r) ⊂ 0Ω1
S† ⊗F

≥r−1.

The proof of this is standard; see e.g., [56, Corollary 10.31]. With [0ω] ∈ F≥dH0 and Griffith’s
transversality, we obtain the 0th-order Kodaira-Spencer map 0∇([0ω]) : 0Ω1

S†
→ F≥d−1H0.

2.3. The higher order data. We fix an open cover V of X which consists of Stein open subsets
Vα ⊂ X. We consider the following local thickening datum in terms of local thickening of the sheaf
0G∗ as kG∗α on Vα.

Definition 2.14. A local thickening datum of the complex of polyvector fields (with respect to V)
consists of, for each k ∈ Z≥0 and Vα ∈ V,

• a coherent sheaf of BV algebras (kG∗α, [·, ·],∧, k∆α) over Vα such that kG∗α is also a sheaf of
algebras over kR so that [·, ·],∧ are kR-bilinear and k∆α is kR-linear, and

• a surjective morphism of sheaves of BV algebras k+1,k[α : k+1G∗α → kG∗α which is k+1R-linear
and induces a sheaf isomorphism upon tensoring with kR

satisfying the following conditions

(1) (0G∗α, [·, ·],∧, 0∆α) = (0G∗, [·, ·],∧, 0∆)|Vα,
(2) kG∗α is flat over kR, i.e. the stalk (kG∗α)x is flat over kR for any x ∈ Vα, and
(3) the natural Lie algebra morphism kG−1

α → Der(kG0
α) is injective.

9We follow Barannikov [1] for the convention on the index r of the Hodge filtration, which differs from the usual

one by a shift. Also, we usually write F≥r, instead of F≥rH∗, when there is no confusion.
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We write k,l[α := l+1,l[α ◦ · · · ◦ k,k−1[α : kG∗α → lG∗α for every k > l, and k,k[α ≡ id. We also
introduce the following notation: Given two elements a ∈ k1G∗α, b ∈ k2G∗α and l ≤ min{k1, k2}, we

say that a = b (mod ml+1) if and only if k1,l[α(a) = k2,l[α(b).

Example 2.15. Continuing the log smooth Example 2.10, every point x̄ ∈ X† is covered by a log
chart V biholomorphic to an open neighborhood of (0, . . . , 0) in {z0 · · · zr = 0 | (z0, . . . , zd) ∈ Cd+1}
[41, §1]. From log deformation theory [41, §2], we obtain a smoothing V† of V given by a neighborhood
of (0, . . . , 0) in {z0 · · · zr = si | (z0, . . . , zd) ∈ Cd+1} if V ∩ Di 6= ∅. We choose a Stein cover

V = {Vα}α of X by such log charts together with a local smoothing V†α of each Vα, and denote by
kV†α the kth order thickening of the local model Vα. Then the sheaf of kth-order polyvector fields in
Definition 2.14 is given by kG∗α :=

∧−∗ΘkV†α/
kS†

equipped with the natural product structure.

Notation 2.16. We fix, once and for all, another cover U of X which consists of a countable
collection of Stein open subsets U = {Ui}i∈Z+ forming a basis of topology (we refer readers to
[13, Chapter IX Theorem 2.13] for the existence of such a cover). Note that an arbitrary finite
intersection of Stein open subsets remains Stein.

We require two different local thickenings on Vα and Vβ isomorphic on some small enough Ui ⊂
Vα ∩ Vβ via a non-unique isomorphism kψαβ,i as follows.

Definition 2.17. A patching datum of the complex of polyvector fields (with respect to U ,V)
consists of, for each k ∈ Z≥0 and triple (Ui;Vα, Vβ) with Ui ⊂ Vαβ := Vα ∩ Vβ, a sheaf isomorphism
kψαβ,i : kG∗α|Ui → kG∗β|Ui over kR preserving the structures [·, ·],∧ and fitting into the diagram

kG∗α|Ui
kψαβ,i //

k,0[α
��

kG∗β|Ui
k,0[β
��

0G∗|Ui 0G∗|Ui ,

and an element kwαβ,i ∈ kG0
α(Ui) with kwαβ,i = 0 (mod m) such that

(2.3) kψβα,i ◦ k∆β ◦ kψαβ,i − k∆α = [kwαβ,i, ·]
satisfying the following conditions:

(1) kψβα,i = kψ−1
αβ,i,

0ψαβ,i ≡ id;

(2) for k > l and Ui ⊂ Vαβ, there exists k,lbαβ,i ∈ lG−1
α (Ui) with k,lbαβ,i = 0 (mod m) such that

(2.4) lψβα,i ◦ k,l[β ◦ kψαβ,i = exp
(

[k,lbαβ,i, ·]
)
◦ k,l[α;

(3) for k ∈ Z≥0 and Ui, Uj ⊂ Vαβ, there exists kpαβ,ij ∈ kG−1
α (Ui∩Uj) with kpαβ,ij = 0 (mod m)

such that

(2.5)
(
kψβα,j |Ui∩Uj

)
◦
(
kψαβ,i|Ui∩Uj

)
= exp

(
[kpαβ,ij , ·]

)
; and

(4) for k ∈ Z≥0 and Ui ⊂ Vαβγ := Vα ∩ Vβ ∩ Vγ, there exists koαβγ,i ∈ kG−1
α (Ui) with koαβγ,i =

0 (mod m) such that

(2.6)
(
kψγα,i|Ui

)
◦
(
kψβγ,i|Ui

)
◦
(
kψαβ,i|Ui

)
= exp

(
[koαβγ,i, ·]

)
.

Example 2.18. In geometric situations, the above patching datum is always induced from the local
uniqueness of local thickening kVα’s of X†. For example, in the log smooth case (continuing Ex-
amples 2.10 and 2.15), [41, Theorem 2.2] says that for each k ∈ Z≥0 and triple (Ui;Vα, Vβ) with

Ui ⊂ Vαβ := Vα∩Vβ, the two log deformations kVα and kVβ are isomorphic over Ui via kΨαβ,i. This
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induces the patching isomorphisms kψαβ,i : kG∗α|Ui → kG∗β|Ui in Definition 2.17. The existence of the

log vector fields kpαβ,i’s, koαβγ,i’s and k,lbαβ,i’s, which measure the incompatibilities of the patching

isomorphisms kψαβ,i’s, follows from the fact that any automorphism of a log deformation over Ui
or Uij comes from exponential action of vector fields. See §7.2.1 for the maximally degenerate case.

Lemma 2.19. The elements k,lbαβ,i’s, kpαβ,ij’s and koαβγ,i’s are uniquely determined by the patching

isomorphisms kψαβ,i’s.

Proof. We just prove the statement for the elements kpαβ,ij ’s as the other cases are similar. Suppose

we have another set of elements kpαβ,ij
∼

’s satisfying (2.5), then we have exp([kpαβ,ij−kpαβ,ij
∼

, ·]) ≡ id as

actions on kG0
α(Uij) where Uij = Ui ∩ Uj . The result then follows from an order-by-order argument

using the assumptions that k,0[α(kpαβ,ij − kpαβ,ij
∼

) = 0 and that the map kG−1
α → Der(kG0

α) is
injective. �

Definition 2.20. A local thickening datum of the de Rham complex (with respect to V) consists
of, for each k ∈ Z≥0 and Vα ∈ V,

• a coherent sheaf of dgas (kK∗α,∧, k∂α) with a dg module structure over kΩ∗
S†

equipped with

the natural filtration k
•K∗α defined by k

sK∗α := kΩ≥s
S†
∧ kK∗α[s],

• a de Rham module structure on kK∗α over kG∗α such that [ϕy, α∧] = 0 for any ϕ ∈ kG∗α and
α ∈ kΩ∗

S†
,

• a surjective k+1R-linear morphism k+1,k[α : k+1K∗α → kK∗α inducing an isomorphism upon

tensoring with kR which is compatible with both k+1,k[ : k+1G∗α → kG∗α and k+1Ω∗
S†
→ kΩ∗

S†

under the contraction and dg actions respectively,10 and
• an element kωα ∈ Γ(Vα,

k
0Kdα/ k1Kdα) satisfying k∂α(kωα) = 0 called the local kth-order volume

element

such that

(1) k
rK∗α is flat over kR for 0 ≤ r ≤ s;

(2) k+1,k[(k+1ωα) = kωα;
(3) (0K∗α, 0

•K∗α,∧, 0∂α) = (0K∗, 0
•K∗,∧, 0∂)|Vα and 0ωα = 0ω|Vα;

(4) the map y kωα : (kG∗α[−d], k∆α)→ (k0K∗α/ k1K∗α, k∂α) is an isomorphism, and
(5) the map k

rσ
−1
α : kΩr

S†
⊗kR (k0K∗α/ k1K∗α[−r]) → k

rK∗α/ k
r+1K∗α, given by taking wedge product by

kΩr
S†

, is also an isomorphism.

Note that kK∗α is a filtered de Rham module over kG∗α using the filtration k
•K∗α. We write k

‖K∗α :=
k
0K∗α/ k1K∗α and k

rσα = (krσ
−1
α )−1.

We also write k,l[α := l+1,l[α ◦ · · · ◦ k,k−1[α for every k > l and k,k[α ≡ id, and introduce the
following notation: Given two elements a ∈ k1

•K∗α, b ∈ k2
•K∗α and l ≤ min{k1, k2}, we say that

a = b (mod ml+1) if and only if k1,l[α(a) = k2,l[α(b).

From Definition 2.20, we have the following diagram of BV modules

(2.7) 0 //K⊗Z
k+1
‖K
∗
α[−1] //

id⊗k+1,k[α
��

k+1
0K∗α/

k+1
2K∗α //

k+1,k[α
��

k+1
‖K
∗
α

//

k+1,k[α
��

0

0 //K⊗Z
k
‖K∗α[−1] //k

0K∗α/ k2K∗α //k+1
‖K
∗
α

//0.

10Here we abuse notations and use k+1,k[α for both k+1K∗α and k+1G∗α.
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In general geometric situations, the sheaves kK∗α’s are taken to be suitable sheaves of total log-
arithmic differential forms on kV∗α with a natural action by kG∗α via contraction, and kωα is taken
to be a local lifting of the relative volume form 0ω over kS†. The local sheaves kK∗α’s of differen-

tial forms are locally identified via the isomorphisms
k
ψ̂αβ,i’s induced by the corresponding local

uniqueness of local thickening kVα’s of Vα’s as in Example 2.18. Therefore it is natural to require

the compatibility between
k
ψ̂αβ,i’s and the data kψαβ,i’s,

kwαβ,i’s,
k,lbαβ,i’s,

kpαβ,ij ’s and koαβγ,i’s
as in the following Definition 2.22.

Example 2.21. In the log smooth case (continuing Examples 2.10, 2.15 and 2.18), the datum in
Definition 2.20 can be chosen as follows: for each k ∈ Z≥0,

• the kth-order de Rham complex is given by kK∗α := Ω∗kV†α/C
;

• the local kth-order volume element is given by a lifting ωα of 0ω as an element in Ω∗
V†α/S†

and taking kωα = ωα (mod mk+1), and then the BV operator k∆α on kG∗α is induced by the
volume form kωα;
• the isomorphism k

rσ of sheaves of BV modules is induced by taking wedge product as in
Example 2.10.

See §7.2 for the maximally degenerate case.

Definition 2.22. A patching datum of the de Rham complex (with respect to U ,V) consists of, for

each k ∈ Z≥0 and triple (Ui;Vα, Vβ) with Ui ⊂ Vαβ, a sheaf isomorphism
k
ψ̂αβ,i of dg modules over

kΩ∗
S†

such that it fits into the diagram

k
•K∗α|Ui

k
ψ̂αβ,i //

k,0[α
��

k
•K∗β|Ui

k,0[β
��

0
•K∗|Ui 0

•K∗|Ui ,
and satisfying the following conditions:

(1)
k
ψ̂αβ,i is an isomorphism of de Rham modules meaning that the diagram

(2.8) kG∗α|Ui

y
((

kψαβ,i
��

k
•K∗α|Ui

k
ψ̂αβ,i
��

kG∗β|Ui

y
((
k
•K∗β|Ui ,

is commutative;

(2)
k
ψ̂βα,i =

k
ψ̂−1
αβ,i,

0
ψ̂αβ,i ≡ id;

(3) we have

(2.9)
k
ψ̂βα,i(

kωβ|Ui) = exp(kwαβ,iy)(
kωα|Ui),

where the elements kwαβ,i’s are as in Definition 2.17;
(4) for k > l and Ui ⊂ Vαβ, we have

(2.10)
l
ψ̂βα,i ◦ k,l[β ◦

k
ψ̂αβ,i = exp

(
Lk,lbαβ,i

)
◦ k,l[α,

where the elements k,lbαβ,i’s are as in (2.4);
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(5) for k ∈ Z≥0 and Ui, Uj ⊂ Vαβ, we have

(2.11)
(
k
ψ̂βα,j |Ui∩Uj

)
◦
(
k
ψ̂αβ,i|Ui∩Uj

)
= exp

(
Lkpαβ,ij

)
,

where the elements kpαβ,ij’s are as in (2.5); and
(6) for k ∈ Z≥0 and Ui ⊂ Vαβγ, we have

(2.12)
(
k
ψ̂γα,i|Ui

)
◦
(
k
ψ̂βγ,i|Ui

)
◦
(
k
ψ̂αβ,i|Ui

)
= exp

(
Lkoαβγ,i

)
,

where the elements koαβγ,i’s are as in (2.6).

Since both kωα and kωβ are nowhere-vanishing,
k
ψ̂αβ,i actually determines kwαβ,i. Also observe

that for every k ∈ Z≥0 and any Ui ⊂ Vαβ, we have a commutative diagram

0 //K⊗Z

(
k
‖K∗α[−1]

)
|Ui //

id⊗kψ̂αβ,i
��

(
k
0K∗α/ k2K∗α

)
|Ui //

k
ψ̂αβ,i
��

k
‖K∗α|Ui //

k
ψ̂αβ,i
��

0

0 //K⊗Z

(
k
‖K∗β[−1]

)
|Ui //

(
k
0K∗β/

k
2K∗β

)
|Ui //k

‖K∗β|Ui //0.

Example 2.23. In the log smooth case (continuing Examples 2.10, 2.15, 2.18 and 2.21), the iso-
morphism between two log deformations kVα and kVβ over Ui via kΨαβ,i induces the patching

isomorphisms
k
ψ̂αβ,i : k•K∗α|Ui → k

•K∗β|Ui in Definition 2.22. The difference between volume elements

is compared by kΨ∗αβ,i(
kωβ) = exp(kwαβ,iy) kωα for some holomorphic function kwαβ,i. See §7.2 for

the maximally degenerate case.

Remark 2.24. We can deduce (2.3) from (2.9) as follows: From (2.9), we have (
k
ψ̂βα,i◦(y kωβ|Ui)◦

kψαβ,i)(γ) = (γ ∧ exp(kwαβ,i))y(kωα|Ui), so

(kψβα,i ◦ k∆β ◦ kψαβ,i)(γ) ∧ exp(kwαβ,i)
(2.9)
=

k∆α(γ ∧ exp(kwαβ,i)) = (k∆α(γ) + [kwαβ,i, γ]) ∧ exp(kwαβ,i)

for any γ ∈ kG∗α(Ui), which gives k∆α(γ) + [kwαβ,i, γ] = (kψβα,i ◦ k∆β ◦ kψαβ,i)(γ).

3. Abstract construction of the Čech-Thom-Whitney complex

3.1. The simplicial set A∗(N•). In this subsection, we recall some notations and facts about the
simplicial sets A∗k(N•) of polynomial differential forms with coefficient k = Q,R,C; we will simply
write A∗(N•) when k = C, which will be the case for all other parts of this paper.

Notation 3.1. We let Mon (resp. sMon) be the category of finite ordinals [n] = {0, 1, . . . , n}
in which morphisms are non-decreasing maps (resp. strictly increasing maps). We denote by di,n :
[n−1]→ [n] the unique strictly increasing map which skips the i-th element, and by ei,n : [n+1]→ [n]
the unique non-decreasing map sending both i and i+ 1 to the same element i.

Note that every morphism in Mon can be decomposed as a composition of the maps di,n’s and
ei,n’s, and any morphism in sMon can be decomposed as a composition of the maps di,n’s.

Definition 3.2 ([68]). Let C be a category. A (semi-)simplicial object in C is a contravariant functor
A(•) : Mon→ C (resp. A(•) : sMon→ C), and a (semi-)cosimplicial object in C is a covariant function
A(•) : Mon→ C (resp. A(•) : sMon→ C).
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Definition 3.3 ([25]). Let k be a field which is either Q, R or C. Consider the dga

A∗k(Nn) :=
k[x0, . . . , xn, dx0, . . . , dxn]

(
∑n

i=0 xi − 1,
∑n

i=0 dxi)
,

with deg(xi) = 0, deg(dxi) = 1, and equipped with the degree 1 differential d defined by d(xi) = dxi
and the Leibniz rule.11 Given a : [n]→ [m] in Mon, we let a∗ := Ak(a) : A∗k(Nm)→ A∗k(Nn) be the
unique dga morphism satisfying a∗(xj) =

∑
i∈[n]:a(i)=j xi and a∗(xj) = 0 if j 6= a(i) for any i ∈ [n].

From this we obtain a simplicial object in the category of dga’s, which we denote as A∗k(N•).

Notation 3.4. We denote by Mn the boundary of Nn, and let

(3.1) A∗k(Mn) :=
{

(α0, . . . , αn) | αi ∈ A∗k(Nn−1), d∗i,n−1(αj) = d∗j−1,n−1(αi) for 0 ≤ i < j ≤ n
}

be the space of polynomial differential forms on Mn. There is a natural restriction map defined by
β|Mn := (d∗0,n(β), . . . , d∗n,n(β)) for β ∈ A∗k(Nn).

The following extension lemma will be frequently used in subsequent constructions:

Lemma 3.5 (Lemma 9.4 in [25]). For any ~α = (α0, . . . , αn) ∈ A∗k(Mn), there exists β ∈ A∗k(Nn)
such that β|Mn = ~α.

Notation 3.6. We let �n := N1 × Nn, where N1 := {(t0, t1) | 0 ≤ ti ≤ 1, t0 + t1 = 1}, and

(3.2) A∗k(�n) := A∗k(N1)⊗k A∗k(Nn) =
k[x0, . . . , xn, dx0, . . . , dxn; t0, t1, dt0, dt1]

(
∑n

i=0 xi − 1,
∑n

i=0 dxi, t0 + t1 − 1, dt0 + dt1)
.

Besides the restriction maps d∗j,n : A∗k(�n)→ A∗k(�n−1) induced from that on Nn, we also have the

maps r∗j : A∗k(�n)→ A∗k(Nn) defined by putting tj = 1 (and t1−j = 0).

Notation 3.7. We denote by �n the boundary of �n, and let

A∗k(�n) :=

{
(α0, . . . , αn, β0, β1) |

αi∈A∗k (�n−1), βi∈A∗(Nn),
d∗i,n−1(αj)=d∗j−1,n−1(αi) for 0 ≤ i < j ≤ n
r∗i (αj)=d∗j,n(βi) for i = 0, 1 and 0 ≤ j ≤ n

}
be the space of polynomial differential forms on �n. There is a natural restriction map defined by
γ|�n := (d∗0,n(γ), . . . , d∗n,n(γ), r∗0(γ), r∗1(γ)) for γ ∈ A∗k(�n).

Lemma 3.8. For any (α0, . . . , αn, β0, β1) ∈ A∗k(�n), there exists γ ∈ A∗k(�n) such that γ|�n =
(α0, . . . , αn, β0, β1).

This variation of Lemma 3.5 can be proven by the same technique as in [25, Lemma 9.4].

3.2. Local Thom-Whitney complexes. Consider a sheaf of BV algebras (G∗,∧,∆) on a topolog-
ical space V ,12 together with an acyclic cover U = {Ui}i∈Z+ of V such that H>0(Ui0···il , Gj) = 0 for
all j and all finite intersections Ui0···il := Ui0 ∩ · · · ∩Uil . In particular, this allows us to compute the

sheaf cohomology H∗(V, Gj) and the hypercohomology H∗(V, G∗) using the Čech complex Č∗(U , Gj)
and the total complex of Č∗(U , G∗) respectively.

Let I = {(i0, . . . , il) | ij ∈ Z+, i0 < i1 < · · · < il} be the index set. Let Nl be the standard

l-simplex in Rl+1 and Aq(Nl) be the space of C-valued polynomial differential q-forms on Nl. Also
let dj,l : Nl−1 → Nl be the inclusion of the jth-facet in Nl and let d∗j,l be the pullback map. See
Definition 3.3 and Notation 3.1 in §3.1 for details.

11In the case k = R, this can be thought of as the space of polynomial differential forms on Rn+1 restricted to the
n-simplex Nn.

12Readers may assume that G∗ is a bounded complex for the purpose of this paper.
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Definition 3.9 (see e.g. [69, 14, 18]). The Thom-Whitney complex is defined as TW ∗,∗(G) :=⊕
p,q TW

p,q(G) where

TW p,q(G) :=
{

(ϕi0···il)(i0,...,il)∈I | ϕi0···il ∈ A
q(Nl)⊗C Gp(Ui0···il), d

∗
j,l(ϕi0···il) = ϕi0···̂ij ···il |Ui0···il

}
.

It is equipped with the structures (∧, ∂̄,∆) defined componentwise by

(αI ⊗ vI) ∧ (βI ⊗ wI) := (−1)|vI ||βI |(αI ∧ βI)⊗ (vI ∧ wI),

∂̄(αI ⊗ vI) := (dαI)⊗ vI , ∆(αI ⊗ vI) := (−1)|αI |αI ⊗ (∆vI),

for αI , βI ∈ A∗(Nl) and vI , wI ∈ G∗(UI), where I = (i0, . . . , il) ∈ I and l = |I| − 1.

Remark 3.10. We use the notation ∂̄ since it plays the role of the Dolbeault operator in the classical
deformation theory of smooth Calabi-Yau manifolds.

(TW ∗,∗(G), ∂̄,∆,∧) forms a dgBV algebra in the sense of Definition 2.2. From Definitions 2.2 and
3.9, the Lie bracket on the Thom-Whitney complex is determined componentwise by the formula

(3.3) [αI ⊗ vI , βI ⊗ wI ] := (−1)(|vI |+1)|βI |(αI ∧ βI)⊗ [vI , wI ],

for αI , βI ∈ A∗(Nl) and vI , wI ∈ G∗(UI) where l = |I| − 1.

We consider the integration map I : TW p,q(G)→ Čq(U , Gp) defined by

I(αi0...il) :=

(∫
Nq
⊗id

)
(αi0...il)

for each component αi0...il ∈ Aq(Nl)⊗ Gp(Ui0...il) of (αi0...il)(i0...il)∈I ∈ TW
p,q(G). Notice that I is a

chain morphism from (TW p,∗(G), ∂̄) to (Č∗(U , Gp), δ), where δ is the Čech differential. Taking the
total complexes gives a chain morphism from (TW ∗,∗(G), ∂̄ ± ∆) to Č∗(U , G∗), which is equipped
with the total Čech differential δ ± ∆.

Lemma 3.11 ([69]). The maps I : TW p,∗(G) → Č∗(U , Gp) and I : TW ∗,∗(G) → Č∗(U , G∗) are
quasi-isomorphisms.

Remark 3.12. Comparing to the standard construction of the Thom-Whitney complex in e.g. [18]

where one considers (ϕi0···il)(i0,...,il)∈I ∈
∏
l≥0

(
A∗(Nl)⊗C

∏
i0<···<il G

p(Ui0···il)
)

, we are taking a

bigger complex in Definition 3.9 for the purpose of later constructions. However, the original proof
of Lemma 3.11 works in exactly the same way for this bigger complex, and hence TW p,∗(G) also
serves as a resolution of Gp.

Definition 3.13. Given the 0th-order complex of polyvector fields (0G∗,∧, 0∆) over X (Definition
2.9), we then use the Stein cover U = {Ui}i∈Z+ in Notation 2.16 to define the 0th-order Thom-

Whitney complex (TW ∗,∗(0G), ∂̄, 0∆,∧). To simplify notations, we write 0TW ∗,∗ for TW ∗,∗(0G).

Given a finite intersection of open subsets Vα0···α` := Vα0 ∩ · · · ∩ Vα` of the cover V, and local

thickenings of the complex of polyvector fields (kG∗αi ,∧,
k∆αi) over Vαi for each k ∈ Z≥0 (Definition

2.14), we use the cover Uα0···α` := {U ∈ U | U ⊂ Vα0···α`} to define the local Thom-Whitney complex

(TW ∗,∗(kGαi |Vα0···α` ), ∂̄,
k∆αi ,∧) over Vα0···α`. To simplify notations, we write kTW ∗,∗αi;α0···α` for

TW ∗,∗(kGαi |Vα0···α` ).

The covers U and Uα0···α` satisfy the acyclic assumption at the beginning of this section because
0G∗ and kG∗α are coherent sheaves and all the open sets in these covers are Stein:

Theorem 3.14 (Cartan’s Theorem B [6]; see e.g. Chapter IX Corollary 4.11 in [13]). For a coherent
sheaf F over a Stein space U , we have H>0(U,F) = 0.
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3.3. The gluing morphisms.

3.3.1. Existence of a set of compatible gluing morphisms. The aim of this subsection is to construct,
for each k ∈ Z≥0 and any pair Vα, Vβ ∈ V, an isomorphism

(3.4) kgαβ : kTW ∗,∗α;αβ →
kTW ∗,∗β;αβ,

as a collection of maps (kgαβ,I)I∈I so that for each ϕ = (ϕI)I∈I ∈ kTW ∗,∗α;αβ with ϕI ∈ A∗(Nl) ⊗
kG∗α(UI) we have

(
kgαβ(ϕ)

)
I

= kgαβ,I(ϕI), which preserves the algebraic structures [·, ·],∧ and
satisfies the following condition:

Condition 3.15. (1) for Ui ⊂ Vα ∩ Vβ, we have

(3.5) kgαβ,i = exp([kaαβ,i, ·]) ◦ kψαβ,i
for some element kaαβ,i ∈ kG−1

β (Ui) with kaαβ,i = 0 (mod m);

(2) for Ui0 , . . . , Uil ⊂ Vα ∩ Vβ, we have

(3.6) kgαβ,i0···il = exp([kϑαβ,i0···il , ·]) ◦
(
kgαβ,i0 |Ui0···il

)
,

for some element kϑαβ,i0···il ∈ A0(Nl)⊗ kG−1
β (Ui0···il) with kϑαβ,i0···il = 0 (mod m); and

(3) the elements kϑαβ,i0···il’s satisfy the relation:13

(3.7) d∗j,l(
kϑαβ,i0···il) =

{kϑαβ,i0···îj ···il for j > 0,

kϑαβ,î0···il �
kφαβ,i0i1 for j = 0,

where kφαβ,i0i1 ∈ kG−1
β (Ui0i1) is the unique element such that

(3.8) exp([kφαβ,i0i1 , ·]) kgαβ,i0 = kgαβ,i1 .

Lemma 3.16. Suppose that the morphisms kgαβ’s, each of which is a collection of maps (kgαβ,I)I∈I ,

all satisfy Condition 3.15. For any ϕ = (ϕI)I∈I ∈ kTW ∗,∗α;αβ, we have
(
kgαβ,I(ϕI)

)
I∈I ∈

kTW ∗,∗β;αβ.

Proof. Suppose that we have (ϕI)I∈I ∈ kTW ∗,qα;αβ such that ϕi0···il ∈ Aq(Nl) ⊗ kG∗α(Ui0···il) and

ϕi0···îj ···il = d∗j,l(ϕi0···il). Letting (kgαβϕ)i0···il := (exp([kϑαβ,i0···il , ·]) ◦ kgαβ,i0)(ϕi0···il), we have

(kgαβϕ)i0···îj ···il = (exp([kϑαβ,i0···îj ···il , ·]) ◦
kgαβ,i0)(ϕi0···îj ···il)

= (exp([d∗j,n(kϑαβ,i0···il), ·]) ◦
kgαβ,i0)(d∗j,n(ϕi0···il))

= d∗j,n((exp([kϑαβ,i0···il , ·]) ◦
kgαβ,i0)(ϕi0···il)),

and

(kgαβϕ)î0···il = (exp([kϑαβ,î0···il , ·]) ◦
kgαβ,i1)(ϕî0···il)

= (exp([kϑαβ,î0···il , ·]) ◦ exp([kφαβ,i0i1 , ·]) ◦ kgαβ,i0)(ϕî0···il)

= (exp([d∗0,n(kϑαβ,i0···il), ·]) ◦
kgαβ,i0)(d∗0,n(ϕi0···il))

= d∗0,n((exp([kϑαβ,i0···il , ·]) ◦
kgαβ,i0)(ϕi0···il)),

which are the required conditions for (kgαβϕ)I ∈ kTW ∗,∗β;αβ. �

13Here d∗j,l is induced by the corresponding map d∗j,l : A∗(Nl)→ A∗(Nl−1) on the simplicial set A∗(N•) introduced

in Definition 3.3 and � is the Baker-Campbell-Hausdorff product in Notation 2.4.
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Given a multi-index (α0 · · ·α`), we have, for each j = 0, . . . , `, a natural restriction map

(3.9) rαj : kTW ∗,∗αi;α0···α̂j ···α` →
kTW ∗,∗αi;α0···α` ,

defined componentwise by

rαj

(
(ϕI)I∈I

)
= (ϕI)I∈I′

for (ϕI)I∈I ∈ kTW ∗,∗αi;α0···α̂j ···α` , where I ′ = {(i0, . . . , il) ∈ I | Uij ⊂ Vα0···α`}. The map rαj is a

morphism of dgBV algebras.

Now for a triple Vα, Vβ, Vγ ∈ V, we define the restriction of kgαβ to kTW ∗,∗α;αβγ as the unique map
kgαβ : kTW ∗,∗α;αβγ →

kTW ∗,∗β;αβγ that fits into the diagram

kTW ∗,∗α;αβ

rγ //

kgαβ
��

kTW ∗,∗α;αβγ

kgαβ
��

kTW ∗,∗β;αβ

rγ //kTW ∗,∗β;αβγ .

Definition 3.17. The morphisms {kgαβ} satisfying Condition 3.15 are said to form a set of com-
patible gluing morphisms if in addition the following conditions are satisfied:

(1) 0gαβ = id for all α, β;
(2) (compatibility between different orders) for each k ∈ Z≥0 and any pair Vα, Vβ ∈ V,

(3.10) kgαβ ◦ k+1,k[α = k+1,k[β ◦ k+1gαβ;

(3) (cocycle condition) for each k ∈ Z≥0 and any triple Vα, Vβ, Vγ ∈ V,

(3.11) kgγα ◦ kgβγ ◦ kgαβ = id

when kgαβ, kgβγ and kgγα are restricted to kTW ∗,∗α;αβγ, kTW ∗,∗β;αβγ and kTW ∗,∗γ;αβγ respectively.

Theorem 3.18. There exists a set of compatible gluing morphisms {kgαβ}.

We will construct the gluing morphisms kgαβ’s inductively. To do so, we need a couple of lemmas.

Lemma 3.19. Fixing Ui0 , . . . , Uil ∈ U and −d ≤ j ≤ 0, we consider the index set Ii0···il := {α |
Uir ⊂ Vα for all 0 ≤ r ≤ l} and the following trivial Čech complex Č∗(Ii0···il , 0Gj) associated to the
vector space 0Gj(Ui0···il) given by∏

α∈Ii0···il

0Gj(Ui0···il)→
∏

α,β∈Ii0···il

0Gj(Ui0···il)→
∏

α,β,γ∈Ii0···il

0Gj(Ui0···il) · · · ,

where each arrow is the Čech differential associated to the index set Ii0···il. We have

H>0(Č(Ii0···il ,
0Gj)) = 0 and H0(Č(Ii0···il ,

0Gj)) = 0Gj(Ui0···il);

the same holds for 0Gj ⊗ V for any vector space V.

Proof. We consider the topological space pt consisting of a single point and an indexed cover
(V̂α)α∈Ii0···il such that V̂α = pt for each α. Then we take a constant sheaf z over pt with

z(pt) = 0Gj(Ui0···il). Since 0Gj(Ui0···il) = z(Vα0···α`) for any α0, . . . , α` ∈ Ii0···il , we have a nat-

ural isomorphism Č∗(Ii0···il , 0Gj) ∼= Č∗(Ii0···il ,z). The result then follows by considering the Čech
cohomology of pt. �



18 CHAN, LEUNG, AND MA

Lemma 3.20 (Lifting Lemma). Let [ : F → H be a surjective morphism of sheaves over V :=
Vα0···α`. For a Stein open subset U := Ui0···il ⊂ V , let w ∈ Aq(Nl)⊗H(U) and ∂(v) ∈ Aq(Ml)⊗F(U)
such that [(∂(v)) = w|Ml. Then there exists v ∈ Aq(Nl)⊗ F(U) such that v|Ml = ∂(v) and [(v) = w.
The same holds if Aq(Nl) and Aq(Ml) are replaced by Aq(�l) and Aq(�l) respectively.

Proof. By Lemma 3.5, there is a lifting v̂ ∈ Aq(Nl)⊗F(U) such that v̂|Ml = ∂(v). Let u := w− [(v̂) ∈
Aq0(Nl)⊗H(U), where Aq0(Nl) is the space of differential q-forms whose restriction to Ml is 0. Since
U is Stein, the map [ : F(U) → H(U) is surjective. So we have a lifting ũ of u to Aq0(Nl) ⊗ F(U).
Now the element v := v̂ + ũ satisfies the desired properties. The same proof applies to the case
involving �l and �l. �

Lemma 3.21 (Key Lemma). Suppose we are given a set of gluing morphisms {kgαβ} for some

k ≥ 0 satisfying Condition 3.15 and the cocycle condition (3.11). Then there exists a set of {k+1gαβ}
satisfying Condition 3.15 , the compatibility condition (3.10) as well as the cocycle condition (3.11).

Proof. We will prove by induction on l where l = |I| − 1 for a multi-index I = (i0, . . . , il) ∈ I.

For l = 0, we fix i = i0. From (3.5) in Condition 3.15, we have kgαβ,i = exp([kaαβ,i, ·]) ◦ kψαβ,i
for some kaαβ,i ∈ kG−1

β (Ui). Also, from (2.4) in Definition 2.17, there exist elements k+1,kbαβ,i ∈
kG−1

α (Ui) such that

k+1,k[β ◦ k+1ψαβ,i
(2.4)
= kψαβ,i ◦ exp([k+1,kbαβ,i, ·]) ◦ k+1,k[α

= exp([kψαβ,i(
k+1,kbαβ,i), ·]) ◦ kψαβ,i ◦ k+1,k[α,

where we use the fact that kψαβ,i is an isomorphism preserving the Lie bracket [·, ·]. Therefore we

have kgαβ,i ◦ k+1,k[α = exp([kaαβ,i, ·]) ◦ exp(−[(kψαβ,i)(
k+1,kbαβ,i), ·]) ◦ k+1,k[β ◦ k+1ψαβ,i. Taking a

lifting Υαβ,i of the term kaαβ,i �
(
kψαβ,i(− k+1,kbαβ,i)

)
from kG−1

β (Ui) to k+1G−1
β (Ui) in the above

equation (using the surjectivity of the map k+1,k[α : k+1G∗α → kG∗α), we define a lifting of kgαβ,i:

˜k+1gαβ,i := exp([Υαβ,i, ·]) ◦ k+1ψαβ,i : k+1G∗α|Ui → k+1G∗β|Ui .

As endomorphisms of k+1G∗α, we have ˜k+1gγα,i ◦ ˜k+1gβγ,i ◦ ˜k+1gαβ,i = exp
(
[k+1Oαβγ,i, ·]

)
for

some k+1Oαβγ,i ∈ k+1G−1
α (Ui). Now ˜k+1gγα,i ◦ ˜k+1gβγ,i ◦ ˜k+1gαβ,i = id (mod mk+1), so we have

exp([k+1Oαβγ,i, ·])(v) = v (mod mk+1) for all v ∈ kG∗α(Ui). Therefore k+1Oαβγ,i = 0 (mod mk+1)

as the map kG−1
α → Der(kG0

α) is injective (see Definition 2.14). Since every stalk (k+1G∗α)x is a free
k+1R-module and k+1,0[α induces a sheaf isomorphism upon tensoring with the residue field 0R ∼= C
(over k+1R), we have a sheaf isomorphism of k+1R modules

(3.12) k+1G∗α ∼= 0G∗ ⊕
k+1⊕
j=1

(
(mj/mj+1)⊗C

0G∗
)
.

Hence we have k+1Oαβγ,i ∈ (mk+1/mk+2)⊗C
0G−1(Ui).

Now we consider the Čech complex Č∗(Ii,
0G−1) ⊗C (mk+1/mk+2) as in Lemma 3.19. The

collection (k+1Oαβγ,i)α,β,γ∈Ii is a 2-cocycle in Č2(Ii,
0G−1) ⊗C (mk+1/mk+2). By Lemma 3.19

for the case l = 0, there exists (k+1cαβ,i)αβ ∈ Č1(Ii,
0G−1) ⊗C (mk+1/mk+2) whose image un-

der the Čech differential is precisely (k+1Oαβγ,i)αβγ . By the identification (3.12), we can regard
k+1cαβ,i as an element in k+1G−1

β (Ui) such that k+1cαβ,i = 0 (mod mk+1). Therefore letting

k+1gαβ,i := exp([k+1cαβ,i, ·])◦ ˜k+1gαβ,i, we have the cocycle condition k+1gγα,i◦k+1gβγ,i◦k+1gαβ,i = id.
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For the induction step, we assume that maps k+1gαβ,i0···ij satisfying all the required conditions

have been constructed for each multi-index (i0 · · · ij) with j ≤ l− 1. We shall construct k+1gαβ,i0···il
for any multi-index (i0, . . . , il). In view of Condition 3.15, what we need are elements k+1ϑαβ,i0···il ∈
A0(Nl) ⊗ k+1G−1

β (Ui0···il) satisfying (3.7) and the cocycle condition (3.11), the latter of which can

be written explicitly as

exp([k+1ϑγα,i0···il , ·]) ◦
k+1gγα,i0 ◦ exp([k+1ϑβγ,i0···il , ·]) ◦

k+1gβγ,i0 ◦ exp([k+1ϑαβ,i0···il , ·]) ◦
k+1gβα,i0

= exp([k+1ϑγα,i0···il , ·]) ◦ exp([k+1gγα,i0(k+1ϑβγ,i0···il), ·]) ◦ exp([k+1gβα,i0(k+1ϑαβ,i0···il), ·]) = id.

Using the k+1ϑαβ,i0···il−1
’s that were defined previously, we want to define a lifting k+1ϑαβ,i0···il

∼

of

the element kϑαβ,i0···il . Before that, we first define its restriction to the boundry Ml as

∂(k+1ϑαβ,i0···il

∼

) := (k+1ϑαβ,î0···il �
k+1φαβ,i0i1 ,

k+1ϑαβ,i0 î1···il , . . . ,
k+1ϑαβ,i0···îl),

where k+1φαβ,i0i1 is defined in Condition 3.15. For 0 ≤ r1 < r2 ≤ l, we have

(3.13) d∗r1,l−1(k+1ϑ
αβ,i0···îr2 ···il

)

=



k+1ϑ
αβ,i0···îr1 ···îr2 ···il

= d∗r2−1,l−1(k+1ϑ
αβ,i0···îr1 ···il

)

if r1 6= 0,

k+1ϑ
αβ,î0···îr2 ···il

� k+1φαβ,i0i1 = d∗r2−1,l−1(k+1ϑαβ,î0···il �
k+1φαβ,i0i1)

if r1 = 0, r2 6= 1,

k+1ϑαβ,î0 î1···il �
k+1φαβ,i0i2 = d∗0,l−1(k+1ϑαβ,î0···il �

k+1φαβ,i0i1)

if r1 = 0, r2 = 1,

upon restricting to Ui0...il , where the last case follows from the identity k+1φαβ,i1i2 � k+1φαβ,i0i1 =
k+1φαβ,i0i2 , which in turn follows from the definition of k+1φαβ,i0i1 in Condition 3.15. Therefore we
have checked that

∂(k+1ϑαβ,i0···il

∼

) ∈ A0(Ml)⊗ k+1G−1
β (Ui0···il).

By Lemma 3.20, we obtain k+1ϑαβ,i0···il

∼

∈A0(Nl)⊗ k+1G−1
β (Ui0···il) satisfying

(k+1ϑαβ,i0···il

∼

)|Ml = ∂(k+1ϑαβ,i0···il

∼

), k+1ϑαβ,i0···il

∼

= kϑαβ,i0···il (mod mk+1).

Therefore, we have an obstruction term k+1Oαβγ,i0···il ∈ A0(Nl)⊗ k+1G−1
α (Ui0···il) given by

k+1Oαβγ,i0···il = k+1ϑγα,i0···il

∼

� k+1gγα,i0(k+1ϑβγ,i0···il

∼

)� k+1gβα,i0(k+1ϑαβ,i0···il

∼

),

which satisfies k+1Oαβγ,i0···il = 0 (mod mk+1). Direct computation gives exp([d∗r,l(
k+1Oαβγ,i0···il), ·]) =

id for all r = 0, . . . , l. Using injectivity of kG−1
α → Der(kG0

α) we deduce (k+1Oαβγ,i0···il)|Ml = 0.

Via (3.12) again, we may regard the term k+1Oαβγ,i0···il as lying in A0
0(Nl) ⊗ 0G−1(Ui0···il) ⊗

(mk+1/mk+2). By a similar argument as in the l = 0 case, we obtain an element (k+1cαβ,i0···il)αβ
whose image under the Čech differential is precisely (k+1Oαβγ,i0···il)αβγ and such that (k+1cαβ,i0···il)|Ml =

0. Therefore setting k+1ϑαβ,i0···il := k+1cαβ,i0···il �
k+1ϑαβ,i0···il

∼

solves the required cocycle condition

(3.11). We also have k+1ϑαβ,i0···il = kϑαβ,i0···il (mod mk+1) since k+1cαβ,i0···il = 0 (mod mk+1) by our

construction, and (k+1ϑαβ,i0···il)|Ml = ∂(k+1ϑαβ,i0···il

∼

) which is the required compatibility condition
(3.7). This completes the proof of the lemma. �
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Proof of Theorem 3.18. We prove by induction on the order k. For the initial case k = 0, as
0G∗ is globally defined on X with 0G∗α = 0G∗|Vα (see Definition 2.14), we can (and have to) set
0gαβ,i = 0ψαβ,i = id and 0ϑαβ,i0···il = 0. The induction step is proven in the Key Lemma (Lemma
3.21). �

3.3.2. Homotopy between two sets of gluing morphisms. The set of compatible gluing morphisms
{kgαβ} constructed in Theorem 3.18 is not unique (except for k = 0). To understand the relation

between two sets of such data, say, {kgαβ(0)} and {kgαβ(1)}, we need, for each k ∈ Z≥0 and any
pair Vα, Vβ ∈ V, an isomorphism

(3.14) khαβ : kTW ∗,∗α;αβ(N1)→ kTW ∗,∗β;αβ(N1),

as a collection of maps (khαβ,I)I∈I , such that

• for each ϕ = (ϕI)I∈I ∈ kTW ∗,∗α;αβ(N1) with ϕI ∈ A∗(N1) ⊗ A∗(Nl) ⊗ kG∗α(UI), we have(
khαβ(ϕ)

)
I

= (khαβ,I)(ϕI),
• it preserves the algebraic structures [·, ·],∧ obtained via tensoring with the dga A∗(N1), and
• fits into the following commutative diagram

(3.15) kTW ∗,∗α;αβ

kgαβ(0)

��

kTW ∗,∗α;αβ(N1)
r∗0oo

khαβ
��

r∗1 //kTW ∗,∗α;αβ

kgαβ(1)

��
kTW ∗,∗β;αβ

kTW ∗,∗β;αβ(N1)
r∗0oo

r∗1 //kTW ∗,∗β;αβ

where kTW p,∗
α;αβ(N1) is the Thom-Whitney complex constructed from the sheaf A∗(N1) ⊗

kGpα|Vαβ ;

here the degree ∗ in kTW p,∗
α;αβ(N1) refers to the total degree on A∗(�l) = A∗(N1) ⊗ A∗(Nl), and

r∗j : A∗(�l)→ A∗(Nl) is induced by the evaluation A∗(N1)→ C at tj = 1 for j = 0, 1 as in Notation

3.7. The isomorphisms khαβ’s are said to constitute a homotopy from {kgαβ(0)} to {kgαβ(1)} if they
further satisfy the following condition (cf. Condition 3.15):

Condition 3.22. (1) for Ui ⊂ Vα ∩ Vβ, we have

(3.16) khαβ,i = exp([kaαβ,i, ·]) ◦ kψαβ,i
for some kaαβ,i ∈ A0(N1)⊗ kG−1

β (Ui) with kaαβ,i = 0 (mod m);

(2) for Ui0 , . . . , Uil ⊂ Vα ∩ Vβ, we have

(3.17) khαβ,i0···il = exp([kκαβ,i0···il , ·]) ◦
(
khαβ,i0 |Ui0···il

)
,

for some element kκαβ,i0···il ∈ A0(N1)⊗A0(Nl)⊗ kG−1
β (Ui0···il) with kκαβ,i0···il = 0 (mod m);

(3) the elements kaαβ,i’s satisfy the relation

(3.18) r∗j (
kaαβ,i) =

{
kaαβ,i(0) for j = 0,

kaαβ,i(1) for j = 1,

where kaαβ,i(j) is the element associated to kgαβ,i(j) as in (3.5);

(4) the elements kκαβ,i0···il’s satisfy the relation (cf. (3.7)):

(3.19) d∗j,l(
kκαβ,i0···il) =

{kκαβ,i0···îj ···il for j > 0,

kκαβ,î0···il �
k%αβ,i0i1 for j = 0,
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where k%αβ,i0i1 ∈ A0(N1) ⊗ kG−1
β (Ui0i1) is the unique element such that exp([k%αβ,i0i1 , ·]) ◦

khαβ,i0 = khαβ,i1 , and the relation

(3.20) r∗j (
kκαβ,i0···il) =

{
kϑαβ,i0···il(0) for j = 0,

kϑαβ,i0···il(1) for j = 1,

where kϑαβ,i0···il(j) ∈ A0(Nl) ⊗ kG−1
β (Ui0···il) is the element associated to kgαβ,i0···il(j) as in

(3.6) for j = 0, 1.

Definition 3.23. A homotopy {khαβ} from {kgαβ(0)} to {kgαβ(1)} is said to be compatible if in
addition the following conditions are satisfied:

(1) 0hαβ = id for all α, β;
(2) (compatibility between different orders) for each k ∈ Z≥0 and any pair Vα, Vβ ∈ V,

(3.21) khαβ ◦ k+1,k[α = k+1,k[β ◦ k+1hαβ;

(3) (cocycle condition) for each k ∈ Z≥0 and any triple Vα, Vβ, Vγ ∈ V,

(3.22) khγα ◦ khβγ ◦ khαβ = id

when khαβ, khβγ, khγα are restricted respectively to kTW ∗,∗α;αβγ(N1), kTW ∗,∗β;αβγ(N1), kTW ∗,∗γ;αβγ(N1).

The same induction argument as in Theorem 3.18 proves the following:

Proposition 3.24. Given any two sets of compatible gluing morphisms {kgαβ(0)} and {kgαβ(1)},
there exists a compatible homotopy {khαβ} from {kgαβ(0)} to {kgαβ(1)}.

3.4. The Čech-Thom-Whitney complex. The goal of this subsection is to construct a Čech-

Thom-Whitney complex
kČ∗(TW, g) for each k ∈ Z≥0 from a given set g = {kgαβ} of compatible

gluing morphisms.

Definition 3.25. For ` ∈ Z≥0, we let

kTW ∗,∗α0···α`(g) ⊂
⊕̀
i=0

kTW ∗,∗αi;α0···α`

be the set of elements (ϕ0, · · · , ϕ`) such that ϕj = kgαiαj (ϕi). Then the kth-order Čech-Thom-

Whitney complex over X,
kČ∗(TW, g) is defined by setting

kČ`(TW p,q, g) :=
∏
α0···α`

kTW p,q
α0···α`(g)

and
kČ`(TW, g) :=

⊕
p,q

kČ`(TW p,q, g) for each k ∈ Z≥0.

This is equipped with the Čech differential kδ` :=
∑`+1

j=0(−1)jrj,`+1 :
kČ`(TW, g)→ kČ`+1(TW, g),

where rj,` :
kČ`−1(TW, g) → kČ`(TW, g) is the natural restriction map defined componentwise by

the map rj,` : kTW ∗,∗α0···α̂j ···α`(g)→ kTW ∗,∗α0···α`(g) which in turn comes from (3.9).

We define the kth-order complex of polyvector fields over X by

kPV ∗,∗(g) := Ker(kδ0)

and denote the natural inclusion kPV ∗,∗(g) → kČ0(TW, g) by kδ−1, so we have the following se-
quence of maps

(3.23) 0→ kPV p,q(g)→ kČ0(TW p,q, g)→ kČ1(TW p,q, g)→ · · · → kČ`(TW p,q, g)→ · · · .
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For ` ∈ Z≥0 and k ≥ l, there is a natural map k,l[ :
kČ`(TW p,q, g) → lČ`(TW p,q, g) defined

componentwise by the map k,l[αj : kTW p,q
αj ;α0···α` → lTW p,q

αj ;α0···α` obtained from k,l[α : kG∗α → lG∗α
(see Definition 2.14). Similarly, we have the natural maps k,l[ : kPV p,q(g)→ lPV p,q(g).

Definition 3.26. The Čech-Thom-Whitney complex Čl(TW, g) =
⊕

p,q Č`(TW p,q, g) is defined

by taking inverse limit Č`(TW p,q, g) := lim←−k
kČ`(TW p,q, g) along the sequence of maps k+1,k[ :

k+1Č`(TW p,q, g)→ kČ`(TW p,q, g).

The complex of polyvector fields PV ∗,∗(g) =
⊕

p,q PV
p,q(g) is defined by taking the inverse limit

PV p,q(g) := lim←−k
kPV p,q(g) along the maps k+1,k[ : k+1PV p,q(g)→ kPV p,q(g)

The maps k,l[’s commute with the Čech differentials kδ`’s and lδ`’s, so we have the following
sequence of maps

(3.24) 0→ PV p,q(g)→ Č0(TW p,q, g)→ Č1(TW p,q, g)→ · · · → Č`(TW p,q, g)→ · · · .

Lemma 3.27. Given k+1w ∈ k+1Č`+1(TW, g) with k+1δ`+1(k+1w) = 0 and kv ∈ kČ`(TW, g) satisfy-

ing kδ`(
kv) = k+1w (mod mk+1), there exists a lifting k+1v ∈ k+1Č`(TW, g) such that k+1δ`(

k+1v) =
k+1w. As a consequence, both (3.23) and (3.24) are exact sequences.

Proof. We only need to prove the first statement of the lemma because the second statement follows
by induction on k (note that the initial case for this induction is k = −1 where we take the trivial
sequence whose terms are all zero).

Without loss of generality, we assume that k+1w ∈ k+1Č`+1(TW p,q, g) and kv ∈ kČ`(TW p,q, g)
for some fixed p and q. We need to construct k+1vα0···α` ∈ k+1TW p,q

α0···α`(g) for every multi-index
(α0, . . . , α`) which, by Definition 3.25, can be written as

k+1vα0···α` =
(
k+1vα0;α0···α` , · · · ,

k+1vα`;α0···α`

)
satisfying k+1vαj ;α0···α` = k+1gαiαj (

k+1vαi;α0···α`), and each component k+1vαj ;α0···α` is of the form
k+1vαj ;α0···α` = (k+1vαj ;α0···α`;i0···il)i0···il , where Uir ⊂ Vα0···α` and k+1vαj ;α0···α`;i0···il ∈ Aq(Nl) ⊗
k+1Gpαj (Ui0···il), such that d∗j,l

(
k+1vαj ;α0···α`;i0···il

)
= k+1vαj ;α0···α`;i0···̂ij ···il |Ui0···il (see Definition 3.9).

We will use induction on l to prove the existence of such an element.

The initial case is l = q. We fix Ui0···iq and consider all the multi-indices (α0, · · · , α`) such that

Uir ⊂ Vα0···α` for r = 0, . . . , q. Since k+1Gpα0 is free over k+1R, we can take a lifting k+1vα0;α0···α`;i0···il
∼

∈
Aq(Nq)⊗ k+1Gpα0(Ui0···iq) of kvα0;α0···α`;i0···iq . Then we let

k+1vαj ;α0···α`;i0···iq
∼

:= k+1gα0αj ,i0···iq(
k+1vα0;α0···α`;i0···iq
∼

)

for j = 1, . . . , ` and set

k+1vα0···α`;i0···iq
∼

:= (k+1vα0;α0···α`;i0···iq
∼

, · · · , k+1vα`;α0···α`;i0···iq
∼

).

Now the element

k+1wα0···α`+1;i0···iq
∼

:=k+1vα̂0···α`+1;i0···iq

∼
− k+1vα0α̂1···α`+1;i0···iq

∼
+ · · ·+ (−1)j(k+1vα0···α̂j ···α`+1;i0···iq

∼
)

+ · · ·+ (−1)`+1(k+1vα0···α̂`+1;i0···iq

∼
)− k+1wα0···α`+1;i0···iq ,

satisfies the condition that k+1wα0···α`+1;i0···il
∼

= 0 (mod mk+1).



GEOMETRY OF THE MC EQUATION NEAR DEGENERATE CY 23

Under the identification (3.12), we treat k+1wα0···α`+1;i0···iq
∼

∈Aq(Nq)⊗0Gp(Ui0···iq)⊗(mk+1/mk+2).

So the collection (k+1wα0···α`+1;i0···iq
∼

)α0···α`+1
is an (`+1)-cocycle in the Čech complex Č`+1(Ii0···iq ,

0Gp)⊗
Aq(Nq) ⊗ (mk+1/mk+2). By Lemma 3.19, there exists (k+1cα0···α`;i0···iq)α0···α` ∈ Č`(Ii0···iq , 0Gp) ⊗
Aq(Nq)⊗(mk+1/mk+2) whose image under the Čech differential is precisely (k+1wα0···α`+1;i0···iq

∼
)α0···α`+1

.
Therefore if we let

k+1vα0···α`;i0···iq := k+1vα0···α`;i0···iq
∼

− k+1cα0···α`;i0···iq ,

then its image under the Čech differential is (k+1wα0···α`+1;i0···iq)α0···α`+1
as desired.

Next we suppose that we are given k+1vα0···α`;i0···il for some l ≥ q. Then we need to construct
k+1vα0···α`;i0···il+1

for any Ui0···il+1
and Vα0···α` such that Uir ⊂ Vα0···α` for r = 1, . . . , l + 1. We fixed

Ui0···il+1
and consider one such Vα0···α` . Letting

∂(k+1vα0;α0···α`;i0···il+1

∼
) :=

(
k+1vα0;α0···α`;î0···il+1

, · · · , k+1v
α0;α0···α`;i0···îl+1

)
gives an element in Aq(Ml+1) ⊗ k+1Gpα0(Ui0···il+1

). Using Lemma 3.20, we construct an element

k+1vα0;α0···α`;i0···il+1

∼
∈Aq(Nl+1)⊗ k+1Gpα0(Ui0···il+1

) such that

k+1vα0;α0···α`;i0···il+1
= kvα0;α0···α`;i0···il+1

(mod mk+1),

k+1vα0;α0···α`;i0···il+1

∼
|Ml+1

= ∂(k+1vα0;α0···α`;i0···il+1

∼
).

We then let k+1vαj ;α0···α`;i0···il+1

∼
:= k+1gα0αj ,i0···il+1

(k+1vα0;α0···α`;i0···il+1

∼
) for j = 1, . . . , ` and set

k+1vα0···α`;i0···il+1

∼
:= (k+1vα0;α0···α`;i0···il+1

∼
, · · · , k+1vα`;α0···α`;i0···il+1

∼
),

The elements k+1δ`(
k+1vαj ;α0···α`;i0···il+1

∼
) and k+1wα0···α`+1;i0···il+1

agree modulo mk+1 and on the
boundary Ml+1 of the simplex Nl+1, so the rest of the proof of this induction step would be the same
as the initial case l = q. �

Corollary 3.28. For k, ` ∈ Z≥0, the map k+1,k[ :
k+1Č`(TW p,q, g)→ kČ`(TW p,q, g) and the induced

map ∞,k[ : Č`(TW p,q, g)→ kČ`(TW p,q, g) are surjective; in particular, both k+1,k[ : k+1PV p,q(g)→
kPV p,q(g) and ∞,k[ : PV p,q(g)→ kPV p,q(g) are surjective.

Proof. It suffices to show that for any kv ∈ kČ`(TW, g), there exists k+1v ∈ k+1Č`(TW, g) such

that k+1,k[(k+1v) = kv. If kδ`(
kv) = 0, then applying Lemma 3.27 with k+1w = 0 gives the desired

k+1v. For a general kv, we let kw = kδ(kv). Since kδ`(
kw) = 0, we can find a lifting k+1w such that

k+1,k[(k+1w) = kw. Applying Lemma 3.27 again, we obtain k+1v satisfying k+1,k[(k+1v) = kv. �

Definition 3.29. Let g(0) = {kgαβ(0)} and g(1) = {kgαβ(1)} be two sets of compatible glu-

ing morphisms, and h = {khαβ} be a compatible homotopy from g(0) to g(1). For ` ≥ 0, we

let kTW p,q
α0···α`(h) ⊂

⊕`
i=0

kTW p,q
αi;α0···α`(N1) be the set of elements (ϕ0, · · · , ϕ`) such that ϕj =

khαiαj (ϕi). Then, for each k ∈ Z≥0, the kth-order homotopy Čech-Thom-Whitney complex is de-

fined by setting
kČ`(TW p,q, h) :=

∏
α0···α`

kTW p,q
α0···α`(h) and

kČ`(TW, h) =
⊕

p,q
kČ`(TW p,q, h). We

have the natural restriction map rj,` :
kČ`−1(TW, h)→ kČ`(TW, h) as in Definition 3.25.

Let kδ` :=
∑`+1

j=0(−1)jrj,`+1 :
kČ`(TW, h) → kČ`+1(TW, h) be the Čech differential acting on

kČ∗(TW, h). Then the kth order homotopy polyvector field on X is defined as kPV ∗,∗(h) :=

Ker(kδ0). So we have the following sequences

0→ kPV p,q(h)→ kČ0(TW p,q, h)→ · · · → kČ`(TW p,q, h)→ · · · ,(3.25)
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0→ PV p,q(h)→ Č0(TW p,q, h)→ · · · → Č`(TW p,q, h)→ · · · ,(3.26)

where (3.26) is obtained from (3.25) by taking the inverse limit. We also write Č`(TW, h) :=⊕
p,q Č`(TW p,q, h).

We further let kr∗j :
kČ`(TW p,q, h) → kČ`(TW p,q, g(j)) and kr∗j : kPV p,q(h) → kPV p,q(g(j)) be

the maps induced by r∗j : A∗(�l) → A∗(Nl) for j = 0, 1, and let r∗j := lim←−k
kr∗j . Then we have the

following diagram

0 //PV ∗,∗(g(0)) // Č0(TW, g(0)) // · · · // Č`(TW, g(0)) // · · ·

0 //PV ∗,∗(h) //

r∗0

OO

r∗1
��

Č0(TW, h) //

r∗0

OO

r∗1
��

· · · // Č`(TW, h) //

r∗0

OO

r∗1
��

· · ·

0 //PV ∗,∗(g(1)) // Č0(TW, g(1)) // · · · // Č`(TW, g(1)) // · · ·

.

Similar proofs as those of Lemma 3.27 and Corollary 3.28 yield the following lemma:

Lemma 3.30. Given k+1w ∈ k+1Č`+1(TW, h) with k+1δ`+1(k+1w) = 0, k+1aj ∈
k+1Č`(TW, g(j))

satisfying k+1δ`(
k+1aj) = k+1r∗j (

k+1w) and kv ∈ kČ`(TW, h) such that kδ`(
kv) = k+1w (mod mk+1)

and kr∗j (
kv) = k+1aj (mod mk+1), there exists k+1v ∈ k+1Č`(TW, h) such that

k+1,k[(k+1v) = kv, k+1r∗j (
k+1v) = k+1aj and k+1δ`(

k+1v) = k+1w. As a consequence, both (3.25) and

(3.26) are exact sequences.

Furthermore, the maps ∞,k[ : Č`(TW p,q, h) → kČ`(TW p,q, h) and ∞,k[ : PV p,q(h) → kPV p,q(h),
as well as kr∗j : kPV ∗,∗(h)→ kPV ∗,∗(g(j)) and r∗j : PV ∗,∗(h)→ PV ∗,∗(g(j)) are all surjective.

3.5. An almost dgBV algebra structure. The complex PV ∗,∗(g) (as well as PV ∗,∗(h)) con-
structed in §3.4 is only a graded vector space. In this subsection, we equip it with two differential
operators ∂̄ and ∆, turning it into an almost dgBV algebra.

We fix a set of compatible gluing morphisms g = {kgαβ} consisting of isomorphisms kgαβ :
kTW ∗,∗α,αβ →

kTW ∗,∗β,αβ for each k ∈ Z≥0 and pair Vα, Vβ ⊂ V. Both kTW ∗,∗α,αβ and kTW ∗,∗β,αβ are

dgBV algebras with differentials and BV operators given by
k
∂̄α,

k
∂̄β and k∆α, k∆β respectively.

To simplify notations, we introduce the power series

(3.27) T(x) :=
e−x − 1

x
=
∞∑
k=0

(−1)k+1xk

(k + 1)!
.

Lemma 3.31. For each k ∈ Z≥0 and pair Vα, Vβ ⊂ V, there exists kwα;αβ ∈ kTW−1,1
α,αβ such that

kwα;αβ = 0 (mod m), k+1wα;αβ = kwα;αβ (mod mk+1) and kgβα ◦
k
∂̄β ◦ kgαβ −

k
∂̄α = [kwα;αβ, ·]. Fur-

thermore, if we let kwαβ := (kwα;αβ,
kgαβ(kwα;αβ)), then (kwαβ)αβ is a Čech 1-cocycle in

kČ1(TW−1,1, g).

Proof. Applying Lemma 2.5 to the dgLa A∗(Nl)⊗ kG∗β(Ui0···il)[−1] by taking ξ = 0, we get

exp(−[kϑαβ,i0···il , ·]) ◦ d ◦ exp([kϑαβ,i0···il , ·]) = d−
[
T([kϑαβ,i0···il , ·])(d

kϑαβ,i0···il), ·
]
,

where d is the de Rham differential acting on A∗(Nl) (recall that
k
∂̄β is induced by the de Rham

differential on A∗(Nl)). Then using (3.6) in Condition 3.15 (i.e. kgαβ,i0···il = exp([kϑαβ,i0···il , ·]) ◦
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(kgαβ,i0 |Ui0···il )), we obtain

kgβα,i0···il ◦ d ◦
kgαβ,i0···il = d−

[
kgβα,i0

(
T([kϑαβ,i0···il , ·])(d

kϑαβ,i0···il)
)
, ·
]
.

Now we put
kwα;αβ,i0···il := − kgβα,i0

(
T([kϑαβ,i0···il , ·])(d

kϑαβ,i0···il)
)
.

Then k+1wα;αβ,i0···il = kwα;αβ,i0···il (mod mk+1). To check that it is well-defined as an element in
kTW−1,1

α;αβ, we need to show d∗r,l(
kwα;αβ,i0···il) = kwα;αβ,i0···îr···il , and by injectivity of kG−1

α ↪→ Der(kG0
α)

it is enough to show d+[d∗r,l(
kwα;αβ,i0···il), ·] = d+[kwα;αβ,i0···îr···il , ·]. We compute the only non-trivial

term (i.e. r = 0) as

d+ [d∗0,l(
kwα;αβ,i0···il), ·] = d− [kgβα,i0

(
T([kϑαβ,î0···il �

kφαβ,i0i1 , ·])d(kϑαβ,i0···il �
kφαβ,i0i1)

)
, ·]

2.5
= d− [kgβα,i0 exp(−[kφαβ,i0i1 , ·])

(
T([kϑαβ,î0···il , ·])(d

kϑαβ,î0···il)
)
, ·]

(3.8)
= d− [kgβα,i1

(
T([kϑαβ,î0···il , ·])(d

kϑαβ,î0···il)
)
, ·]

= d− [kwα;αβ,î0···il , ·],

where we use the first formula in Lemma 2.5 and d(kφαβ,i0i1) = 0 to achieve the equality.

To see that it is a Čech cocycle, we deduce from its definition that [kgαβ(kwα;αβ), ·] =
k
∂̄β− kgαβ ◦

k
∂̄α◦kgβα, or equivalently kgβα◦

k
∂̄β◦kgαβ−

k
∂̄α = [kwα;αβ, ·]. Thus, by a similar computation we have

kgγα ◦
k
∂̄γ ◦kgαγ−

k
∂̄α = [kwα;αγ , ·] and [kgβα(kwβ;βγ), ·] = kgγα ◦

k
∂̄γ ◦kgαγ−kgβα ◦

k
∂̄β ◦kgαβ, we get

[kwα;αβ − kwα;αγ + kgβα(kwβ;βγ), ·] = 0 and can conclude that kwα;αβ − kwα;αγ + kgβα(kwβ;βγ) = 0. �

We have a similar result concerning the difference between the BV operators k∆α and k∆β:

Lemma 3.32. For each k ∈ Z≥0 and pair Vα, Vβ ⊂ V, there exists kfα;αβ ∈ kTW 0,0
α,αβ such

that kfα;αβ = 0 (mod m), k+1fα;αβ = kfα;αβ (mod mk+1), and kgβα ◦ k∆β ◦ kgαβ − k∆α =

[kfα;αβ, ·]. Furthermore, if we let kfαβ := (kfα;αβ,
kgαβ(kfα;αβ)), then (kfαβ)αβ is a Čech 1-cocycle

in
kČ1(TW 0,0, g).

Proof. Similar to the previous proof, we use Lemma 2.5 for the dgLa (kGβ(Ui0···il),
k∆∗β[−1], [·, ·]) by

taking ξ = 0 and get

exp(−[kϑαβ,i0···il , ·]) ◦
k∆β ◦ exp([kϑαβ,i0···il , ·]) = k∆β − [(T([kϑαβ,i0···il , ·]) ◦

k∆β)(kϑαβ,i0···il), ·].

We take ξ = −(T([kϑαβ,i0···il , ·]) ◦
k∆β)(kϑαβ,i0···il) and ϑ = − kaαβ,i0 in Lemma 2.5 and get

exp(−[kaαβ,i0 , ·]) ◦ exp(−[kϑαβ,i0···il , ·]) ◦
k∆β ◦ exp([kϑαβ,i0···il , ·]) ◦ exp([kaαβ,i0 , ·])

= exp(−[kaαβ,i0 , ·]) ◦
(
k∆β − [(T([kϑαβ,i0···il , ·]) ◦

k∆β)(kϑαβ,i0···il), ·]
)
◦ exp([kaαβ,i0 , ·])

= k∆β − [(exp(−[kaαβ,i0 , ·]) ◦ T([kϑαβ,i0···il , ·]) ◦
k∆β)(kϑαβ,i0···il), ·]− [(T([kaαβ,i0 , ·]) ◦ k∆β)(kaαβ,i0), ·].

By (3.5) in Condition 3.15, we can write kgαβ,i = exp([kaαβ,i, ·]) ◦ kψαβ,i, and from (2.3) in

Definition 2.17, we have kψβα,i ◦ k∆β ◦ kψαβ,i − k∆α = [kwαβ,i, ·], so

kgβα,i0···il ◦
k∆β ◦ kgαβ,i0···il −

k∆α =− [(kgβα,i0 ◦ T([kϑαβ,i0···il , ·]) ◦
k∆β)(kϑαβ,i0···il), ·]

− [(kψβα,i0 ◦ T([kaαβ,i0 , ·]) ◦ k∆β)(kaαβ,i0), ·] + [kwαβ,i0 , ·].
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Now we put
kfα;αβ,i0···il :=− (kgβα,i0 ◦ T([kϑαβ,i0···il , ·]) ◦

k∆β)(kϑαβ,i0···il)

− (kψβα,i0 ◦ T([kaαβ,i0 , ·]) ◦ k∆β)(kaαβ,i0) + kwαβ,i0

=− (kgβα,i0 ◦ T([kϑαβ,i0···il , ·]) ◦
k∆β)(kϑαβ,i0···il) + 1Nl ⊗

kfα;αβ,i0 |Ui0···il ,
(3.28)

where 1Nl denotes the constant function with value 1 on Nl. We need to check the following conditions
for the elements kfα;αβ,i0···il ’s:

(1) k+1fα;αβ,i0···il = kfα;αβ,i0···il (mod mk+1);

(2) kfα;αβ := (kfα;αβ,i0···il)(i0,··· ,il)∈I ∈
kTW 0,0

α;αβ (see Definition 3.9);

(3) letting kfαβ := (kfα;αβ,
kgαβ(kfα;αβ)), we have

(3.29) kgαβ,i0···il(
kfα;αβ,i0···il) = (kgαβ,i0 ◦ T([kϑβα,i0···il , ·]) ◦

k∆α)(kϑβα,i0···il) + 1Nl ⊗
kfβ;αβ,i0 ,

where kfβ;αβ,i0 = (kψαβ,i0 ◦ T([kaβα,i0 , ·]) ◦ k∆α)(kaβα,i0)− kwβα,i0 ; and

(4) that (kfαβ)αβ is a Čech 1-cocycle in
kČ1(TW 0,0, g).

The properties (1)-(4) are proven by applying the comparison (2.9) of the volume forms in Definition
2.22 (which can be regarded as a more refined piece of information than the comparison of BV
operators in (2.3)) and Lemma 2.8 in the same manner, together with some rather tedious (at least
notationally) calculations. For simplicity, we shall only present the proof of (1) here.

To prove (1), first notice that the term (kgβα,i0 ◦T([kϑαβ,i0···il , ·])◦
k∆β)(kϑαβ,i0···il) already satisfies

the equality, so we only need to consider the case for l = 0. In the rest of this proof, we shall work

(mod mk+1), meaning that all equalities hold (mod mk+1). First of all, the equation k+1,k[β ◦
k+1gαβ,i0 = kgαβ,i0 ◦

k+1,k[α (mod mk+1) can be rewritten as

exp(−[kaαβ,i0 , ·]) ◦ exp([k+1aαβ,i0 , ·]) ◦
k+1,k[β = kψαβ,i0 ◦

k+1,k[α ◦ k+1ψβα,i0

= exp([k+1,kbβα,i0 , ·]) ◦
k+1,k[β

using (3.5) and (2.4), so we have

− k+1aαβ,i0 = (− k+1,kbβα,i0)� (− kaαβ,i0)

by the injectivity of kG−1
β ↪→ Der(kG0

β).

Applying Lemma 2.5 to the dgLa (kG∗β, [·, ·],
k∆β), we get

(exp(− k+1,kbβα,i0) ? exp(− kaαβ,i0)) ? 0 = exp(− k+1aαβ,i0) ? 0, which can be expanded as

0 =− (exp(−[k+1,kbβα,i0 , ·]) ◦ T([kaαβ,i0 , ·]) ◦ k∆β)(kaαβ,i0)

− (T([k+1,kbβα,i0 , ·]) ◦ k∆β)(k+1,kbβα,i0) + (T([k+1aαβ,i0 , ·]) ◦ k∆β)(k+1aαβ,i0).

Applying k+1ψβα,i0 to both sides (note that γ ∈ kG∗β, so when we write k+1ψβα,i0(γ), we mean
k+1ψβα,i0(γ̃) where γ̃ ∈ k+1G∗β is an arbitrary lifting of γ; as we are working (mod mk+1), k+1ψβα,i0(γ̃)

is independent of the choice of the lifting), we obtain

0 =− (kψβα,i0 ◦ T([kaαβ,i0 , ·]) ◦ k∆β)(kaαβ,i0)− (k+1ψβα,i0 ◦ T([k+1,kbβα,i0 , ·]) ◦ k∆β)(k+1,kbβα,i0)

+ (k+1ψβα,i0 ◦ T([k+1aαβ,i0 , ·]) ◦ k∆β)(k+1aαβ,i0)

= kfα;αβ,i0 − kwαβ,i0 − k+1fα;αβ,i0 + k+1wαβ,i0 − (kψβα,i0 ◦ T(−[k+1,kbβα,i0 , ·]) ◦ k∆β)(k+1,kbβα,i0).

From (2.9), we learn that kψαβ,i0(kwαβ,i0) = − kwβα,i0 . Hence it remains to show that

kwβα,i0 + kψαβ,i0(k+1wαβ,i0) = (T(−[k+1,kbβα,i0 , ·]) ◦ k∆β)(k+1,kbβα,i0),
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which follows from the relation

exp(kwβα,i0 + kψαβ,i0(k+1wαβ,i0))y kωβ = (
k
ψ̂αβ,i0 ◦

k+1,k[α ◦
k+1

ψ̂βα,i0)(k+1ωβ)

= exp(Lk+1,kbβα,i0
)(kωβ)

= exp([k∂β, (− k+1,kbβα,i0)y])(kωβ),

coming from Definition 2.22 and using Lemma 2.8. �

The same results hold with the same proofs for the homotopy Čech-Thom-Whitney complex with
gluing morphisms khαβ : kTW ∗,∗α;αβ(N1)→ kTW ∗,∗β;αβ(N1), where kTW ∗,∗α;αβ(N1) and kTW ∗,∗β;αβ(N1) are

equipped with the differentials kDα := dN1 ⊗ 1 + 1 ⊗ k
∂̄α and kDβ := dN1 ⊗ 1 + 1 ⊗ k

∂̄β and BV

operators k∆α and k∆β respectively. Such results are summarized in the following Lemma.

Lemma 3.33. There exist kWα;αβ ∈ kTW−1,1
α,αβ(N1) and kFα;αβ ∈ kTW 0,0

α,αβ(N1) such that kWα;αβ =

0 (mod m) and kFα;αβ = 0 (mod m), and

khβα ◦ kDβ ◦ khαβ − kDα = [kWα;αβ, ·], khβα ◦ k∆β ◦ khαβ − k∆α = [kFα;αβ, ·].

Furthermore, if we let

kWαβ := (kWα;αβ,
khαβ(kWα;αβ)), kFαβ := (kFα;αβ,

khαβ(kFα;αβ)),

then (kWαβ)αβ and (kFαβ)αβ are Čech 1-cocycles in
kČ∗(TW, h).

We conclude this subsection by the following theorem:

Theorem 3.34. There exist elements d = (dα)α = lim←−k(
kdα)α ∈ Č0(TW−1,1, g) and f = (fα)α =

lim←−k(
kfα)α ∈ Č0(TW 0,0, g) such that

gβα ◦ (∂̄β + [dβ, ·]) ◦ gαβ = ∂̄α + [dα, ·], gβα ◦ (∆β + [fβ, ·]) ◦ gαβ = ∆α + [fα, ·].

Also, (∂̄α + [dα, ·])α and (∆α + [fα, ·])α glue to give operators ∂̄ and ∆ on PV ∗,∗(g) such that

(1) ∂̄ is a derivation of [·, ·] and ∧ in the sense that

∂̄[u, v] = [∂̄u, v] + (−1)|u|+1[u, ∂̄v], ∂̄(u ∧ v) = (∂̄u) ∧ v + (−1)|u|u ∧ (∂̄v),

where |u| and |v| denote respectively the total degrees (i.e. |u| = p + q if u ∈ PV p,q(g)) of
the homogeneous elements u, v ∈ PV ∗(g);

(2) the BV operator ∆ satisfies the BV equation and is a derivation for the bracket [·, ·], i.e.

∆[u, v] = [∆u, v] + (−1)|u|+1[u,∆v],

∆(u ∧ v) = (∆u) ∧ v + (−1)|u|u ∧ (∆v) + (−1)|u|[u, v],

for homogeneous elements u, v ∈ PV ∗(g); and
(3) we have ∆2 = 0 and

∂̄2 = 0 = ∂̄ ∆ + ∆∂̄ (mod m),

so (PV ∗,∗,∧, ∂̄,∆) (mod m) is an almost dgBV algebra.

Moreover, if (d′, f′) is another pair of such elements defining operators ∂̄′ and ∆′, then we have

∂̄′ − ∂̄ = [v1, ·], ∆′ − ∆ = [v2, ·],

for some v1 ∈ PV −1,1(g) and v2 ∈ PV 0,0(g).
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Proof. In view of Lemmas 3.31 and 3.32, we have a Čech 1-cocycle w = (wαβ)αβ = lim←−k(
kwαβ)αβ and

f = (fαβ)αβ = lim←−k(
kfαβ)αβ. Using the exactness of the Čech-Thom-Whitney complex in Lemma

3.27, we obtain d ∈ Č0(TW−1,1, g) and f ∈ Č0(TW 0,0, g) such that the images of − d and − f under
the Čech differential δ0 are w and f respectively, and also d = 0 (mod m) and f = 0 (mod m).
Therefore we obtain the identities

gβα ◦ (∂̄β + [dβ, ·]) ◦ gαβ = ∂̄α + [dα, ·], gβα ◦ (∆β + [fβ, ·]) ◦ gαβ = ∆α + [fα, ·].

Also notice that if we have another choice of d′ and f′ such that the images of − d′ and − f′ under the
Čech differential δ0 are w and f respectively, then we must have d′−d = δ−1(v1) and f′− f = δ−1(v2)
for some elements v1 ∈ PV −1,1(g) and v2 ∈ PV 0,0(g).

It remains to show that the operators ∂̄ and ∆ defined by d and f satisfying the desired properties.
First note that we have an injection δ−1 : PV p,q(g) ↪→ Č0(TW p,q, g) =

∏
α TW

p,q
α , where we write

TW p,q
α := lim←−k

kTW p,q
α . Also the product ∧ and the Lie bracket [·, ·] on PV ∗,∗(g) are induced by those

on each TW ∗,∗α . Since ∂̄ and ∆ are defined by gluing the operators (∂̄α+[dα, ·])α and (∆α+[fα, ·])α,
we only have to check the required identities on each TW ∗,∗α , which hold because both [dα, ·]’s and
[fα, ·] are derivations of degree 1 and d = 0 = f (mod m). Also, (∆α+[fα, ·])2 = ∆2

α+[∆α(fα), ·] = 0
(∆α(fα) = 0 for degree reason), so we have ∆2 = 0. �

For the homotopy Čech-Thom-Whitney complex we have the following proposition which is par-
allel to Theorem 3.34:

Proposition 3.35. There exist elements D = (Dα)α = lim←−k(
kDα)α ∈ Č0(TW−1,1, h) and F =

(Fα)α = lim←−k(
kFα)α ∈ Č0(TW 0,0, h) such that

hβα ◦ (Dβ + [Dβ, ·]) ◦ hαβ = Dα + [Dα, ·],
hβα ◦ (∆β + [Fβ, ·]) ◦ hαβ = ∆α + [Fα, ·].

Furthermore, (Dα + [Dα, ·])α and (∆α + [Fα, ·])α glue to give operators D and ∆ on PV ∗,∗(h) so
that (PV ∗,∗(h),∧,D,∆) satisfies (1)− (3) of Theorem 3.34 (with D playing the role of ∂̄).

4. Abstract construction of the de Rham differential complex

4.1. The de Rham complex. Given a set of compatible gluing morphisms g = {kgαβ}, the goal

of this subsection is to glue the local filtered de Rham modules kKα over Vα to form a global
differential graded algebra over X. Similar to §3.2, we consider a sheaf of filtered de Rham modules
(K∗, •K∗,∧, ∂) over a sheaf of BV algebras (G∗,∧,∆) on V and a countable acyclic cover U =
{Ui}i∈Z+ of V which satisfies the condition that H>0(Ui0···il , rKj) = 0 for all j, r and and all finite
intersections Ui0···il := Ui0 ∩ · · · ∩ Uil .

Definition 4.1. We let

TW p,q(K) := {(ηi0···il)(i0,...,il)∈I | ηi0···il ∈ A
q(Nl)⊗C Kp(Ui0···il), d

∗
j,l(ηi0···il) = ηi0···̂ij ···il |Ui0···il},

and TW ∗,∗(K) :=
⊕

p,q TW
p,q(K). It is equipped with a natural filtration TW ∗,∗(•K) inherited from

•K and the structures (∧, ∂̄, ∂) defined componentwise by

(αI ⊗ uI) ∧ (βI ⊗ wI) := (−1)|uI ||βI |(αI ∧ βI)⊗ (uI ∧ wI),

∂̄(αI ⊗ uI) := (dαI)⊗ uI , ∂(αI ⊗ uI) := (−1)|αI |αI ⊗ (∂uI),
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for αI , βI ∈ A∗(Nl) and uI , wI ∈ K∗(UI) where l = |I| − 1. Furthermore, there is an action

ιϕ = ϕy : TW ∗(•K)→ TW ∗+|ϕ|(•K) defined componentwise by

(αI ⊗ vI)y(βI ⊗ uI) := (−1)|βI ||vI |(αI ∧ βI)⊗ (vIyuI),

for αI , βI ∈ A∗(Nl), vI ∈ G∗(UI) and uI ∈ K∗(UI), where |ϕ| = p + q for ϕ ∈ TW p,q(•K) and
l = |I| − 1.

Direct computation shows that (TW ∗(•K),∧, ∂) is a filtered de Rham module over the BV algebra

(TW ∗(G),∧,∆) with the identity LαI⊗vI (βI ⊗ uI) = (−1)(|vI |+1)|βI |(αI ∧ βI)⊗ (LvIuI) for αI , βI ∈
A∗(Nl), vI ∈ G∗(UI) and uI ∈ K∗(UI) where l = |I| − 1. Also, (TW ∗(•K),∧, ∂̄) is a dga with the

relation ∂̄(ϕyη) = ∂̄(ϕ)yη + (−1)|ϕ|ϕy(∂̄η) for ϕ ∈ TW ∗(G) and η ∈ TW ∗(•K)).

Proposition 4.2. There is an exact sequence

0→ TW p,q(r+1K)→ TW p,q(rK)→ TW p,q(rK/ r+1K)→ 0

induced naturally by the exact sequence 0→ r+1K → rK → rK/ r+1K → 0.

Proof. The only nontrivial part is the surjectivity of the map p : TW p,q(rK) → TW p,q(rK/ r+1K),
which is induced from surjective maps p : rKp(Ui0···il) → (rKp/ r+1Kp)(Ui0···il). We fix η =
(ηi0···il)(i0,...,il) ∈ TW p,q(rK/ r+1K) with ηi0···il ∈ Aq(Nl) ⊗ (rKp/ r+1Kp)(Ui0···il), and show by in-
duction on l that there exists a lifting ηi0···il′

∼∈ Aq(Nl′) ⊗ Kp(Ui0···il′ ) for any l′ ≤ l satisfying
p(ηi0···il′
∼

) = ηi0···il′ and d∗j,l(ηi0···il′
∼

) = ηi0···̂ij ···il′
∼|Ui0···il′ for all 0 ≤ j ≤ l′. The initial case l = q follows

from the surjectivity of the map p : rKp(Ui0···iq)→ (rKp/ r+1Kp)(Ui0···iq) over the Stein open subset
Ui0···iq . For the induction step, we set ∂(ηi0···il

∧
) := (ηî0···il
∼

, . . . , ηi0···îl
∼

) ∈ Aq(Ml)⊗ rKp(Ui0···il). Then

the Lifting Lemma 3.20 gives an extension ηi0···il
∼∈ Aq(Nl) ⊗ rKp(Ui0···il) such that (ηi0···il

∼
)|Ml =

∂(ηi0···il
∧

) and pi0···il(ηi0···il
∼

) = ηi0···il , as desired. �

Notation 4.3. We will write k
r1:r2K

∗
α := k

r1K
∗
α/

k
r2K

∗
α for any r1 ≤ r2, and extend the notation k

•K∗α
by allowing • = r or r1 : r2. We also write kK∗α = k

0K∗α as before.

Given a set of compatible gluing morphisms g = {kgαβ} as in §3.4, we can extend them to gluing

morphisms acting on k
•A
∗,∗
αj ;α0···α` := TW ∗,∗(k•Kαj |Vα0···α` ).

Definition 4.4. For each pair Vα, Vβ ⊂ V, the morphism kĝαβ = (kĝαβ,i0···il)(i0,...,il)∈I : k•A
∗,∗
α;αβ →

k
•A
∗,∗
β;αβ is defined componentwise by

kĝαβ,i0···il(ηi0···il) := (exp(Lkϑαβ,i0···il ) ◦ exp(Lkaαβ,i0 ) ◦ kψ̂αβ,i0)(ηi0···il)

for any multi-index (i0, . . . , il) ∈ I such that Uij ⊂ Vαβ for every 0 ≤ j ≤ l.

From Definition 2.22, we see that the differences between the morphisms
k
ψ̂αβ,i’s are captured

by taking Lie derivatives of the same elements k,lbαβ,i’s,
kpαβ,ij ’s and koαβγ,i’s as for the morphisms

kψαβ,i’s. So the morphisms kĝαβ : k
•A
∗,∗
α;αβ →

k
•A
∗,∗
β;αβ’s are well-defined and satisfying k+1ĝαβ =

kĝαβ (mod mk+1), kĝγα ◦ kĝβγ ◦ kĝαβ = id. As a result, we can define the Čech-Thom-Whitney

complex Č∗(•A, ĝ) as in §3.4.

Definition 4.5. For ` ≥ 0, we let k•A
∗,∗
α0···α`(ĝ) ⊂

⊕`
i=0

k
•A
∗,∗
αi;α0···α` be the set of elements (η0, · · · , η`)

such that ηj = kĝαiαj (ηi).Then we set
kČ`(•Ap,q, ĝ) :=

∏
α0···α`

k
•A

p,q
α0···α`(ĝ) for each k ∈ Z≥0

and
kČ`(•A, ĝ) :=

⊕
p,q

kČ`(•Ap,q, ĝ), which is equipped with the natural restriction maps rj,` :
kČ`−1(•A, ĝ)→ kČ`(•A, ĝ).
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We let kδ` :=
∑`+1

j=0(−1)jrj,`+1 :
kČ`(•A, ĝ) → kČ`+1(•A, ĝ) be the Čech differential. The kth

order total de Rham complex over X is then defined to be k
•A∗,∗(ĝ) := Ker(kδ0). Denoting the

natural inclusion k
•A∗,∗(ĝ)→ kČ0(•A, ĝ) by kδ−1, we obtain the following sequence of maps

k
•Ap,q(ĝ) ↪→ kČ0(•A

p,q, ĝ)→ kČ1(•A
p,q, ĝ)→ · · · → kČ`(•Ap,q, ĝ)→ · · · ,(4.1)

•Ap,q(ĝ) ↪→ Č0(•A
p,q, ĝ)→ Č1(•A

p,q, ĝ)→ · · · → Č`(•Ap,q, ĝ)→ · · · ,(4.2)

where the second sequence is obtained by taking inverse limits lim←−k of the first sequence.

Furthermore, we let
k
∂̄ and k∂ be the operators on k

•A∗,∗(ĝ) obtained by gluing of the operators

(
k
∂̄α + Lkdα)α’s (where (kdα)α ∈

kČ1(TW−1,1, g) is the element obtained from Theorem 3.34) and
k∂α’s on k

•Aα;α, and ∂̄ := lim←−k
k
∂̄ and ∂ := lim←−k

k∂ be the corresponding inverse limits.

Proposition 4.6. Let •A∗,∗(ĝ) be the filtration inherited from that of •K for • = 0, . . . , s. Then
(•A∗,∗(ĝ),∧, ∂) is a filtered de Rham module over the BV algebra (PV ∗,∗(g),∧,∆), and we have
∂̄2 = 0 = ∂̄ ∂ + ∂∂̄ (mod m) as well as the relations

∂̄(η ∧ µ) = ∂̄(η) ∧ µ+ (−1)|η|η ∧ (∂̄µ), ∂̄(ϕyη) = (∂̄ϕ)yη + (−1)|ϕ|ϕy(∂̄η),

for ϕ ∈ PV ∗,∗(g) and η, µ ∈ A∗,∗(ĝ). Furthermore, the filtration •A∗,∗(ĝ) satisfies the relation

rA∗,∗(ĝ)/ r+1A∗,∗(ĝ) = r:r+1A∗,∗(ĝ).

Proof. Since ∂̄ and ∂ are constructed from the operators (
k
∂̄α + Lkdα)α’s and k∂α’s on k

•Aα;α, we

only have to check the relations for each (k•Aα;α,∧, k∂), which is a filtered de Rham module over

the BV algebra (kTWα;α,∧, k∆). To see the last relation, note that there is an exact sequence of

Čech-Thom-Whitney complexes 0→ kČ∗(r+1A
p,q, ĝ)→ kČ∗(rAp,q, ĝ)→ kČ∗(r:r+1A

p,q, ĝ)→ 0 using
Proposition 4.2. Taking the kernel and inverse limits then gives the exact sequence

0→ r+1Ap,q(ĝ)→ rAp,q(ĝ)→ r:r+1Ap,q(ĝ)→ 0.

The result follows. �

Notation 4.7. We will simplify notations by writing •A∗,∗ = •A(ĝ) and PV ∗,∗ = PV ∗,∗(g) if the

gluing morphisms ĝ = {kĝαβ} and g = {kgαβ} are clear from the context. We will further denote

the relative de Rham complex (over spf(R̂)) as ‖A∗,∗ := 0A∗,∗/ 1A∗,∗ = 0:1A∗,∗.

Proposition 4.8. Using the element (kfα)α ∈
kČ0(TW 0,0, g) obtained from Theorem 3.34, we obtain

the element (exp(kfαy) kωα)α ∈
kČ0(0:1A

d,0, ĝ) whose components glue to form a global element
kω ∈ k

‖Ad,0, i.e. we have (kĝαβ ◦ exp(kfαy))(kωα) = exp(kfβy)(kωβ). Furthermore, we have k+1ω =
kω (mod mk+1). In view of this, we define the relative volume form to be ω := lim←−k

kω.

Proof. Similar to the proof of Lemma 3.32, we use the power series T(x) in (3.27) to simplify
notations. We fix Vαβ and Ui0···il such that Uij ⊂ Vαβ for all 0 ≤ j ≤ l. We need to show that

(exp(Lkϑαβ,i0···il ) ◦
kgαβ,i0 ◦ exp(kfα,i0···ily))(

kωα) = exp(kfβ,i0···ily)(
kωβ).

We begin with the case l = 0. Making use of the identities

exp([ϑ, ·])(u ∧ v) = (exp([ϑ, ·])(u)) ∧ (exp([ϑ, ·])(v)),

exp(Lϑ)(vyw) = (exp([ϑ, ·])(v))y(exp(Lϑ)(w))
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for ϑ ∈ kG−1
β (Ui0···il), u, v ∈ kG0

β(Ui0···il) and w ∈ k
0:1Kdβ(Ui0···il), we have

(kĝαβ,i0 ◦ exp(kfα,i0y))(
kωα) =(exp(Lkaαβ,i0 ) ◦ kψ̂αβ,i0 ◦ exp(kfα,i0y))(

kωα)

= exp(kgαβ,i0(kfα,i0) + exp([kaαβ,i0 , ·])(kwβα,i0))y exp(Lkaαβ,i0 )(kωβ)

= exp
(
kfβ,i0 + kfβ;αβ,i0

+ kgαβ,i0(− kwαβ,i0 + (kψβα,i0 ◦ T([kaαβ,i0 , ·]) ◦ k∆β)(kaαβ,i0))
)
y kωβ

= exp(kfβ,i0)y kωβ,

where kfβ;αβ,i0 = kgαβ,i0(kfα;αβ,i0) = kgαβ,i0(−(kψβα,i0 ◦ T([kaαβ,i0 , ·]) ◦ k∆β)(kaαβ,i0) + kwαβ,i0) is

the component of the term kfβ;αβ obtained in Lemma 3.32.

The general case l ≥ 0 is similar, as we have

(kĝαβ,i0···il ◦ exp(kfα,i0···ily))(
kωα)

=(exp(Lkϑαβ,i0···il ) ◦
kgαβ,i0 ◦ exp(kfα,i0···ily))(

kωα)

= exp(kfβ,i0···il + kfβ;αβ,i0···il − exp([kϑαβ,i0···il , ·])(
kfβ;αβ,i0)

+ (T(−[kϑαβ,i0···il , ·]) ◦
k∆β)(kϑαβ,i0···il))y

kωβ

= exp
(
kfβ,i0···il + kfβ;αβ,i0···il+

kgαβ,i0···il((
kgβα,i0 ◦ T([kϑαβ,i0···il , ·]) ◦

k∆β)(kϑαβ,i0···il)−
kfα;αβ,i0)

)
y kωβ

= exp(kfβ,i0···il)y
kωβ.

�

Lemma 4.9. The elements klα :=
k
∂̄α(kdα)+ 1

2 [kdα,
kdα] and kyα := k∆α(kdα)+

k
∂̄α(kfα)+[kdα,

kfα]

glue to give global elements kl = (klα)α ∈ kPV −1,2 and ky = (kyα)α ∈ kPV 0,1 respectively.

Proof. For the element klα, we have

(
k
∂̄α + [kdα, ·])2 = [klα, ·]

on kTW ∗,∗α and since kgβα◦(
k
∂̄β+[kdβ, ·])◦kgαβ =

k
∂̄α+[kdα, ·], we deduce that [kgαβ(klα), ·] = [klβ, ·]

and hence kgαβ(klα) = klβ by the injectivity of kG−1 ↪→ Der(kG0).

For the element kyα, we have kgαβ(kdα) = kdβ + kwβ;αβ and kgαβ
kfα = kfβ + kfβ;αβ from the

constructions in Theorem 3.34. Making use of the relations
k
∂̄β ◦kgαβ = kgαβ ◦

k
∂̄α+[kwβ;αβ, ·]◦kgαβ

and k∆β ◦ kgαβ = kgαβ ◦ k∆α + [kfβ;αβ, ·] ◦ kgαβ from Lemmas 3.31 and 3.32, we have

kgαβ(k∆α(kdα) +
k
∂̄α(kfα) + [kdα,

kfα]) = kgαβ(k∆α(kdα)) + [kfβ;αβ,
kdβ] + kgαβ(

k
∂̄α(kfα))

+ [kwβ;αβ,
kfβ] + [kwβ;αβ,

kfβ;αβ] + [kdβ,
kfβ]

=(k∆β(kdβ) +
k
∂̄β(kfβ) + [kdβ,

kfβ]) + k∆β(kwβ;αβ)

+
k
∂̄β(kfβ;αβ)− [kwβ;αβ,

kfβ;αβ].

Hence it remains to show k∆β(kwβ;αβ) +
k
∂̄β(kfβ;αβ)− [kwβ;αβ,

kfβ;αβ] = 0 in kTW ∗,∗β .
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We fix a multi-index (i0, . . . , il) ∈ I, and recall from the proofs of Lemmas 3.31 and 3.32 the
formulas:

k
∂̄β(kfβ;αβ,i0···il) =− k

∂̄β((T(−[kϑαβ,i0···il , ·]) ◦
k∆β)(kϑαβ,i0···il)) + (

k
∂̄β ◦ kgαβ,i0···il)(

kfα;αβ,i0),

k∆β(kwβ;αβ,i0···il) =− (k∆β ◦ T(−[kϑαβ,i0···il , ·]) ◦
k
∂̄β)(kϑαβ,i0···il),

where T is the formal series introduced in (3.27). Now we consider the dgLa (A∗(Nl)⊗kG∗β(Ui0···il),
k∆β+

k
∂̄β, [·, ·]). We apply Lemma 2.5 and notice that

A := exp(kϑαβ,i0···il) ? 0 = (T(−[kϑαβ,i0···il , ·]) ◦ (k∆β +
k
∂̄β))(kϑαβ,i0···il).

Since A is gauge equivalent to 0 in the above dgLa, we have the equation (k∆β +
k
∂̄β)A+ 1

2 [A, A] = 0

whose component in A1(Nl)⊗ kG0
β(Ui0···il) can be extracted as

k
∂̄β((T(−[kϑαβ,i0···il , ·]) ◦

k∆β)(kϑαβ,i0···il))+

k∆β((T(−[kϑαβ,i0···il , ·]) ◦
k
∂̄β)(kϑαβ,i0···il))+

[(T(−[kϑαβ,i0···il , ·]) ◦
k∆β)(kϑαβ,i0···il), (T(−[kϑαβ,i0···il , ·]) ◦

k
∂̄β)(kϑαβ,i0···il)] = 0.

Therefore, the (i0, . . . , il)-component of k∆β(kwβ;αβ) +
k
∂̄β(kfβ;αβ)− [kwβ;αβ,

kfβ;αβ] is given by

k∆β(kwβ;αβ,i0···il) +
k
∂̄β(kfβ;αβ,i0···il)− [kwβ;αβ,i0···il ,

kfβ;αβ,i0···il ]

=
k
∂̄β(kgαβ,i0···il(

kfα;αβ,i0))− [kwβ;αβ,i0···il ,
kgαβ,i0···il(

kfα;αβ,i0)]

= kgαβ,i0···il(
k
∂̄α(kfα;αβ,i0)) = 0.

�

Definition 4.10. We let l := lim←−k
kl ∈ PV −1,2 and y := lim←−k

ky ∈ PV 0,1. The operator d =

∂̄ + ∂ + ly, which acts on •A∗,∗ preserves the filtration, is called the total de Rham differential. We

also denote the pull back of d to PV ∗,∗ under the isomorphism y ω : PV ∗,∗ → ‖Ad+∗,∗ by d̆.

Proposition 4.11. The pair (•A∗, d) forms a filtered complex, i.e. d2 = 0 and d preserves the

filtration. We also have d̆ = ∂̄ + ∆ + (l + y)∧ on PV ∗.

Proof. From the discussion right before Proposition 4.2, we compute d2 = (∂̄+∂+ly)2 = (∂̄+∂)2−Ll.

If we compute (∂̄+∂)2 locally on A∗,∗α;α, we obtain (∂̄α+Ldα+∂α)2 = L∂̄α(dα)+L2
dα = L∂̄α dα+ 1

2
[dα,dα] =

Llα . So we get (∂̄ + ∂)2 = Ll and hence d2 = 0. As for d̆, we compute locally on TW ∗,∗α;α. Taking

γ ∈ TW ∗,∗α;α, we have

d(γy exp(fαy)(ωα)) = (∂̄α + Ldα + ∂α + lαy) ((γ ∧ exp(fα))y ωα)

=
(
∂̄α(γ) + [dα, γ] + ∆α(γ) + [fα, γ] + lα ∧ γ + yα ∧ γ

)
y(exp(fα)y ωα),

which gives the identity d̆ = ∂̄ + ∆ + (l + y)∧. �

4.2. The Gauss-Manin connection. Using the natural isomorphisms k
1σα : ( k

1:2K∗α, k∂α) ∼= K⊗Z
( k
0:1K∗α[−1], k∂α) from Definition 2.20, we obtain isomorphisms

k
1σα : k

1:2A
∗,∗
α;α → K⊗Z

k
0:1A

∗,∗
α;α[−1],
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which can be patched together to give an isomorphism of complexes k
1σ : k

1:2A∗,∗ = k
1A∗,∗/ k2A∗,∗ →

K ⊗Z
k
‖A∗,∗[−1] which is equipped with the differential kd. This produces an exact sequence of

complexes:

(4.3) 0→ K⊗Z
k
‖A
∗,∗[−1]→ k

0A∗,∗/ k2A∗,∗ → k
‖A
∗,∗ → 0,

which we use to define the Gauss-Manin connection (cf. Definition 2.12).

Definition 4.12. Taking the long exact sequence associated to (4.3), we get the map

(4.4) k∇ : H∗(k‖A,
kd)→ K⊗Z H

∗(k‖A,
kd),

which is called the kth-order Gauss-Manin (abbrev. GM) connection over kR. Taking inverse limit

over k gives the formal Gauss-Manin connection over R̂:

∇ : H∗(‖A, d)
∧

→ K⊗Z H
∗(‖A, d)
∧

.

The modules H∗(k‖A,
kd) and H∗(‖A, d)
∧

over kR and R̂ are respectively called the kth-order Hodge

bundle and the formal Hodge bundle.

Remark 4.13. By its construction, the complex (0
‖A∗,∗,

0d) serves as a resolution of the complex

(0
‖K∗,

0∂), and the cohomology H∗(0
‖A,

0d) computes the hypercohomology H∗(0
‖K,

0∂). So the 0th-

order Gauss-Manin connection 0∇ agrees with the one introduced in Definition 2.12.

Proposition 4.14. The Gauss-Manin connection ∇ defined in Definition 4.12 is a flat connection,

i.e. the map ∇2 : H∗(‖A, d)
∧

→ ∧2(KC)⊗C H
∗(‖A, d)
∧

is a zero map.

Proof. It suffices to show the kth-order Gauss-Manin connection k∇ is flat for every k. Consider

the short exact sequence (4.3), and take a cohomology class [η] ∈ H∗(k‖A,
kd) represented by an

element η ∈ k
‖A∗. Then we take a lifting η̃ ∈ k

0A∗ so that k∇([η]) is represented by the element
kd(η̃) ∈ k

0A∗/ k2A∗. We write k∇([η]) =
∑

i αi⊗ [ξi] for αi ∈ kΩ1
S†

and [ξi] ∈ H∗(k‖A,
kd). Once again

we take a representative ξi ∈ k
‖A∗ for [ξi] and by our construction we have an element e ∈ k

2A∗ such

that
∑

i αi ⊗ ξi = kd(η̃) + e. Therefore if we consider the exact sequence of complexes

0→ k
2A∗/ k3A∗ → k

1A∗/ k3A∗ → k
1A∗/ k2A∗ → 0,

we have kd (
∑

i αi ⊗ ξi) = kd(e) ∈ k
2A∗/ k3A∗. Note that (k∇)2([η]) is represented by the coho-

mology class of the element kd (
∑

i αi ⊗ ξi) ∈
k
2A∗/ k3A∗ ∼= kΩ2

S†
⊗(kR)

k
‖A∗[−2] using the isomor-

phism induced by k
2σα’s from Definition 2.20. Hence we have [kd (

∑
i αi ⊗ ξi)] = [kd(e)] = 0 in

kΩ2
S†
⊗(kR) H

∗(k‖A,
kd)[−2]. �

4.3. Freeness of the Hodge bundle from a local criterion. To prove the desired unobstructed-
ness result, we need freeness of the Hodge bundle; in geometric situations, this has been established
in various cases [38, 63, 41, 29]. In this subsection, we generalize the techniques in [29, 41, 63]

to prove the freeness of the kth-order Hodge bundle H∗(k‖A∗,
kd) over kR in our abstract setting

(Lemma 4.18) under a local criterion (Assumption 4.15).
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4.3.1. A local condition. Recall from Notation 1.5 that we have a strictly convex polyhedral cone
QR ⊂ KR, the coefficient ring R = C[Q], and the log space S† (or the formal log space Ŝ†)
parametrizing the moduli space near the degenerate Calabi-Yau variety (X,OX). For every primitive

element n ∈ int(Q∨R) ∩K∨, we have a natural ring homomorphism in : C[Q] → C[q], qm 7→ q(m,n),
where (·, ·) denotes the natural pairing between K and K∨, and then taking spectra gives a map
in : A1,† → S† (or kin : kA1,† → kS† for each k ∈ Z≥0), where A1,† is the log space associated to the
log ring C[q]† which is equipped with the monoid homomorphism N→ C[q], k 7→ qk.

Geometrically, taking base change with the map A1,† → S† should be viewed as restricting the
family to the 1-dimensional family determined by n. In our abstract setting, we consider the tensor
product kG∗n:α := kG∗α ⊗kR (C[q]/(qk+1)). Then tensoring the maps kψαβ,i’s with C[q]/(qk+1) give

patching morphisms for the kG∗n:α’s which will be denoted as kψn:αβ,i. Similarly we use k,lbn:αβ,i’s,
kpn:αβ,ij ’s,

kon:αβγ,i’s and kwn:αβ,i’s to denote the tensor products of the corresponding terms ap-

pearing in Definition 2.17 with C[q]/(qk+1). Note that all the relations in Definition 2.17 still hold
after taking the tensor products.

In view of the isomorphism y kω : kPV ∗,∗ → k
‖Ad+∗,∗ in Definition 4.10 and the fact that the com-

plex (kPV ∗,∗,
k
d̆) is free over kR (meaning that the differential is kR-linear), we see that (k‖Ad+∗,∗, kd)

is also free over kR. Then taking tensor product with C[q]/(qk+1) (for a fixed n), we obtain the
relative de Rham complex (‖A∗ ⊗kR (C[q]/(qk+1)), d) over C[q]/(qk+1).

Now the filtered de Rham module k•K∗α plays the role of the sheaf of holomorphic de Rham complex
on the thickening of Vα. We need to consider restrictions of these holomorphic differential forms
to the 1-dimensional family Spec(C[q]/(qk+1)), but näıvely taking tensor product with C[q]/(qk+1)
does not give the desired answer. In our abstract setting, the existence of such restrictions can be
formulated as the following assumption (which is motivated by the proof of [29, Theorem 4.1]):

Assumption 4.15. For each n ∈ int(Q∨R) ∩K∨, k ∈ Z≥0 and Vα ∈ V, we assume there exists a
coherent sheaf of dga’s

(k•K∗n:α,∧, k∂n:α)

equipped with a dg module structure over kΩ∗A1,†, the natural filtration

kK∗n:α = k
0K∗n:α ⊃ k

1K∗n:α ⊃ k
2K∗n:α = {0}

where k
1K∗n:α = d log(q) ∧ k

0K∗n:α[1], and a de Rham module structure over (kG∗n:α,∧, k∆n:α) sat-
isfying all the conditions in Definitions 2.20 and 2.22 (in particular, we have surjective mor-

phisms k,l[n:α : k
•K∗n:α → l

•K∗n:α for k ≥ l, a volume element kωn:α ∈ k
0Kdn:α/

k
1Kdn:α, an isomor-

phism kσn:α : (k1K∗n:α/
k
2K∗n:α,

k∂n:α) ∼= (k0K∗n:α/
k
1K∗n:α[−1], k∂n:α), and patching isomorphisms

k
ψ̂n:αβ,i :

k
•K∗n:α|Ui → k

•K∗n:β|Ui for triples (Ui;Vα, Vβ) with Ui ⊂ Vαβ fulfilling all the required conditions). We

further assume that the complex (kK∗n:α[u], k̃∂n:α), where

k̃∂n:α(

l∑
s=0

νsu
s) :=

∑
s

(k∂n:ανs)u
s + sd log(q) ∧ νsus−1,

satisfies the holomorphic Poincaré Lemma in the sense that for each Stein open subset U and any∑
s νsu

s ∈ kK∗n:α(U)[u] with k̃∂n:α(ν) = 0, we have
∑

s ηsu
s ∈ kK∗n:α(U)[u] satisfying k̃∂n:α(

∑
s ηsu

s) =∑
s νsu

s on U , and if in addition k,0[n:α(ν0) = 0 in (0
0Kn:α/

0
1Kn:α)(U), then

∑
s ηsu

s can be chosen

so that k,0[n:α(η0) = 0 in (0
0Kn:α/

0
1Kn:α)(U).
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Assumption 4.15 allows us to construct the total de Rham complex (•A
∗,∗
n , dn = ∂̄n + ∂n + lny)

as a dg-module over Ω̂∗A1,† such that ‖A∗ ⊗R̂ (C[q]/(qk+1)) = k
0A
∗,∗
n / k1A

∗,∗
n =: k‖A

∗,∗
n .

Example 4.16. In the log smooth case (see Examples 2.10 and 2.15), Assumption 4.15, which

is local in nature, can be checked by simply taking base change of the family π : V†α → kS† with
in : A1,† → S†, and working on kK∗n:α using the local computations from [63, §2]. Alternatively,
and more conveniently, one can use (analytification of) the local computations in [29, proof of
Theorem 4.1] (or more appropriately [16, Theorem 1.10]; see footnote 3). Actually Assumption 4.15
is motivated from [29, proof of Theorem 4.1], for which the d-semistable log smooth local model kVα
is included as a special case.

4.3.2. Freeness of the Hodge bundle. We consider a general monomial ideal I of R such that mk ⊂ I
for some integer k ∈ Z+, and we let I

‖A∗ := k
‖A∗ ⊗kR (R/I) equipped with the differential by taking

tensor product which is also denoted by Id. We should omit the dependence of our notation on
the operator Id when it is clear from the contents. We consider two such ideals I ⊂ J such that
m · J ⊂ I and the following exact sequence of complexes

(4.5) 0 //0
‖A∗ ⊗C (J/I) //I

‖A∗
I,J [ //J

‖A∗ //0 .

Then we consider the long exact sequence associated to (4.5) and let

(4.6) I,Jδ : H∗(J‖A
∗)→ H∗(0

‖A
∗)[1]⊗C (J/I)

as in the proof of [41, Lemma 4.1].

Lemma 4.17. Suppose we have a filtration I = Il ⊂ Il−1 ⊂ · · · ⊂ I0 = J of monomial ideals.
Then the connecting homomorphism I,Jδ in (4.6) is zero if and only if the corresponding connecting
homomorphism Ij+1,Ijδ (abbrev. by j+1,jδ) is zero for each j = 0, . . . , l − 1.

Proof. First assume that the homomorphism I,Jδ is non-zero. Let m be the minimum of those
j = 1, . . . , l such that the composition

H∗(J‖A∗)
I,Jδ //H∗+1(0

‖A∗)⊗C (J/I) //H∗+1(0
‖A∗)⊗C (J/Ij)

is non-zero. Then we consider the commutative diagram

H∗(I‖A∗) //

��

H∗(J‖A∗)

��

I,Jδ //H∗+1(0
‖A∗)⊗C (J/I)

��
H∗(Im‖A

∗) //H∗(J‖A∗)
Im,Jδ //H∗+1(0

‖A∗)⊗C (J/Im)

H∗(Im‖A
∗)

OO

//H∗(
Im−1

‖A
∗)

m,m−1δ //

OO

H∗+1(0
‖A∗)⊗C (Im−1/Im)

OO

Notice that the connecting homomorphism Im,Jδ is non-zero with its image lying in the subspace
H∗+1(0

‖A∗)⊗C (Im−1/Im). So m,m−1δ is non-zero.

Conversely, using the above commutative diagram, we observe that if m,m−1δ is non-zero for some
0 ≤ m ≤ l − 1 then the connecting homomorphism I,Jδ cannot be zero. �
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To prove triviality of the Hodge bundle, we need a decreasing tower of ideals m = J1 ⊃ J2 ⊃ · · ·
such that m · Ji ⊂ Ji+1 for each i, Ji/Ji+1 is at most one-dimensional and R̂ = lim←−i(R/Ji). We
should show that the connecting homomorphism

Ji+1,Jiδ : H∗(Ji‖A
∗)→ H∗+1(0

‖A
∗)⊗C (Ji/Ji+1)

is zero for i = 1, 2, . . . .

To construct such a tower, we take an element n0 ∈ int(Q∨R) ∩ K∨ and define the monomial

ideal J̃i := 〈qm | m ∈ Q, (m, n0) ≥ i〉, giving a sequence J̃1 ⊃ J̃2 ⊃ · · · , which should be further

refined. For each i, notice that the finite dimensional vector space J̃i/J̃i+1 has a basis qm given by
the lattice points m ∈ Q with (m, n0) = i. We take a generic element e ∈ int(Q∨R) ∩K∨ such that
(m1, e) 6= (m2, e), for all m1 6= m2 lying in the set {m ∈ Q | (m, n0) = i} (this can be done since there
are only finitely many such m’s). We further take L large enough so that if we let n = Ln0 +e, there
is an integer l such that (m, n) ≥ l for m ∈ Q with (m, n0) ≥ i+1, and (m′, n) ≤ l−1 for m′ ∈ Q with

(m′, n0) = i. We can therefore define the refined filtration J̃i+1 = Ij,l ⊂ Ij,l−1 ⊂ · · · ⊂ Ij,0 = J̃i such
that Ij,s is the monomial ideal generated by those qm with m ∈ Q, (m, n0) ≥ i and (m, n) ≥ s. Such
a choice ensures that there is at most one m ∈ Q such that (m, n0) = i and (m, n) = s for a fixed s,

and hence Ij,s−1/Ij,s is at most one-dimensional. Making such a refinement for each J̃i ⊃ J̃i+1 and
possibly renumbering the sequence, we obtain the desired sequence Ji ⊃ Ji+1 ⊃ · · · . For each pair
Jj/Jj+1

∼= C, we notice that there is an n together with in : R → C[q] and some k ∈ Z+ such that

i−1
n (qk) = Jj and i−1

n (qk+1) = Jj+1 with in : Jj/Jj+1
∼= C · qk.

We have the following commutative diagram of complexes:

0 //0
‖A∗ ⊗C (Jj/Jj+1) //

i∗n
��

Jj+1

‖A
∗

Jj+1,Jj [ //

i∗n
��

Jj
‖A
∗ //

i∗n
��

0

0 //0
‖A∗ ⊗C C · qk //k+1

‖A
∗
n

//k
‖A∗n //0

such that the induced map i∗n : H∗(0
‖A∗) ⊗C (Jj/Jj+1) → H∗(0

‖A∗) ⊗C C · qk is an isomorphism.

Therefore it remains to show that H∗(k‖A∗n) is a free C[q]/(qk+1) module for each k.

Lemma 4.18. Under Assumption 4.15, H∗(K‖A) is a free R/K module for any ideal K ⊂ m

satisfying mL ⊂ K for some L.

Proof. We first consider the case K = Jj for some j. Similar to [41, p. 404] and the proof of

[29, Theorem 4.1], it suffices to show that the map k,0[n : H∗(k‖A∗n,
kdn) → H∗(0

‖A∗n,
0dn), which

is induced by the maps k,0[n:α’s in Assumption 4.15, is surjective for all k ∈ Z≥0. Following the

proof of [29, Theorem 4.1], we consider the complex (k̃A∗n, k̃dn) constructed from the complexes

(kK∗n:α[u], k̃∂n:α)’s as in Definition 4.10. There is a natural restriction map k̃,0[n : k̃A∗n → 0
‖An defined

by k̃,0[n:α(
∑l

s=0 ηsu
s) = k,0[n:α(η0) on kK∗n:α[u] for each α. Since k̃,0[n (and hence the induced map

on cohomology) factors through k,0[n, we only need to show that the map k̃,0[n : H∗(k̃A∗n, k̃dn) →
H∗(0

‖An,
0dn) is an isomorphism.

By gluing the sheaves kK∗n:α’s (resp. kK∗n:α[u]’s) as in Definition 4.5, we can construct the Čech-

Thom-Whitney complexes
kČ∗(A∗n, ĝn) (resp.

kČ∗(B∗n, ĝn)) and obtain the exact sequences

0→ k
•A∗,∗n (ĝn)→

kČ0(•A
∗,∗
n , ĝn)→ · · · →

kČ`(•A∗,∗n , ĝn)→ · · · ,
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0→ k̃
•A
∗,∗
n (ĝn)→

kČ0(•B
∗,∗
n , ĝn)→ · · · →

kČ`(•B∗,∗n , ĝn)→ · · · .
Now we have a commutative diagram

k̃A∗n
kδ−1 //

k̃,0[n
��

kČ∗(B∗n, ĝn)

k̃,0[n
��

0
‖A∗n

0δ−1 //0Č∗(0:1A
∗
n, ĝn)

where the horizontal arrows are quasi-isomorphisms. So what we need is to show that k̃,0[n :
kČ∗(B∗n, ĝn)→

0Č∗(0:1A
∗
n, ĝn) is a quasi-isomorphism.

The decreasing filtrations

F≥l
(
kČ∗(B∗n, ĝn)

)
:=

kČ∗(B∗,≥ln , ĝn),

F≥l
(

0Č∗(0:1A
∗
n, ĝn)

)
:=

0Č∗(0:1A
∗,≥l
n , ĝn)

induce spectral sequences with

E
rq
0

(
kČ∗(B∗n, ĝn)

)
=
⊕
p+`=r

kČ`(Bp,q
n , ĝn),

E
rq
0

(
0Č∗(0:1A

∗
n, ĝn)

)
=
⊕
p+`=r

0Č`(0:1A
p,q
n , ĝn)

respectively converging to their cohomologies. Therefore it remains to prove that the map

k̃,0[n :
⊕
p+`=r

kČ`(Bp,q
n , ĝn)→

⊕
p+`=r

0Č`(0:1A
p,q
n , ĝn)

induces an isomorphism on the cohomology of the E0-page for each fixed q.

If we further consider the filtrations
⊕
p+`=r
`≥l

kČ`(Bp,q
n , ĝn) and

⊕
p+`=r
`≥l

0Č`(0:1A
p,q
n , ĝn), then we only need to show that the induced map

kČ`(B∗,qn , ĝn)
k̃,0[n //0Č`(0:1A

∗,q
n , ĝn)

⊕
p≥0

∏
α0···α`

kB
p,q
n:α0···α`(ĝn)

k̃,0[n //
⊕

p≥0

∏
α0···α`

0
0:1A

p,q
n:α0···α`(ĝn)

on the corresponding E0-page is a quasi-isomorphism for any fixed c and q, where kB
p,q
n:α0···α`(ĝn) is

constructed by gluing together the sheaves kK∗n:α[u]’s as in Definition 4.5.

Note that the differential on
⊕

p≥0

∏
α0···α`

kB
p,q
n:α0···α`(ĝn) is given componentwise by the differ-

ential k̃∂n:αj : kB
p,q
n:αj ;α0···α` → kB

p+1,q
n:αj ;α0···α` (where the term kB

p,q
n:α0···α`(ĝn) ⊂

⊕`
j=0

kB
p,q
n:αj ;α0···α` is

defined as in Definition 4.10 using kK∗n:α[u]’s). Using similar argument as in Lemma 3.27, we can see

that the bottom horizontal map k̃,0[n in the above diagram is surjective. Finally, the kernel com-
plex of this map is acyclic by the holomorphic Poincaré Lemma in Assumption 4.15 and arguments
similar to Lemma 3.27.
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For a general ideal K ⊂ m, one can argue that H∗(K‖A∗) is a free R/K module as follows. We

consider the sequence of ideals m = J1 +K ⊃ J2 +K ⊃ · · · Jl +K = K for some l. Then one can

prove that H∗(
Jj+1+K

‖A
∗) → H∗(

Jj+K

‖A
∗) is surjective by induction on j. Details are left to the

readers. �

5. An abstract unobstructedness theorem

Theorem 3.34 produces an almost differential graded Batalin-Vilkovisky (abbrev. dgBV) algebra
(PV ∗,∗, ∂̄,∆,∧) (where “almost” means (∂̄+ ∆)2 is zero only at 0th-order), together with an almost
de Rham module (‖A∗,∗, ∂̄, ∂,∧) (where “almost” means (∂̄ + ∂)2 is zero only at 0th-order) and

the volume element ω ∈ ‖Ad,0. From these we can prove an unobstructedness theorem, using the

techniques from [1, 42, 39, 65].

5.1. Solving the Maurer-Cartan equation from the almost dgBV algebra structure. We
first introduce some notations, following Barannikov [1]:

Notation 5.1. Let t be a formal variable. We consider the spaces of formal power series or Laurent

series in t or t
1
2 with values in polyvector fields

kPV p,q[[t]], kPV p,q[[t
1
2 ]], kPV p,q[[t

1
2 , t−

1
2 ],

together with a scaling morphism lt : kPV p,q[[t
1
2 , t−

1
2 ]→ kPV p,q[[t

1
2 , t−

1
2 ] induced by lt(ϕ) = t

q−p−2
2 ϕ

for ϕ ∈ kPV p,q[[t
1
2 , t−

1
2 ]. We have the identification

k
d̆t := t

1
2 l−1
t ◦

k
d̆ ◦ lt =

k
∂̄ + t(k∆) + t−1(kl +

t(ky))∧. We also consider spaces of formal power series or Laurent series in t or t
1
2 with values in

the relative de Rham module
k
‖A

p,q[[t
1
2 ]], k

‖A
p,q[[t

1
2 , t−

1
2 ],

together with the rescaling lt : kAp,q[[t
1
2 , t−

1
2 ] → kAp,q[[t

1
2 , t−

1
2 ] given by lt(α) = t

d−p+q−2
2 α which

preserves the filtration on k
•A, and gives lt(ϕ)y(kω) = lt(ϕy kω) and kdt := t

1
2 l−1
t ◦ kd ◦ lt =

k
∂̄ +

t(k∂) + t−1(kly).

For the purpose of constructing log Frobenius structures in the next section, we consider a finite-
dimensional graded vector space V∗ and the associated graded symmetric algebra T := Sym∗(V∨),
equipped with the maximal ideal I generated by V∨. We will abuse notations by using m and I again
to denote the respective ideals of RT := R⊗CT , where R is the coefficient ring introduced in Notation

1.5. We also let I := m+I be the ideal generated by m⊗T+R⊗I and write kRT := (RT /Ik+1). We

write kPV T := kPV ⊗C T ⊗RT (RT /Ik+1) and k
‖AT := k

‖A⊗C T ⊗RT (RT /Ik+1), and let kPV ∗T [[t]],
kPV ∗T [[t

1
2 , t−

1
2 ] and k

‖A∗T [[t
1
2 , t−

1
2 ] be the complexes of formal series or Laurent series in t

1
2 or t with

values in those coefficient rings.

Remark 5.2. We can also define the Hodge bundle H∗(‖A∗, d)
∧

⊗̂T̂ over the formal power series ring

R̂T := lim←−k
kRT , which is equipped with the Gauss-Manin connection ∇ defined as in Definition 4.12.

Then Lemma 4.18 implies that the Hodge bundle H∗(‖A∗, d)
∧

⊗̂T̂ is free over R̂T , or equivalently,

H∗(kPV ∗T ,
k
d̆) is free over kRT for each k ∈ Z≥0.

Definition 5.3. An element kϕ ∈ kPV 0
T [[t]] with kϕ = 0 (mod m + I) is called a Maurer-Cartan

element over RT /Ik+1 if it satisfies the Maurer-Cartan equation

(5.1) (
k
∂̄ + t(k∆)) kϕ+

1

2
[kϕ, kϕ] + (kl + t(ky)) = 0,
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or equivalently, (
k
∂̄ + t(k∆) + [kϕ, ·])2 = 0.

Notice that the MC equation (5.1) is also equivalent to kd(elt(
kϕ)y ω) = 0, which can in turn be

rewritten as
k
d̆(elt(

kϕ)) = (
k
∂̄ + k∆ + (kl + ky)∧)(elt(

kϕ)) = 0.

In order to solve (5.1) using algebraic techniques as in [39], we need Assumption 4.15, which guaran-
tees freeness of the Hodge bundle, as well as a suitable version of the Hodge-to-de Rham degeneracy;
recall that these are also the essential conditions for unobstructedness of smoothing of log smooth
Calabi-Yau varieties in [41].

Remark 4.13 said that H∗(0
‖A,

0d) computes the hypercohomology H∗(0
‖K∗,

0∂), so the Hodge

filtration F≥pH∗ = H∗(0
‖A≥p,∗,

0d) (where 0d = ∂̄ + 0∂) is induced by the filtration F≥p(0
‖A) :=

0
‖A≥p,∗ on the complex (0

‖A∗,
0d).

Assumption 5.4 (Hodge-to-de Rham degeneracy). We assume that the spectral sequence associated
to the decreasing filtration F≥•(0

‖A) degenerates at the E1 term.

Assumption 5.4 is equivalent to the condition that H∗
(

0PV [[t]],
0
d̆ = ∂̄+ t(0∆)

)
(or equivalently,

that H∗
(

0
‖A[[t]], ∂̄ + t(0∂)

)
) is a finite rank free C[[t]]-module (cf. [39]).

Example 5.5. For the log smooth case (Example 2.10), a cohomological mixed Hodge complex of
sheaves (AZ, (A

∗
Q,W), (A∗C,W,F)), in the sense of [56, Definition 3.13], is constructed in [41, proof

of Lemma 4.1, p.406], where

AkC =
⊕
p+q=k

Ap,qC :=
⊕
p+q=k

(
Ωp+q+1
X†/C /WqΩ

p+q+1
X†/C

)
,

F≥rA∗C :=
⊕
p

⊕
q≥r

Ap,qC and W≤rA
p,q
C := Wr+2p+1Ωp+q+1

X†/C /WqΩ
p+q+1
X†/C ;

here Wq refers to the subsheaf with at most q log poles. There is a natural quasi-isomorphism

µ : (Ω∗
X†/ 0S†

,F≥r := Ω≥r
X†/ 0S†

) → (A∗C,F) preserving the Hodge filtration F. Applying [56, Theorem

3.18] gives a mixed Hodge structure (H∗(A∗Z), (H∗(A∗Q),W), (H∗(A∗C),W,F)), as well as the Hodge-

to-de Rham degeneracy, i.e. Assumption 5.4, as in [56, proof of Lemma 4.1].

Theorem 5.6. Suppose Assumptions 4.15 and 5.4 hold. Then for any degree 0 element ψ ∈
0PV [[t]] ⊗C (I/I2) with

( 0
∂̄ + t(0∆)

)
ψ = 0, there exists a Maurer-Cartan element kϕ ∈ kPV 0

T [[t]]

over RT /Ik+1 for each k ∈ Z≥0 such that k+1ϕ = kϕ (mod Ik+1) and kϕ = ψ (mod m + I2).

Proof. We will consider the surjective map k+1,k[ : k+1PV p,q[[t]] → kPV p,q[[t]] obtained from
Corollary 3.28, and inductively solve for kϕ ∈ kPV 0

T [[t]] for each k ∈ Z≥0 so that we have
k+1,k[

(
k+1ϕ

)
= kϕ, kϕ = ψ (mod m + I2) and kϕ satisfies the Maurer-Cartan equation (5.1) in

kPV 0
T [[t]].

We begin with 0ϕ = 0 and try to solve for 1ϕ. As the operator d̆ = ∂̄ + ∆ + (l + y)∧ satisfies

d̆2 = 0, we have d̆(l+ y) = (∂̄+ ∆)(l+ y) = 0 (mod I2) (where = 0 (mod I2) means being mapped

to zero under ∞,1[). Together with the fact that (l+ y) = 0 (mod I), we see that [(l+ y)] represents

a cohomology class in (0PV ∗,
0
d̆) ⊗C (I/I2). Since d̆(1) = (l + y), we deduce that [l + y] = 0 in

(1PV ∗T ,
1
d̆). Now applying Lemma 4.18 or Remark 5.2 (freeness of the Hodge bundle) to (1

†A∗, 1d)
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gives the short exact sequence

0→ H∗(0PV ∗)⊗C (I/I2)→ H∗(1PV ∗T )→ H∗(0PV ∗)→ 0

under the identification by the volume element ω. We conclude that the class [l + y] is zero in

H∗(0PV ∗)⊗ (I/I2) which means that (l+ y) = (∂̄+ ∆)(−ζ̃) (mod I2) for some ζ̃ ∈ 0PV 0⊗ (I/I2),
and we have (l + t y) = (∂̄ + t∆)(−ζ) for some ζ ∈ 0PV 0[[t, t−1]⊗ (I/I2).

Applying Assumption 5.4 and using the technique from [65, Proof of Theorem 2], we can modify
ζ to satisfy ζ ∈ 0PV 0[[t]] ⊗ (I/I2) (i.e. removing all the negative powers in t), and then we can
take 1ϕ to be the image of ζ in 1PV 0

T [[t]]. We further observe the Maurer-Cartan element 1ϕ can

be modified by adding any ξ ∈ 1PV 0
T [[t]] with ξ = 0 (mod I) and

1
d̆tξ = 0 (mod I2). Therefore we

can always achieve 1ϕ+ ξ = ψ (mod m + I2) by choosing a suitable ξ and letting 1ϕ+ ξ be the new
1ϕ.

Suppose k−1ϕ satisfying the Maurer-Cartan equation d̆
(
elt(

k−1ϕ)
)

= 0 (mod Ik) up to order k−1

has been constructed. Take an arbitrary lifting k̃−1ϕ in kPV 0
T [[t]] and let

kO :=
k
d̆

(
elt(

k̃−1ϕ)

)
= t

1
2 lt

(
k
d̆t(e

k̃−1ϕ/t)

)
(mod Ik+1).

[kO] represents a cohomology class in (0PV 1[[t
1
2 , t−

1
2 ]⊗(Ik/Ik+1),

0
d̆). We again apply Lemma 4.18

to obtain a short exact sequence

0→ H∗(0PV ∗[[t
1
2 , t−

1
2 ]⊗ (Ik/Ik+1))→ H∗(kPV ∗[[t

1
2 , t−

1
2 ])→ H∗(k−1PV ∗[[t

1
2 , t−

1
2 ])→ 0,

which forces [kO] = 0 as in the initial case. Hence, applying Assumption 5.4 and using the technique

from [65, Proof of Theorem 2] again, we can find ζ ∈ 0PV 0
T [[t]] ⊗ (Ik/Ik+1) such that (

0
∂̄ +

t(0∆))(−ζ) = l−1
t (kO) and then set kϕ := k̃−1ϕ+ ζ to solve the equation. �

5.2. Homotopy between Maurer-Cartan elements for different sets of gluing morphisms.
Theorem 5.6 is proven for a fixed set of compatible gluing morphisms g = {kgαβ}. In this subsection,
we study how Maurer-Cartan elements for two different sets of compatible gluing morphisms g(0) =

{kgαβ(0)} and g(1) = {kgαβ(1)} are related through a fixed homotopy h = {khαβ}.

We begin by assuming that the data D = (Dα)α ∈ Č0(TW−1,1, h) and F = (Fα)α ∈ Č0(TW 0,0, h)
for the construction of the operators D and ∆ in Proposition 3.35 are related to the data dj and fj
for the construction of the operators ∂̄j and ∆j in Theorem 3.34 by the relations

r∗j (D) = dj , r∗j (F) = fj

for j = 0, 1, where rj : PV ∗,∗(h)→ PV ∗,∗(g(j)) is the map introduced in Definition 3.29.

Notation 5.7. Similar to Lemma 4.9, we let Lα := Dα(Dα) + 1
2 [Dα,Dα] and Eα := ∆α(Dα) +

Dα(Fα) + [Dα,Fα]; (Lα)α and (Eα)α glue to give global terms L ∈ PV 2,−1(h) and E ∈ PV 1,0(h)
respectively.

We set D̆ := D+ ∆ + (L+E)∧, which defines an operator acting on PV ∗(h) (and we will use
kD̆

to denote the corresponding operator acting on kPV ∗(h)). We have D̆2 = 0 as in Proposition 4.11.

We introduce a scaling lt : kPV p,q(h)[[t
1
2 , t−

1
2 ] → kPV p,q(h)[[t

1
2 , t−

1
2 ] defined by lt(ϕ) = t

q−p−2
2 ϕ

for ϕ ∈ kPV p,q(h). Then we have the identity
kD̆t := t

1
2 l−1
t ◦

kD̆ ◦ lt = kD+ t(k∆)+ t−1(kL+ t(kE))∧
as in Notation 5.1.
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Similar to Notation 5.1, we consider the complex kPV ∗T (h)[[t]] (or formal power series or Laurent

series in t or t
1
2 ) for any graded ring T = C[V∗].

Lemma 5.8. The natural restriction map r∗j : (kPV ∗(h),
kD̆) → (kPV ∗(g(j)),

k
d̆) is a quasi-

isomorphism for j = 0, 1 and all k ∈ Z≥0.

Proof. We will only give a proof of the case j = 0 because the other case is similar. We first consider
the following diagram

k−1PV ∗(h)⊗C (m/m2)�
� //

r∗0
��

kPV ∗(h) //

r∗0
��

0PV ∗(h) //

r∗0
��

0

k−1PV ∗(g(0))⊗C (m/m2)�
� //kPV ∗(g(0)) //0PV ∗(g(0)) //0

with exact horizontal rows. By passing to the corresponding long exact sequence, we see that it

suffices to prove that r∗0 : (0PV ∗(h), 0D + 0∆) → (0PV ∗(g(0)),
0
∂̄ + 0∆) is a quasi-isomorphism.

In this case we have 0h = id (mod m) and 0g(0) = id (mod m), from which we deduce that
0PV ∗(h) = A∗(N1)⊗C

0PV ∗(g(0)) in which the operators are related by 0D + 0∆ =
0
∂̄ + 0∆ + ds,

where s is the coordinate function on the 1-simplex N1 and ds is the usual de Rham differential acting
on A∗(N1). The quasi-isomorphism is then obtained using the homotopy operator constructed by
integration

∫ s
0 along the 1-simplex. Details are left to the readers. �

The following proposition relates Maurer-Cartan elements ϕ0 of the almost dgBV PV ∗T (g(0))[[t]]
and those of PV ∗T (h)[[t]].

Proposition 5.9. Given any Maurer-Cartan element
kϕ0 ∈ kPV 0

T (g(0))[[t]] as in Theorem 5.6, there exists a lifting kϕ ∈ kPV 0
T (h)[[t]] which is a Maurer-

Cartan element for each k such that k+1ϕ = kϕ (mod Ik+1) and r∗0(kϕ) = kϕ0. If there are two

liftings (kϕ)k and (kψ)k of (kϕ0)k, then there exists a gauge element kϑ ∈ kPV −1
T (h)[[t]] for each k

such that r∗0(kϑ) = 0, k+1ϑ = kϑ (mod Ik+1) and e
kϑ ? kϕ = kψ.

Proof. We construct kϕ by induction on k. Given a Maurer-Cartan element k−1ϕ ∈ k−1PV 0
T [[t]]

such that r∗0(k−1ϕ) = k−1ϕ0, our goal is to construct a lifting kϕ of k−1ϕ with r∗0(kϕ) = kϕ0.

By surjectivity of k,k−1[ : kPV T (h)[[t]]→ k−1PV T (h)[[t]], we get a lifting k̃−1ϕ of k−1ϕ. From the
surjectivity of r∗0 : kPV 0

T (h)[[t]]→ kPV 0
T (g(0))[[t]] for any k from Lemma 3.30, we further obtain a

lifting η of kϕ0 − r∗0(k̃−1ϕ) such that η = 0 (mod Ik) in kPV 0
T (h)[[t]]. Then we set k̂ϕ := k̃−1ϕ+ η

so that r∗0(k̂ϕ) = kϕ0. Similar to the proof of Theorem 5.6, we define the obstruction class

kO :=
kD̆t(te

k̂ϕ/t) = (kD + t(k∆))k̂ϕ+
1

2
[k̂ϕ, k̂ϕ] + (kL + t(kE))

in kPV 1
T [[t]] which satisfies k,k−1[(kO) = 0 and

kD̆t(kO) = 0.

Considering the short exact sequences

K∗�
� //� _

��

(kPV ∗T (h)[[t]],
kD̆t)

r∗0 //
� _

l−1
t��

(kPV ∗T (g(0))[[t]],
k
d̆t) //

� _

l−1
t��

0

K̂∗�
� //(kPV ∗T (h)[[t

1
2 , t−

1
2 ],

kD̆)
r∗0 //(kPV ∗T (g(0))[[t

1
2 , t−

1
2 ],

k
d̆) //0

,
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and observing that (K∗, kD̆t) is acyclic, we conclude that kO ∈ K1. Hence we can find ζ ∈ K0 such

that
kD̆t(ζ) = kO and ζ = 0 (mod Ik). Then kϕ := k̂ϕ+ ζ is the desired lifting of k−1ϕ.

The gauge (kϑ) can be constructed by a similar inductive process. Given k−1ϑ, we need to

construct a lifting kϑ ∈ kPV −1
T (h)[[t]] which serves as a homotopy from kϕ to kψ. Again we take a

lifting k̂ϑ satisfying k,k−1[(k̂ϑ) = k−1ϑ and r∗0(k̂ϑ) = 0, and consider the obstruction

kO := kψ − exp([k̂ϑ, ·])(kϕ) +
exp([k̂ϑ, ·])− 1

[k̂ϑ, ·]
((kD + t(k∆))k̂ϑ,

which satisfies k,k−1[(kO) = 0 and r∗0(kO) = 0. We can find ζ ∈ 0PV −1
T [[t]]⊗(Ik/Ik−1) with r∗0(ζ) = 0

such that −(0D + t(0∆))ζ = kO and letting kϑ := k̂ϑ+ ζ gives the desired gauge element. �

Given a homotopy h, we define a map Fh from the set of Maurer-Cartan elements modulo gauge

equivalence with respect to g(0) to that with respect to g(1) by Fh
(
(kϕ0)k

)
:= (r∗1(kϕ))k with

kϕ ∈ kPV 0
T [[t]]. Proposition 5.9 says that this map is well-defined, and its inverse F−1

h is given by

reversing the roles of g(0) and g(1), so Fh is a bijection.

Next we consider the situation where we have a fixed set of compatible gluing morphisms g =

{kgαβ} but the complex kPV ∗ is equipped with two different choices of operators
k
∂̄ and k∆,

k
∂̄′ and

k∆′, whose differences are captured by elements v1 ∈ PV −1,1(g) and v2 ∈ PV 0,0(g), as in Theorem
3.34. We write v = v1 +v2 and consider the complex A∗(N1)⊗C

kPV ∗ equipped with the differential

k
D̆ :=

k
d̆ + dN1 + t1[v, ·] + (t1(

k
∂̄ + k∆)v +

t2
1

2
[v, v]) ∧+(dt1 ∧ v)∧,

where t1 is the coordinate function on the 1-simplex N1 and dN1 is the de Rham differential for

A∗(N1). We let kOt1v := (t1(
k
∂̄ + k∆)v +

t21
2 [v, v]) + (kl + ky) and compute

(
k
D̆)2 =(

k
∂̄ + k∆ + t1[v, ·])2 − [kOt1v, ·]+

dt1 ∧
∂

∂t1

(
kOt1v

)
∧ −dt1 ∧ ((

k
∂̄ + k∆)(v) + t1[v, v])∧

=[kOt1v, ·]− [kOt1v, ·] + dt1 ∧ ((
k
∂̄ + k∆)(v) + t1[v, v])∧

− dt1 ∧ ((
k
∂̄ + k∆)(v) + t1[v, v])∧ = 0.

Repeating the argument in this subsection but replacing (kPV ∗(h),
kD̆) by (A∗ ⊗C

kPV ∗,
k
D̆) and

arguing as in the proof of Proposition 5.9 yields the following:

Proposition 5.10. Given any Maurer-Cartan element
kϕ0 ∈ kPV 0

T [[t]] with respect to the operators
k
∂̄ and k∆ as in Theorem 5.6, there exists a lifting

kϕ ∈ A∗(N1) ⊗ kPV ∗T [[t]] which is a Maurer-Cartan element with respect to the operators (
k
∂̄ +

dN1 + t1[v1, ·]) and k∆ + [v2, ·] (meaning that
(

(
k
∂̄ + dN1 + t1[v1, ·]) + t(k∆ + [v2, ·]) + [kϕ, ·]

)2
= 0)

for each k satisfying k+1ϕ = kϕ (mod Ik+1) and r∗0(kϕ) = kϕ0. If there are two liftings (kϕ)k and

(kψ)k of (kϕ0)k, then there exists a gauge element kϑ ∈ A∗(N1) ⊗ kPV ∗T [[t]] for each k such that

r∗0(kϑ) = 0, k+1ϑ = kϑ (mod Ik+1) and e
kϑ ? kϕ = kψ.

Propositions 5.9 and 5.10 together show that the set of gauge equivalence classes of Maurer-Cartan
elements is independent of the choice of the gluing morphisms g = {kgαβ} and the choices of the

operators ∂̄ and ∆ in the construction of kPV ∗T [[t]].
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5.3. From Maurer-Cartan elements to geometric Čech gluings. In this subsection, we show
that a Maurer-Cartan (MC) element ϕ = (kϕ)k∈Z≥0 as defined in Definition 5.3 contains the data

for gluing the sheaves kG∗α’s consistently.

We fix a set of gluing morphisms g = {kgαβ} and consider a MC element ϕ = (kϕ)k∈Z≥0 (where

we take T = C) obtained in Theorem 5.6. Setting t = 0, we have the element kφ := kϕ|t=0 which
satisfies the following extended MC equation (5.2).

Definition 5.11. An element kφ ∈ kPV 0 is said to be a Maurer-Cartan element in kPV ∗ if it
satisfies the extended Maurer-Cartan equation:

(5.2)
k
∂̄(kφ) +

1

2
[kφ, kφ] + kl = 0.

Note that (kPV −1,∗[−1],
k
∂̄, [·, ·]) forms a dgLa, and an element kψ ∈ kPV −1,1 is called a classical

Maurer-Cartan element if it satisfies (5.2).

Lemma 5.12. In the proof of Theorem 5.6, the Maurer-Cartan element kϕ = kφ0 + kφ1t
1 + · · · +

kφjt
j + · · · ∈ kPV 0[[t]], where kφ0 = kψ0 + kψ1 + · · ·+ kψd with kψi ∈ kPV −i,i, can be constructed

so that kψ0 = 0. In particular, kψ1 ∈ kPV −1,1 is a classical Maurer-Cartan element.

Proof. We prove by induction on k. Recall from the initial step of the inductive proof of Theorem

5.6 that 1ϕ ∈ 1PV 0[[t]] was constructed so that (
1
∂̄ + t(1∆))(1ϕ) = 1l + t 1y. As 1l ∈ 1PV −1,2 and

1y ∈ 1PV 0,1, we have
1
∂̄(1ψ0) = 0. Also, we know 1∆(1ψ0) = 0 by degree reasons, so we obtain the

equation (
1
∂̄+ t(1∆))(1ϕ− 1ψ0) = 1l+ t 1y. Hence we can replace 1ϕ by 1ϕ− 1ψ0 in the construction

so that the desired condition is satisfied.

For the induction step, suppose that k−1ϕ = k−1φ0 + k−1φ1t + · · · ∈ k−1PV 0 with k−1ψ0 = 0
has been constructed. Again recall from the construction in Theorem 5.6 that we have solved the
equation

(
k
∂̄ + t(k∆))(η̂) =

k
d̆t

(
te
k−1ϕ/t

)
for η̂ ∈ kPV 0[[t]]. We are only interested in the coefficient of t0 of the component lying in kPV 0,1

on the RHS of the above equation, which we denote as
[
k
d̆t

(
te
k−1ϕ/t

)]
0
. By writing k−1φ0 =

k−1ψ1 + · · ·+ k−1ψd using the induction hypothesis, we have[
k
d̆t

(
te
k−1ϕ/t

)]
0

=[(
k
∂̄(k−1ϕ) + t(k∆)(k−1ϕ) +

1

2
[k−1ϕ, k−1ϕ] + kl + t(ky)

)
∧ exp(k−1ϕ/t)

]
0

= 0.

Therefore by writing η̂ = ζ0 + ζ0t
1 + · · · , and ζ0 = ξ0 + · · ·+ ξd with ξi ∈ kPV −i,i, we conclude that

k
∂̄(ξ0) = 0 and hence (

k
∂̄+ t(k∆))(ξ0) = 0. As a result, if we replace η̂ by η̂− ξ0 in the construction,

we get the desired element kϕ for the induction step.

The second statement follows from the first because kφ0 = kψ1 + · · ·+ kψd satisfies the extended

MC equation (5.2). Then by degree reasons, we conclude that
k
∂̄(kψ1) + 1

2 [kψ1,
kψ1] + kl = 0. �

In view of Lemma 5.12, we restrict ourself to the dgLa (kPV −1,∗[−1]) and a classical Maurer-

Cartan element kψ ∈ kPV −1,1. We write kψ = (kψα)α where kψα ∈ kTW−1,1
α;α with regard to the

Čech-Thom-Whitney complexes in Definition 3.25.
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Since Vα is Stein and kG∗α is a coherent sheaf over Vα, we have H>0(kTW p,∗
α;α[p],

k
∂̄α) = 0 for

any p (here [p] is the degree shift so that kTW p,0
α;α is at degree 0). In particular, the operator

k
∂̄α + [kdα, ·] + [kψα, ·] is gauge equivalent to

k
∂̄α via a gauge element kϑα ∈ kTW−1,0

α;α . As k+1ψα =
kψα (mod mk+1), we can further construct kϑα via induction on k so that k+1ϑα = kϑα (mod mk+1).

Given any open subset W ⊂ Vαβ, we use the restrictions kϑα|W ∈ kTW−1,0(kGα|W ), kϑβ ∈
kTW−1,0(kGβ|W ) to define an isomorphism kgαβ : kTW ∗,∗(kGα|W ) → kTW ∗,∗(kGβ|W ) which fits
into the following commutative diagram

kTW ∗,∗(kGα|W )
kgαβ //

exp([kϑα,·])
��

kTW ∗,∗(kGβ|W )

exp([kϑβ ,·])
��

(kTW ∗,∗(kGα|W ),
k
∂̄α)

kgαβ //(kTW ∗,∗(kGβ|W ),
k
∂̄β)

here we emphasis that kgαβ identifies the differentials
k
∂̄α and

k
∂̄β.

There is an identification kGpα(W ) = H0(kTW p,∗(kGα|W )[p],
k
∂̄α), enabling us to treat kgαβ :

kG∗α(W )→ kG∗β(W ) as an isomorphism of Gerstenhaber algebras.14 These isomorphisms can then be

put together to give an isomorphism of sheaves of Gerstenhaber algebras kgαβ : kG∗α|Vαβ → kG∗β|Vαβ .

Furthermore, the cocycle condition for the gluing morphisms kgαβ (see Definition 3.17) implies the

cocycle condition kgγα ◦ kgβγ ◦ kgαβ = id.

Definition 5.13. A set of k-th order geometric gluing morphisms kg consists of, for any pair
Vα, Vβ ∈ V, an isomorphism of sheaves of Gerstenhaber algebras kgαβ : kG∗α|Vαβ → kG∗β|Vαβ satisfying
kgαβ = id (mod m), and the cocycle condition kgγα ◦ kgβγ ◦ kgαβ = id. Two such sets of k-th order

geometric gluing morphisms kg and kh are said to be equivalent if there exists a set of isomorphisms
of sheaves of Gerstenhaber algebras kaα : kG∗α → kG∗α with kaα = id (mod m) fitting into the following
commutative diagram

kG∗α|Vαβ
kgαβ //

kaα
��

kG∗β|Vαβ
kaβ
��

kG∗α|Vαβ
khαβ //kG∗β|Vαβ .

If we have two classical Maurer-Cartan elements kψ and
k
ψ̃ which are gauge equivalent via

kθ = (kθα)α, then we can construct an isomorphism exp(−[
k
ϑ̃α, ·]) ◦ exp([kθα, ·]) ◦ exp([kϑα, ·]) :

(kTW ∗,∗α ,
k
∂̄α) → (kTW ∗,∗α ,

k
∂̄α) inducing an isomorphism kaα : kG∗α(Vα) → kG∗α(Vα) by taking

H0(kTW ∗,∗α ,
k
∂̄α), so that the two sets of k-th order geometric gluing morphisms kg and kg̃ associated

to kψ and
k
ψ̃ respectively are equivalent via ka = (kaα)α. This gives the following:

Proposition 5.14. Given classical Maurer-Cartan elements kψ ∈ kPV −1,1 such that k+1ψ =
kψ (mod mk+1) and kψ = 0 (mod m), there exists an associated set of geometric gluing morphisms
kg for each k satisfying k+1g = kg (mod mk+1). For two classical Maurer-Cartan elements kψ and
k
ψ̃ which are gauge equivalent via kθ such that k+1θ = kθ (mod mk+1), there exists an equivalence
ka, satisfying k+1a = ka (mod mk+1) between the associated geometric gluing data kg and kg̃.

14We thank Simon Felten for pointing out that this should be an isomorphism of Gerstenhaber algebras, instead
of just an isomorphism of graded Lie algebras.
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Lemma 5.12 together with Proposition 5.14 produces a geometric Čech gluing of the sheaves
kG∗α’s, unique up to equivalence, from a gauge equivalence class of the MC elements obtained in
Theorem 5.6.

In the log smooth case, Example 4.16, Example 5.5, Theorem 5.6, Lemma 5.12 and Proposition
5.14 together imply the following:

Corollary 5.15. In the log smooth case (i.e. in the setting of Example 2.10), the complex analytic
space (X,OX) is smoothable, i.e. there exists a kth-order thickening (kX, kO) over kS† locally
modeled on kVα (which is d-semistable) for each k ∈ Z≥0, and these thickenings are compatible.

6. Abstract semi-infinite variation of Hodge structures

In this section, we apply techniques developed in [2, 1, 39, 48] to our abstract framework. Un-
der Assumptions 6.12 (existence of opposite filtration) and 6.18 (nondegeneracy of pairing), this
constructs the structure of a logarithmic Frobenius manifold (introduced in [58]) on the formal
neighborhood of the singular Calabi-Yau variety X in the extended moduli space.

6.1. Brief review of the relevant structures.

Notation 6.1. Following Notation 5.1, let R̂T := lim←−k
kRT be the completion of R ⊗ T . We will

abuse notations and use m, I and I to denote the corresponding ideals in R̂T . As in Notation

1.5, we have a monoid homomorphism Q → kRT sending m 7→ qm 15, which equips kRT with the
structure of a (graded) log ring (whose grading is inherited from that on T = Sym∗(V∨) associated

to graded vector space V). We also denote the corresponding formal germ of log spaces by kS†T .

We define the module of log differentials over S†T by

Ωl
S†T

:=
⊕

l1+l2=l

Ωl1
S†
⊗C T ⊗C Syml2(V∨[−1]),

and write element in Sym∗(V∨[−1]) as dzI for some multi-index I. It is equipped with a de Rham
differential d satisfying the graded Leibniz rule, the relations d(qm) = qm(d log qm) for m ∈ Q and
d(z) = dz for z ∈ V∨. We also define the kth-order module of log differentials kΩ∗

S†T
by quotienting

out ideal Jk generated by
⋃
k1+k2+k3≥k+1 mk1⊗Ik2⊗Sym≥k3(V∨[−1]). In particular we have kΩ1

S†T
=

(kRT ⊗C KC[−1])⊕ (k−1RT ⊗C V∨[−1]) as kRT module.

We also let Θ
S†T

:= RT ⊗C (K∨C ⊕ V)[1] be the space of log derivations and kΘ
S†T

:= (kRT ⊗C

K∨C[1])⊕(k−1RT⊗V[1]) be the space of kth-order log derivations, which is equipped with a Lie bracket

[·, ·] and a natural pairing between X ∈ kΘ
S†T

and α ∈ kΩ1
S†T

.

Similarly we can talk about Ω̂∗
S†T

and Θ̂
S†T

by taking inverse limits.

Definition 6.2. A log semi-infinite variation of Hodge structure (abbrev. ∞
2 -LVHS) over R̂T

consists of triples (kH, k∇, k〈·, ·〉) for each k ∈ Z≥0 and kRT -linear maps k,l[ : kH → lH for k ≥ l,
where

(1) kH = kH∗ is a graded free kRT [[t]] module, called the (sections of the) Hodge bundle;

15Here we abuse notations by writing qm in place of qm ⊗ 1.
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(2) k∇ is the Gauss-Manin (partial) connection of the form

(6.1) k∇ : kH → 1

t
(kΩ1

S†T
)⊗kRT

kH

which is flat and compatible with the maps k,l[’s;

(3) k〈·, ·〉 : kH× kH → kRT [[t]][−2d] is a degree preserving pairing which is compatible with the

maps k,l[’s,

satisfying the following conditions (when there is no danger of confusion, we will omit the dependence

on k and simply write ∇ and 〈·, ·〉 instead of k∇ and k〈·, ·〉):

(1) 〈s1, s2〉(t) = (−1)|s1||s2|〈s2, s1〉(−t),16 where |si| is the degree of the homogeneous element si;

(2) 〈f(t)s1, s2〉 = (−1)|s1||f |〈s1, f(−t)s2〉 = f(t)〈s1, s2〉 for si ∈ kH and f(t) ∈ kRT [[t]];

(3) ∇X〈s1, s2〉 = 〈∇Xs1, s2〉+ (−1)|s1|(|X|+1)〈s1,∇Xs2〉 for X ∈ kΘ
S†T

;

(4) the induced pairing g(·, ·) : (kH/t kH)× (kH/t kH)→ kRT [−2d] is non-degenerate.

Definition 6.3. Given a ∞2 -LVHS (kH∗,∇, 〈·, ·〉), a grading structure is an extension of the Gauss-
Manin connection ∇ along the t-coordinate

∇t ∂
∂t

: kH → t−1(kH),

which is compatible with the maps k,l[’s and such that [∇X ,∇t ∂
∂t

] = 0, i.e. it is a flat connection on

kS†T × (C, 0). We further require the pairing 〈·, ·〉 to be flat with respect to ∇t ∂
∂t

in the sense that

t ∂∂t〈s1, s2〉 = 〈∇t ∂
∂t
s1, s2〉+ 〈s1,∇t ∂

∂t
s2〉.

Notation 6.4. Let kH± := kH⊗C[[t]]C[[t, t−1] be a module over kRT [[t, t−1] equipped with the natural

submodule kH+ := kH ⊂ kH± which is closed under multiplication by kRT [[t]]. There is a natural

symplectic structure kw(·, ·) : kH± × kH± → kRT defined by kw(α, β) = Rest=0〈α, β〉dt.

Also let H± := lim←−k
kH±, which is a module over RT [[t, t−1]

∧

:= lim←−k
kRT [[t, t−1], equipped with

a RT [[t]]
∧

submodule H+ := lim←−k
kH+ and the symplectic structure w := lim←−k

kw. We also write

RT [t−1]
∧

:= lim←−k
kRT [t−1].

Definition 6.5. An opposite filtration is a choice of kRT [t−1] submodule kH− ⊂ kH± for each

k ∈ Z≥0, compatible with the maps k,l[’s and satisfying the following conditions for each k:

(1) kH+ ⊕ kH− = kH±;
(2) ∇X kH− ⊂ kH− (resp. ∇X kH− ⊂ k−1H−) for X ∈ kRT ⊗K∨C (resp. X ∈ k−1RT ⊗ V);

(3) kH− is isotropic with respect to the symplectic structure kw(·, ·);
(4) kH− is preserved by the ∇t ∂

∂t
.

We also write H− := lim←−k
kH−.

Given an opposite filtration H−, we have a natural isomorphism (cf. [26], [47])

(6.2) kH+/t(
kH+) ∼= kH+ ∩ t(kH−) ∼= t(kH−)/ kH−,

for each k, giving identifications

τ+ : kH+ ∩ t(kH−)⊗C C[[t]]→ kH+,(6.3)

16Here f(−t) ∈ kRT [[t]] is the element obtained from f(t) by substituting t with −t.
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τ− : kH+ ∩ t(kH−)⊗C C[t−1]→ t(kH−).(6.4)

Using arguments from [47], we see that

〈kH+ ∩ t(kH−), kH+ ∩ t(kH−)〉 ∈ kRT and 〈kH−, kH−〉 ∈ kRT [t−1]t−2.

Morally speaking, a choice of an opposite filtration H− gives rise to a (trivial) bundle H over

Ŝ†T×P1, where t is a coordinate on P1, as follows. We let the sections of germ of kH near kS†T×(C, 0)

be given by kH+, and that of kH over kS†T × (P1 \ {0}) be given by t(kH−). Then (6.3) and (6.4)

give a trivialization of the bundle kH over kS†T × P1 whose global sections are kH+ ∩ t(kH−).

The pairing 〈·, ·〉 can be extended to Ŝ†T × P1 using the trivialization in (6.4), and ∇ extends to

give a flat connection on Ŝ†T×P1 which preserves the pairing 〈·, ·〉, has an order 2 irregular singularity

at t = 0 and an order 1 regular pole at t =∞ (besides those coming from the log structure on Ŝ†).
The extended pairing and the extended connection give a so-called (logD-trTLEP(w))-structure [58].
Finally, let us recall the notion of a miniversal element from [58].

Definition 6.6. A miniversal section ξ = (kξ)k∈Z≥0
is an element kξ ∈ kH+ ∩ t(kH−) such that

(1) k+1ξ = kξ (mod Ik+1);

(2) ∇X kξ = 0 in t(kH−)/ kH− (resp. t(k−1H−)/ k−1H−) for X ∈ kRT ⊗ K∨C (resp. X ∈
k−1RT ⊗ V) for each k;

(3) ∇t ∂
∂t

kξ = r(kξ) for each k on t(kH−)/ kH−, with the same r ∈ C;

(4) the Kodaira-Spencer map KS : K∨C ⊕ V → 0H+/t(
0H+) given by KS(X) := t∇Xξ is an

isomorphism.

By [58, Proposition 1.11], an opposite filtration H− together with a miniversal element ξ give the
structure of a (germ of a) logarithmic Frobenius manifold.

6.2. Construction of a ∞2 -LVHS. Following [2, 1, 39, 48], we will construct a ∞2 -LVHS from the

dgBV algebra kPV ∗T [[t]] in Notation 5.1 and its unobstructed deformations.

Condition 6.7. For the 0th-order Kodaira-Spencer map 0∇([0ω]) : K∨C → F≥d−1H0 defined after

Proposition 2.13, we assume that the induced map 0∇([0ω]) : K∨C → F≥d−1H0/F≥d−
1
2H0 is injective.

We fix the choice of the graded vector space V∗ := GrF (H∗)/Im(0∇([0ω])).

For example, in the log smooth case (Example 2.10), injectivity of 0∇([0ω]) can easily be verified
using the cohomological mixed Hodge complex (AC,F,W) in Example 5.5.

Notation 6.8. From Lemma 4.18 and Remark 5.2, we define the relative de Rham complex with

coefficient in T as k
‖A∗T := (k‖A⊗C T )⊗RT (RT /Ik+1) and, for each k, consider H∗(k‖AT )[[t

1
2 , t−

1
2 ]

which is free over kRT [[t
1
2 , t−

1
2 ].

Since the ring T is itself graded, for an element ϕ ∈ (kPV p,q ⊗ T )/Ik+1 ⊂ kPV T (resp. α ∈
(k‖Ap,q ⊗ T )/Ik+1 ⊂ k

‖AT ), we define the index of ϕ (α resp.) as p+ q and denoted by ϕ̄ (resp. ᾱ).

6.2.1. Construction of H+.

Definition 6.9. We consider the scaling morphism

lt : H∗(kPV T [[t, t−1],
k
d̆t)→ H∗(k‖AT )[[t

1
2 , t−

1
2 ],
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and define (the sections of) the Hodge bundle over 0S† to be 0H+ := lt(H
∗(0PV [[t]],

0
d̆t)), as a

submodule of 0RT [[t]] = C[[t]]. We further take

kH± := Im(lt)[t
−1] =

⊕(
Hd+ev(k‖A)[[t, t−1]⊕Hd+odd(k‖A)[[t, t−1]t

1
2

)
⊗kR

kRT

(resp. H± := lim←−k
kH±), as a module over kRT [[t, t−1] (resp. RT [[t, t−1]

∧

).

Given a Maurer-Cartan element ϕ = (kϕ)k as in Theorem 5.6, note that H∗(kPV T [[t]],
k
∂̄ +

t(k∆) + [kϕ, ·]) is again a free module over kRT [[t]]. We define

kH+ := {(lt(α) ∧ elt(kϕ))y kω | α ∈ H∗(kPV T [[t]],
k
∂̄ + t(k∆) + [kϕ, ·])}

as the kRT [[t]] submodule of kH±. Similarly, we let H+ := lim←−k
kH+ be the R̂T [[t]] module.

Remark 6.10. Notice that

0Hd+ev
+ =

d⊕
r=0

(
F≥r ∩Hd+ev(0

‖A)
)
C[[t]]t−r+d−1,

0Hd+odd
+ =

d−1⊕
r=0

(
F≥r+

1
2 ∩Hd+odd(0

‖A)
)
C[[t]]t−(r+ 1

2
)+d−1

in relation to the Hodge filtration given in Definition 2.11, and hence 0H/t(0H) = GrF (H∗(0
‖A)) as

vector spaces.

We define the Gauss-Manin connection by taking k∇X as in Definition 4.12 for X ∈ kRT ⊗K∨C,

and extend it to kΘ
S†T

by setting k∇f ∂
∂z

= f ∂
∂z for f ∂

∂z ∈
k−1RT ⊗ V.

Lemma 6.11. The kRT [[t]] submodule kH+ is preserved under the operation t(k∇X) for any X ∈
kΘ

S†T
. Therefore, we obtain ∇ : kH+ → 1

t (
kΩ1

S†T
)⊗kRT

kH+.

Proof. It suffices to prove the first statement of lemma. We begin by considering the case α = 1 and
restricting the Maurer-Cartan element kϕ to the coefficient ring kR (because the extra coefficient

T is not involved in the differential kd for defining the Gauss-Manin connection in Definition 4.12).

Note that lt(1) ∧ elt(kϕ)y(kω) = lt(e
kϕ/ty kω). Take a lifting w ∈ k

0Ad,0/ k2Ad,0 of the element kω for
computing the connection k∇ via the sequence (4.3). Direct computation shows that

kd
(
lt(e

kϕ/tyw)
)

= t−
1
2 lt

(∑
i

d log qmi ⊗ ekϕ/ty(ψiy kω)

)
=
∑
i

d log qmi ⊗ t−1(lt(ψi) ∧ elt(
kϕ))y kω

for some mi ∈ K and ψi ∈ kPV ∗[[t]]. Since (lt(ψi)∧ elt(
kϕ))y kω ∈ kH+, we have k∇

(
elt(

kϕ)y(kω)
)
∈

1
t (
kΩ1

S†
) ⊗(kR) (kH+). For the case of

(
lt(α) ∧ elt(kϕ)

)
y kω, we may simply introduce a formal pa-

rameter ε of degree −|α| such that ε2 = 0, and repeat the above argument for the Maurer-Cartan
element kϕ+ εα over the ring kR[ε]/(ε2). �

6.2.2. Construction of H−. The 0th-order Gauss-Manin connection in Definition 2.12 induces an
endomorphism Nν := 0∇ν : H∗(0

‖A)→ H∗(0
‖A) for every element ν ∈ K∨. The flatness of the Gauss-

Manin connection (Proposition 4.14) then implies that these are commuting operators: Nν1Nν2 =
Nν2Nν1 .
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Assumption 6.12. There is an increasing filtration W≤•H∗(0
‖A)

{0} ⊂ W≤0 ⊂ · · · ⊂ W≤r ⊂ · · · ⊂ Wd = H∗(0
‖A)

indexed by r ∈ 1
2Z≥0,17 which is

• preserved by the 0th-order Gauss-Manin connection in the sense that NνWr ⊂ Wr−1 for any
ν ∈ K∨, and
• an opposite filtration to the Hodge filtration F≥• in the sense that F≥r⊕W≤r− 1

2
= H∗(0

‖A).

Example 6.13. In the log smooth case (continuing Example 5.5), we have Deligne’s splitting
Hl(A∗C) =

⊕
s,t I

s,t on each Hl(A∗C) satisfying W≤r−l =
⊕

s+t≤r I
s,t and F≥r =

⊕
s≥r I

s,t. Since

the nilpotent operator Nν is defined over Q such that NνW≤r ⊂ W≤r−2, we deduce that NνI
s,t ⊂

Is−1,t−1. As the Hodge filtration F≥•Hl(A∗C) in Definition 2.11 is related to F≥•Hl(A∗C) by a shift:

F≥r−
l−d
2 = F≥r, letting W≤r− l−d

2
:=
⊕

s≤r I
s,t and W≤r(H∗(A∗C)) :=

⊕
lW≤r(Hl(A∗C)) gives an

opposite filtration satisfying Assumption 6.12.

Under Assumption 6.12, the commuting operators Nν ’s are nilpotent.

Lemma 6.14. Under Assumption 6.12, there exists an index (introduced in Notation 6.8) and degree
preserving trivialization

κ : H∗(0
‖A)⊗C R̂T → H∗(‖AT )
∧

which identifies the connection form of the Gauss-Manin connection ∇ with the nilpotent operator
N , i.e. for any ν ∈ K∨C, we have ∇ν(s⊗ 1) = Nν(s)⊗ 1 for s ∈ H∗(0

‖A).

Proof. Since the extra coefficient ring T does not couple with the differential d, we only need
to construct inductively a trivialization kκ : H∗(0

‖A) ⊗C
kR → H∗(k‖A) for every k such that

k+1κ = kκ (mod mk+1) and which identifies k∇ with the nilpotent operator N .

To prove the induction step, we assume that k−1κ has been constructed and the aim is to construct

its lifting kκ. We first choose an arbitary lifting k̃κ and a filtered basis e1, . . . , em of the finite
dimensional vector space H∗(0

‖A), meaning that it is a lifting of a basis in the associated quotient

GrW(H∗(0
‖A)). We also write ẽi for k̃κ(ei⊗ 1). With respect to the frame ẽi’s of H∗(k‖A), we define

a connection ∇̂ with ∇̂ν(ẽi) =
∑

j(Nν)ji (ẽj) for ν ∈ K∨C, where (Nν)ji ’s are the matrix coefficients

of the operator Nν with respect to the basis {ei}. We may also treat N = (N j
i ) as KC-valued

endomorphims on H∗(0
‖A).

From the induction hypothesis, we have k∇ − ∇̂ = 0 (mod mk) and hence (k∇ − ∇̂)(ẽi) =∑
m

∑
j α

j
miejq

m ∈ 0Ω1
S†
⊗CH

∗(0
‖A)⊗C (mk/mk+1). From the flatness of both k∇ and ∇̂, we notice

that (d log qm) ∧ αjmi = 0 and hence αjmi = cjmid log qm for some constant cjmi ∈ C for every m and

j. We will use cm to denote the endomorphism on H∗(0
‖A) whose matrix coefficients are given by

cm = (cjmi) with respect to the basis ei’s.

17We follow Barannikov [1] in using half integers r ∈ 1
2
Z as the weights for the filtration W≤r; multiplying by 2

gives the usual indices W≤0 ⊂ · · · ⊂ W≤r · · · ⊂ W≤2d with r ∈ Z.
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As a result, if we define a new frame ẽ
(0)
i := ẽi −

∑
m,j c

j
miejq

m and a new connection ∇̂(0) by

∇̂(0)
ν (ẽ

(0)
i ) =

∑
j(Nν)ji (ẽ

(0)
j ), then

(k∇− ∇̂(0))(ẽ
(0)
i ) =

∑
j,m

[cm, N ]ji (ej)q
m,

where [cm, N ] is the usual Lie bracket with its KC-valued matrix coefficient given by ([cm, N ]ji ) =

cjmlN
l
i − clmiN

j
l . Once again using flatness of both k∇ and ∇̂(0), we get some constant c

(1)j
mi such

that [cm, N ]ji = c
(1)j
mi d log qm. Taking an element νm ∈ K∨C with (m, νm) 6= 0, we obtain c

(1)
m =

1
(m,νm) [cm, Nνm ]. Now if we define a new frame ẽ

(1)
i := ẽ

(0)
i −

∑
j,m c

(1)j
mi e

i
jq
m and a new connection

∇(1)(ẽ
(1)
i ) :=

∑
j N

j
i ẽ

(1)
j , then we have c

(2)
m = 1

(m,νm) [c
(1)
m , Nνm ] = 1

(m,νm)2
[[cm, Nνm ], Nνm ] such that

c
(2)
m d log qm = [c

(1)
m , Nνm ].

Repeating this process we get a frame {ẽ(2d)
i }. Setting ∇(2d)(ẽ

(2d)
i ) =

∑
j N

j
i ẽ

(2d)
j , we get c

(2d+1)
m =

1
(m,νm)2d+1 (−[Nνm , ·])2d+1(cm) = 0. Therefore letting kκ(ei⊗1) = ẽ

(2d)
i gives the desired trivialization

for the Hodge bundle. �

With Assumption 6.12, we can take a filtered basis {er;i}0≤2r≤2d
0≤i≤mr

of the vector space H∗(0
‖A) such

that er;i ∈ W≤r∩ (Hd+ev(0
‖A)) if r ∈ Z and er;i ∈ W≤r∩ (Hd+odd(0

‖A)) if r ∈ Z+ 1
2 , and {er;i}0≤i≤mr

forms a basis of W≤r/W≤r− 1
2
.

Definition 6.15. Using the trivialization κ in Lemma 6.14, we let er;i := κ(er;i ⊗ 1), as a section

of the Hodge bundle H∗(0
‖AT )
∧

. The collection {er;i}, which forms a frame of the Hodge bundle, is

called the set of elementary sections (cf. Deligne’s canonical extension [12]).

Note that the index of er;i, introduced in Notation 6.8, is the same as that of er;i.

Lemma 6.16. If we let

0Hd+ev
− :=

d⊕
r=0

(
W≤r ∩Hd+ev(0

‖A)
)
C[t−1]t−r+d−2 ⊂ 0Hd+ev

± ,

0Hd+odd
− :=

d−1⊕
r=0

(
W≤r+ 1

2
∩Hd+odd(0

‖A)
)
C[t−1]t−(r+ 1

2
)+d−2 ⊂ 0Hd+odd

± ,

and use 0H− := 0Hd+ev
− ⊕ 0Hd+odd

− as the C[t−1] submodule of 0H±, then there exists a unique free

RT [t−1]
∧

submodule H− = lim←−k
kH− of H±, which is preserved by ∇X for any X ∈ Θ̂

S†T
and satisfies

k+1H− = kH− (mod Ik+1).

Proof. For existence, we take a set of elementary sections {er;i}0≤2r≤2d
0≤i≤mr

as in Definition 6.15. We can

take the free submodules kWd+ev
≤r =

⊕
l≤r
⊕

0≤i≤mr
kRT · el;i, kWd+odd

≤r+ 1
2

=
⊕

l≤r
⊕

0≤i≤m
r+1

2

kRT ·

el+ 1
2

;i of H∗(k‖AT ) and let

kH− :=
⊕

0≤r≤d

kWd+ev
≤r C[t−1]t−r+d−2 ⊕

⊕
0≤r≤d−1

kWd+odd
≤r+ 1

2

C[t−1]t−(r+ 1
2

)+d−2

be the desired ∇X invariant subspace.
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For uniqueness, we will prove the uniqueness of kRT [t−1] submodule kH− of kH± for each k by
induction. Again since the coefficient ring T does not couple with the differential d, we only need to
consider the corresponding statement for Hodge bundle over kR. For the induction step we assume

that there is another increasing filtration
k
W̃≤• of H∗(k‖A) satisfying the desired properties such

that they agree when passing to H∗(k−1
‖A). We should prove that

k
W̃≤r ⊂ kW≤r for each r.

We take r ∈ 1
2Z with

k
W̃≤r 6= 0. The proof of Lemma 6.14 gives a trivialization

0
W̃≤r ⊗C

kR→
k
W̃≤r using the frame {ẽr;i} which identifies k∇ with N ; in particular we must have r ≥ 0. Let

lr ≥ r be the minimum half integer such that
k
W̃≤r ⊂ kW≤lr , and take the frame {el;i}0≤2l≤2lr

0≤i≤ml
for

the submodule kW≤lr . Then we can write

ẽr;i =
∑

0≤2l≤2r
0≤i≤ml

fl;iel;i +
∑

2r+1≤2l≤2lr
0≤i≤ml

fl;iel;i

for some fl;i ∈ kR with fl;i = 0 (mod mk) for r + 1
2 ≤ l.

We start with r = 0 and assume on the contrary that l0 > 0. As ẽ0;i =
∑

0≤i≤m0
f0;ie0;i +∑

1≤2l≤2l0
0≤i≤ml

fl;iel;i, applying the connection k∇ gives

0 =
∑

0≤i≤m0

∂(f0;i)e0;i +
∑

1≤2l≤2l0
0≤i≤ml

∂(fl;i)el;i +
∑

1≤2l≤2l0
0≤i≤ml

fl;iN(el;i).

Passing to the quotient kW≤l0/ kW≤l0− 1
2

yields 0 =
∑

1≤l≤l0
0≤i≤ml

∂(fl;i)el;i which implies that fl;i = 0

for l ≥ 1 and hence l0 = 0. By induction on r, we have
k
W̃≤r− 1

2
⊂ kW≤r− 1

2
by the induction

hypothesis. We assume on the contrary that lr > r and consider

N(ẽr;i) =
∑

0≤2l≤2r
0≤i≤ml

k∇(fl;iel;i) +
∑

2r+1≤2l≤2lr
0≤i≤ml

∂(fl;i)el;i +
∑

2r+1≤2l≤2lr
0≤i≤ml

fl;iN(el;i).

This gives 0 =
∑

2r+1≤2l≤2lr
0≤i≤ml

∂(fl;i)el;i when passing to the quotient kW≤lr/ kW≤lr− 1
2

and thus

fl;i = 0 for l ≥ r+ 1
2 . This gives lr = r, which is a contradiction and hence completes the induction

step and the proof of the lemma. �

Remark 6.17. Lemma 6.16 says that the opposite filtration H− is determined uniquely by 0H−
which is given by the opposite filtration in Assumption 6.12. In the case of maximally degenerate
log Calabi-Yau varieties in §7, we expect the weight filration in [29, Remark 5.7] determined by the
nilpotent operators Nν ’s to be the only oppostie filtration satisfying Assumption 6.12.

6.2.3. Construction of the pairing 〈·, ·〉. The next assumption concerns the existence of the pairing
〈·, ·〉 in Definition 6.2.

Assumption 6.18. We assume that

• H∗(0
‖A,

0d) is nontrivial only when 0 ≤ ∗ ≤ 2d;

• Hp,>d(0
‖A,

0
∂̄) = 0 for all 0 ≤ p ≤ d;
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• there is a trace map tr : Hd,d(0
‖A,

0
∂̄) = H2d(0

‖A,
0d) → C, so that we can define a pairing

0p(·, ·) on H∗(0
‖A,

0d) by
0p(α, β) := tr (α ∧ β)

for α, β ∈ H∗(0
‖A,

0d);

• the filtration W≤• is isotropic with respect to 0p(·, ·), that means 0p(W≤s,W≤r) = 0 when
r + s < d;
• the trace map tr and the corresponding pairing 0p(·, ·), when descended to GrF (H∗(0

‖A)), are

non-degenerate.

Example 6.19. In the log smooth case (continuing Example 5.5 and Example 6.13), we use the trace
map tr defined in [23, Definition 7.11], which induces a pairing 0p : H∗(Ω∗

X†/ 0S†
)⊗H∗(Ω∗

X†/ 0S†
)→ C

by the product structure on Ω∗
X†/ 0S†

; this was denoted by QK in [23, Definition 7.13]. The pairing

is compatible with the weight filtration W≤r on H∗(Ω∗
X†/ 0S†

) by [23, Lemma 7.18] and is defined

over Q by [23, Lemma 7.14], which implies that the opposite filtration W≤• is isotropic with respect
to 0p. Furthermore, non-degeneracy of 0p follows from that of the induced pairing 〈·, ·〉 on LC =
GrW(H∗(Ω∗

X†/ 0S†
)) defined in [23, Definition 8.10], which in turn is a consequence of [23, Theorem

8.11] (where projectivity of X was used).

We will denote by tr : H∗(0
‖A) → C the map which extends tr : H2d(0

‖A) → C and is trivial

on H<2d(0
‖A). Note that by definition F≥• is isotropic with respect to the pairing 0p(·, ·), i.e.

0p(F≥r,F≥s) = 0 when r + s > d. We have tr(Nν(α)) = 0 for any α ∈ H∗(0
‖A) and ν ∈ K∨C.

Lemma 6.20. Suppose we take the subcomplex k
‖A∗,>d ↪→

k
‖A∗,∗, then natural induced map between

the cohomology group H∗(k‖A∗,>d)→ H∗(k‖A∗,∗) is a zero map for each k.

Proof. We prove by induction on k that the induced map on cohomology is zero. For k = 0 it
follows from second requirement in Assumption 6.18 together with the Hodge-de Rham degeneracy
Assumption 5.4. For induction step we consider the commutative diagram

H∗(0
‖A∗,>d)⊗mk/mk−1 //

��

H∗(k‖A∗,>d)

��

//H∗(k−1
‖A
∗,>d)

��
H∗(0

‖A∗,∗)⊗mk/mk−1 //H∗(k‖A∗,∗) //H∗(k−1
‖A
∗,∗)

.

Exactly the same argument as in §4.3.2 tells us that the cohomology H∗(k‖A∗,>d) is also a free kR

module, which means the first row is exact. Therefore the two rows in the above diagram are exact.
We conclude that the vertical map in the center is zero from induction hypothesis that the other
two vertical maps being zero. �

Definition 6.21. Using the elementary sections {er;i} in Definition 6.15, we extend the trace map

tr to the Hodge bundle H∗(k‖A)[[t
1
2 , t−

1
2 ] by the formula

tr(fer;i) := f tr(er;i)

for f ∈ kRT [[t
1
2 , t−

1
2 ], and extending linearly.

We also extend the pairing 0p to H∗(k‖A)[[t
1
2 , t−

1
2 ] by the formula

p(f(t)er;i, g(t)el;j) := (−1)|g||er;i|f(t)g(t) 0p(er;i, el;j),

for f(t), g(t) ∈ kRT [[t
1
2 , t−

1
2 ], and extending linearly.
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Finally we define a pairing 〈·, ·〉 on H∗(k‖A)[[t
1
2 , t−

1
2 ] by the formula18

〈α(t), β(t)〉 := (−1)d−1−d|β|+ 1
2

(β̄−d)t2−dp(α(t), β(−t)),

for α(t), β(t) ∈ H∗(k‖A)[[t
1
2 , t−

1
2 ], where β̄ is the index of

β ∈ H∗(k‖A)[[t
1
2 , t−

1
2 ] (see Notation 6.8). This naturally induces a pairing on kH± ⊂ H∗(k‖A)[[t

1
2 , t−

1
2 ].

Lemma 6.22. We have the identification p(α, β) = tr(α∧β) between the pairing and the trace map
in Definition 6.21. Furthermore, the pairing p is flat, i.e.

X(p(α, β)) = p(∇Xα, β) + p(α,∇Xβ)

for any α, β ∈ H∗(k‖A) and X ∈ kΘ
S†T

.

Proof. Using the short exact sequence

0→ KC ⊗C
k
‖A
∗[−1]→ k

0A∗/ k2A∗ → k
‖A
∗ → 0

which defines the kth-order Gauss-Manin connection k∇, we have the flatness of the product:

k∇(α ∧ β) = (k∇α) ∧ β + (−1)|α|α ∧ (k∇β).

To prove the identity p(α, β) = tr(α∧ β), we choose a basis {er;i} of H∗(0A) and the corresponding

elementary sections {er;i} as in Definition 6.15. We claim that the relation er;i∧ el;j =
∑

s;k c
s;k
r,l;i,jes;k

holds for some constant cs;kr,l;i,j ∈ C. This can be proved by an induction on the order k, followed

by an induction on the lexicographical order: (r, l) < (r′, l′) if r < r′, or r = r′ and l < l′ for each
fixed k. So we fix r, l and i, j, consider the product er;i ∧ el;j , and assume that the above relation

holds for any (r′, l′) < (r, l). Writing er;i∧el;j =
∑

s;k c
s;kes;k+

∑
s;k

∑
qm∈mk b

s;k
m es;kq

m and applying

the Gauss-Manin connection gives k∇ν(er;i ∧ el;j) = (Nνer;i) ∧ el;j + er;i ∧ (Nνel;j). The induction

hypothesis then forces
∑

s;k

∑
qm∈mk b

s;k
m es;kq

m = 0. As a result we have p(er;i, el;j) = tr(er;i ∧ el;j)

and the general relation p(α, β) = tr(α∧ β) follows. Flatness of the pairing p now follows from that
of tr. �

Lemma 6.23. The pairing in Definition 6.21 satisfies 〈s1, s2〉 ∈ kRT [[t]] for any s1, s2 ∈ kH+,

and 〈s1, s2〉 ∈ kRT [t−1]t−2 for any s1, s2 ∈ kH−. Furthermore, it decends to give a non-degenerate

pairing g(·, ·) : kH+/t(
kH+)× kH+/t(

kH+)→ kRT [−2d].

Proof. From the description in Definition 6.9 for kH± we first notice that the pairing 〈·, ·〉 takes
value in kRT [[t, t−1] when restricted to kH±. The statement for kH− follows from flatness of pairing
with respect to Gauss-Manin connection in the above Lemma 6.22, the fourth item in Assumption
6.18 and the explicit description of 0H− from Lemma 6.16.

For the statement on kH+, we take two classes of H∗(k‖AT )[[t
1
2 , t−

1
2 ] represented by

lt(αe
kϕ/t)y kω, lt(βe

kϕ/t)y kω ∈ k
‖AT [[t

1
2 , t−

1
2 ]

for some elements α, β ∈ kPV ∗T [[t]]. We consider the expression

(−1)♣t2−d tr
(

(lt(α(t)e
kϕ(t)/t)y kω) ∧ (l−t(β(−t)e− kϕ(−t)/t)y kω)

)
,

18This expression is motivated by [1].
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where ♣ refers to the suitable exponent of (−1) appearing in the third formula in Definition 6.21.
For computing the trace we can write

(−1)♣t2−d
(

(lt(α(t)e
kϕ(t)/t)y kω) ∧ (l−t(β(−t)e− kϕ(−t)/t)y kω)

)
2d

= µ+(t) + µ−(t−1),

where the subscript (·)2d refering to the index 2d part, µ+(t) ∈ k
‖AT [[t

1
2 ]] and µ−(t) ∈ k

‖AT [t−
1
2 ].

We claim that µ−(t) ∈ k
‖A
∗,>d
T [t−

1
2 ] and it is zero in the cohomology group H∗(k‖AT )[[t

1
2 , t−

1
2 ] using

Lemma 6.20. If the claim is true then we can conclude that

〈lt(αe
kϕ/t)y kω, lt(βe

kϕ/t)y kω〉 = tr(µ+(t)) ∈ kRT [[t]].

[1, Proof of Proposition 5.9.4] gives the following formula

(6.5) (−1)♣t2−d
(

(lt(α(t)e
kϕ(t)/t)y kω) ∧ (l−t(β(−t)e− kϕ(−t)/t)y kω)

)
2d

=(
(α(t) ∧ β(−t)e(kϕ(t)−kϕ(−t))/t)y kω) ∧ kω

)
2d

+ r(t),

where r(t) ∈ k
‖A
∗,>d
T [[t

1
2 , t−

1
2 ]. Since we have(

(α(t) ∧ β(−t)e(kϕ(t)−kϕ(−t))/t)y kω) ∧ kω
)

2d
∈ k
‖AT [[t]]

we prove the claim.

For non-degeneracy it suffices to consider the pairing for 0H+, which follows from the non-
degeneracy condition in Assumption 6.18. �

The above constructions give a ∞2 -LVHS (H+,∇, 〈·, ·〉) together with an opposite filtration H−
satisfying (1)-(3) in Definition 6.5. It remains to construct the grading structure.

6.2.4. Construction of the grading structure.

Definition 6.24. For each k, we define the extended connection ∇t ∂
∂t

acting on H∗(k‖AT )[[t
1
2 , t−

1
2 ]

by the rule that ∇t ∂
∂t

(s) = 2−d
2 s for s ∈ H∗(k‖AT ) and ∇t ∂

∂t
(fs) = t ∂∂t(f)s+ f(∇t ∂

∂t
(s)).

Proposition 6.25. The extended connection ∇ is a flat connection acting on kH±, i.e. we have
[∇t ∂

∂t
,∇X ] = 0 for any X ∈ kΘ

S†T
. The submodule kH− is preserved by ∇t ∂

∂t
and we have

∇t ∂
∂t

(H+) ⊂ t−1(kH+). Furthermore, the pairing 〈·, ·〉 is flat with respect to ∇t ∂
∂t

.

Proof. Beside ∇t ∂
∂t

(H+) ⊂ t−1(kH+), the other properties simply follow from definitions. Take

α ∈ kPV T [[t]] and consider (lt(α) ∧ elt(kϕ))y kω. Then

∇t ∂
∂t

(lt(α) ∧ elt(kϕ))y kω = ((∇t ∂
∂t
lt(α)) ∧ elt(kϕ) + lt(α) ∧ (∇t ∂

∂t
lt(
kϕ)) ∧ elt(kϕ))y kω.

Since we can write both ∇t ∂
∂t
lt(α) = lt(β) and ∇t ∂

∂t
lt(
kϕ) = lt(γ) for some β, γ ∈ kPV T [[t]], we may

rewrite

∇t ∂
∂t

(lt(α) ∧ elt(kϕ))y kω = ((lt(β) + t−1lt(α ∧ γ))elt(
kϕ))y kω,

which gives the desired result. �
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6.3. Construction of a miniversal section.

Notation 6.26. Consider the cohomology class [0ω] ∈ F≥d ∩W≤d. We let kµ be the extension of
the cohomology classes [0ω] ∈ t(0H+) ∩ t2(0H−) by first expressing it as a linear combination of
the filtered basis [0ω] =

∑
r;i cr;ier;i, and then extend it by elementary sections in Definition 6.15 to

t2(kH−) using the formula kµ =
∑

r;i cr;ier;i for each k.

Notation 6.27. By our choice of the graded vector space V∗ = GrF (H∗(0
‖A))/Im(0∇([0ω])) in

Condition 6.7, we further make a choice of a degree 0 element ψ ∈ 0PV [[t]] ⊗ V∨ such that its
cohomology class [lt(ψ)]|t=0 ∈

(
0H+/t(

0H+)
)
⊗ V∨ = GrF (H∗(0

‖A)) ⊗ V∨ maps to the identity

element id ∈ V⊗ V∨ under the natural quotient GrF (H∗(0
‖A))⊗ V∨ → V⊗ V∨.

Definition 6.28. For the ψ chosen in Notation 6.27, let ϕ = (kϕ)k be the corresponding Maurer-

Cartan element constructed in Theorem 5.6. Then
(
t−1elt(

kϕ)y kω
)
k

is called a primitive section if

it further satisfies the condition

t−1
(
elt(

kϕ)y kω − kµ
)
∈ kH−

for each k, where kω is the element constructed in Proposition 4.8.

Proposition 6.29. We can modify the Maurer-Cartan element ϕ = (kϕ)k constructed in Theorem

5.6 by ϕ 7→ ϕ+ tζ for some ζ = (kζ)k ∈ lim←−k
kPV 0

T [[t]] to get a primitive section. Furthermore, H+

is unchanged under this modification.

Proof. The proof is a refinement of that of Theorem 5.6 by the same argument as in [1, Theorem
1]. �

The following theorem concludes this section:

Theorem 6.30. The triple (kH+,∇, 〈·, ·〉) is a ∞2 -LVHS, and kH− is an opposite filtration. Fur-

thermore, the element kξ := t−1elt(
kϕ)y(kω) constructed in Proposition 6.29 is a miniversal section

in the sense of Definition 6.6.

Proof. It remains to check that ξ is a miniversal section. We write ξ = lim←−k
kξ and prove the

condition for each k. First of all, we have kξ ∈ kH+ ∩ t(kH−) from its construction, and that
kξ = t−1(kµ) in t(kH−)/ kH−. So ∇ν(kξ) = t−1(∇ν)(kµ) = t−1Nν(kµ) ∈ kH− for any ν ∈ K∨C.
We have computed the action of ∇t ∂

∂t
in the proof of Proposition 6.25, and the formula gives

∇t ∂
∂t

(t−1elt(
kϕ)) ∈ (1− d)elt(

kϕ) + (kH−). Therefore we have ∇t ∂
∂t

(kξ) = (1− d)(kξ) in (kH−)/ kH−.

Finally, to check that the Kodaira-Spencer map is an isomorphism, we only need to show this for
0S†T , which follows from our choice of the input ψ for solving the Maurer-Cartan equation (5.1) in
Theorem 5.6. �

Example 6.13, Example 6.19 and Theorem 6.30 together gives the following corollary.

Corollary 6.31. There exists a structure of logarithmic Frobenius manifold on the formal extended

moduli Ŝ†T near the log smooth Calabi-Yau variety (X,OX) in Example 2.10.

Remark 6.32. Following [1, 48], we can define the semi-infinite period map Φ : Ŝ†T → tH−/H− as

Φ(s) := [elt(ϕ(s,t))y ω − µ]. In the case of maximally degenerate log Calabi-Yau varieties studied in
[29], we expect this gives the canonical coordinates on the (extended) moduli space.
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7. Smoothing of maximally degenerate log Calabi-Yau varieties

In this section, we apply our results to the case of maximally degenerate log Calabi-Yau varieties
studied by Kontsevich-Soibelman [45] and Gross-Siebert in [28, 29, 30]. We will mainly follow [28, 29]
and assume the reader is familiar with these papers.

Notation 7.1. The characteristic 0 algebraically closed field k in [28] is always chosen to be C. We
work with a d-dimensional integral affine manifold B with holonomy in ZdoSLd(Z) and codimension
2 singularities ∆ as in [28, Definition 1.15], together with a toric polyhedral decomposition P of B
into lattice polytopes as in [28, Definition 1.22]. Following [28], we take Q = N for simplicity. We
also fix an open gluing data s as in Definition [28, Definition 2.25] for the pair (B,P) satisfying the
lifting condition in [28, Proposition 4.25].

Assumption 7.2. We assume that (B,P) satisfies the assumption in [29, Theorem 3.21] (in order
to get Hodge-to-de Rham degeneracy using results from [29]).

Definition 7.3. Given (B,P, s), we let (X,OX) be the d-dimensional complex analytic space given
by the analytification of the log scheme X0(B,P, s) constructed in [28, Theorem 5.2]. It is equipped
with a log structure over the Q-log point 0S†.

We denote the log-space by X† if we want to emphasize the log-structure. Let Z ⊂ X be
the codimension 2 singular locus of the log-structure (i.e. X† is log-smooth away from Z) and
j : X \ Z → X be the inclusion as in [29].

7.1. The 0th-order deformation data. Following the notations from [28, 29], the 0th-order de-
formation data in Definition 2.9 is described as follows:

Definition 7.4. • the 0th-order complex of polyvector fields is given by the pushforward of the
analytic sheaf of relative polyvector fields 0G∗ = j∗(

∧−∗ΘX†/ 0S†) equipped with the natural

wedge product;
• the 0th-order de Rham complex is given by the pushforward of the analytic sheaf of de Rham

differential forms 0K∗ := j∗(Ω
∗
X†/C), equipped with the de Rham differential 0∂ = ∂ as in

[29, first paragraph of §3.2];
• the volume element 0ω is given via the trivialization j∗(Ω

d
X†/ 0S†

) ∼= OX by [29, Theorem

3.23], and then the BV operator is defined by 0∆(ϕ)y 0ω := 0∂(ϕy 0ω).

The map 0
rσ
−1 : 0Ωr

S†
⊗C (0

0K∗/ 0
1K∗[−r]) → 0

rK∗/ 0
r+1K∗ given by taking wedge product in

j∗(Ω
∗
X†/C) is a morphism of sheaves of BV modules.

To show that the data in Definition 7.4 satisfies all the conditions in Definition 2.9, we need to
verify that 0G∗ and 0K∗ are coherent, 0

rσ is an isomorphism and there is an identification 0
‖K∗ =

0
0K∗/ 0

1K∗ ∼= j∗(Ω
∗
X†/ 0S†

). Let us briefly explain how to obtain all these from [29].

Notation 7.5. Following [29, Construction 2.1], we consider the monoids Q, P , the corresponding
toric varieties V = Spec(C[P ]) and V = Spec(C[Q]) and the associated analytic spaces V = Van and
V = Van respectively. V is equipped with a divisorial log structure induced from the divisor V, and
V is equipped with the pull-back of the log structure from V. [29, Theorem 2.6] shows that for every
geometric point x̄ ∈ X0(B,P, s), there is an étale neighborhood W of x̄ which can be identified with
an étale neighborhood of V as a log scheme in the sense that there are étale maps

W

&&��
V X0(B,P, s).
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Taking analytification of these maps, we can find an open subset (or a sheet) W ⊂ Wan mapping
homeomorphically to both an open subset in Van and an open subset in V ⊂ X.

The desired statements are local on X, and we work on the local model V. As in [29, proof of

Proposition 1.12], we let Ṽ be the log scheme equipped with the smooth divisorial log structure

induced by the boundary toric divisor Spec(C[∂P ]). Then we have j∗(Ω
alg,∗
V†/C) ↪→ j∗

(
Ωalg,∗
Ṽ†/C

)
|V\Z =(

Ωalg,∗
Ṽ†/C

)
|V, where the notation Ωalg,∗ refers to algebraic sheaves. From these we obtain the identifica-

tion
[
j∗(Ω

alg,∗
V†/C)

]an
= j∗(Ω

∗
V†/C) which globalizes to give

[
j∗(Ω

alg,∗
X0(B,P,s)†/C)

]an
= j∗(Ω

∗
X†/C), and simi-

larly,
[
j∗(Ω

alg,∗
X0(B,P,s)†/ 0S†

)
]an

= j∗(Ω
∗
X†/ 0S†

). Because both j∗(Ω
alg,∗
X0(B,P,s)†/C) and j∗(Ω

alg,∗
X0(B,P,s)†/ 0S†

)

are coherent sheaves, so are 0G∗ and 0K∗ via the analytification functor. Taking analytification of
the exact sequence

0→ 0Ω1
S† ⊗C j∗(Ω

alg,∗
X0(B,P,s)†/ 0S†

)[−1]→ j∗(Ω
alg,∗
X0(B,P,s)†/C)→ j∗(Ω

alg,∗
X0(B,P,s)†/ 0S†

)→ 0

in [29, line 4 in proof of Theorem 5.1], we see that 0
rσ is an isomorphism and we also obtain the

identification 0
‖K∗ = 0

0K∗/ 0
1K∗ ∼= j∗(Ω

∗
X†/ 0S†

).

7.2. The higher order deformation data. From Notation 7.5, we have, at every point x̄ ∈ X†,
an analytic neighborhood V together with a log space V† and a log morphism π : V† → S† such
that the diagram

(7.1) V �
� //

��

V†

π
��

0S† �
� //S†

is a fiber product of log spaces. We fix an open covering V by Stein open subsets Vα’s with local

thickening V†α’s given as above, and write kV†α for the kth-order thickening over kS†. We also write
j : Vα \ Z → Vα for the inclusion.

The higher order deformation data in Definitions 2.14 and 2.20 are described as follows:

Definition 7.6. For each k ∈ Z≥0,

• the kth-order polyvector fields is given by kG∗α := j∗(
∧−∗ΘkV†α/

kS†
) (i.e. polyvector fields on

kV†α);
• the kth-order de Rham complex is given by kK∗α := j∗(Ω

∗
kV†α/C

) (i.e. the space of log de Rham

differentials) equipped with the de Rham differential k∂α = ∂ which is naturally a dg module
over kΩ∗

S†
;

• the local kth-order volume element is given by a lifting ωα of 0ω as an element in j∗(Ω
d
V†α/S†

)

and taking kωα = ωα (mod mk+1), and then the BV operator is defined by k∆α(ϕ)y kω :=
k∂α(ϕy kω);
• the morphism k

rσ
−1 : kΩr

S†
⊗kR (k0K∗α/ k1K∗α[−r])→ k

rK∗α/ k
r+1K∗α of sheaves of BV modules is

given by taking wedge product.

For both kK∗α’s and kG∗α’s, the natural restriction map k+1,k[α is given by the isomorphism kV†α ∼=
k+1V†α ×k+1S†

kS†.
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Similar to the 0th-order case, we need to check that kG∗α and kK∗α are coherent sheaves which
are free over kR for each k, and that k

rσ is an isomorphism which induces an identification k
‖K∗α ∼=

j∗(Ω
∗
(kV†α/

kS†)
). Such verification can be done using [29, Proposition 1.12 and Corollary 1.13], using

similar argument as in §7.1.

7.2.1. Higher order patching data. To obtain the patching data we again need to take suitable
analytification of statements from [29]. Given x̄ ∈ Vαβ, we consider the following diagram of étale
neighborhoods

Wα ×X0 Wβ

&&xx

��

Wα

%%yy

Wβ

&&yykVα ⊃ Vα X0 Vα ⊂ kVβ,

where X0 = X0(B,P, s), and kVα (resp. kVβ) is the kth-order neighborhood of Vα (resp. Vβ). Using
[29, Lemma 2.15] on local uniqueness of thickening (see also [59] for a more detailed study on local
uniqueness), and further passing to an étale cover Wαβ of Wα ×X0 Wβ, we get an isomorphism

kΞαβ,i : Wαβ ×Vα
kVα

∼=−→Wαβ ×Vβ
kVβ.

Taking analytification, we can find a (small enough) open subset in (Wαβ)an mapping homeomor-
phically onto a Stein open neighborhood Ui ⊂ Vαβ of x̄.

Definition 7.7. Restriction of the analytification of kΞαβ,i on Ui gives the gluing map kΨαβ,i:

kV†α|Ui
kΨαβ,i //

πα
��

kV†β|Ui
πβ

��
kS† kS†

The patching isomorphisms

kψαβ,i : j∗(

−∗∧
ΘkV†α/

kS†
)|Ui → j∗(

−∗∧
ΘkV†β/

kS†
)|Ui

and
k
ψ̂αβ,i are then induced by kΨαβ,i.

The existence of the vector fields k,lbαβ,i,
kpαβ,ij and koαβγ,i in Definition 2.17 follows from the

analytic version of [29, Theorem 2.11] which says that any log automorphism of the space kV†α|Ui
(resp. kV†α|Uij ) fixing X|Ui (or X|Uij ) is obtained by exponentiating the action of a vector field in

ΘkV†α/
kS†

(Ui) (resp. ΘkV†α/
kS†

(Uij)). The element kwαβ,i in Definition 2.22 indeed measures the

difference between the volume elements, namely, kΨ∗αβ,i(
kωβ) = exp(kwαβ,iy) kωα.

7.2.2. Criterion for freeness of the Hodge bundle. To verify Assumption 4.15, which is needed for
proving the freeness of the Hodge bundle in §4.3.2, notice that by taking Q = N, we are already in
the situation of a 1-parameter family. The holomorphic Poincaré Lemma in Assumption 4.15 follows
by taking the analytification of the results from [29, proof of Theorem 4.1]. (As aforementioned,
there was a gap in [29, proof of Theorem 4.1] as pointed out and filled by [16]; readers may see [16,
Theorem 1.10] for details.)
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7.3. The Hodge theoretic data. Since we have[
j∗(Ω

alg,∗
X0(B,P,s)†/ 0S†

)
]an

= j∗(Ω
∗
X†/ 0S†),

the Hodge-to-de Rham degeneracy (Assumption 5.4) follows by applying Serre’s GAGA theorems
[62] to [29, Theorem 3.26] using the same argument as in the proof of Grothendieck’s algebraic de
Rham theorem. Applying Theorem 5.6 and Proposition 5.14, we obtain an alternative proof of the
following unobstructedness result due to Gross-Siebert [30]:

Corollary 7.8. Under Assumption 7.2, the complex analytic space (X,OX) is smoothable, i.e. there
exists a kth-order thickening (kX, kO) over kS† locally modeled on kVα for each for each k ∈ Z≥0,
and these thickenings are compatible.

7.4. F-manifold structure near a LCSL. Finally we demonstrate how to apply Theorem 6.30
to the Gross-Siebert setting.

7.4.1. The universal monoid Q. First of all, we consider (B,P) as in Notation 7.1 and work with the
cone picture as in [30]. We also need the notion of an multivalued integral piecewise affine function
on B as described before [30, Remark 1.15]. Let MPA(B,N) be the monoid of multivalued convex
integral piecewise affine function on B, take Q = Hom(MPA(B,N),N) to be the universal monoid
and consider the universal multivalued strictly convex integral piecewise affine function ϕ : B → Q
as in [27, equation A.2] (it was denoted as ϕ̆ there). Since we work in the cone picture, we fix an
open gluing data s as in [30, Definition 1.18] and replace the monodromy polytopes in Assumption
7.2 by the dual monodromy polytopes associated to each τ ∈ P.

7.4.2. Construction of X† = X0(B,P, s, ϕ)†. We now take an element n ∈ intre(Q
∨
R)∩K∨ and define

a multivalued strictly convex piecewise affine function ϕn : B → R. The cone picture construction

described in [30, Construction 1.17] gives a log scheme X†n = X0(B,P, s, ϕn)
† over C† (here C† is

the standard Z+-log point) which is log smooth away from a codimension 2 locus i : Z ↪→ X. [27,

Construction A.6] then gives a log scheme X† (with the same underlying scheme as X†n) over 0S†.
Definition 7.4 can be carried through.

7.4.3. Local model on thickening of X†. For each τ ∈ P, let Qτ be the normal lattice as defined in
[28, Definition 1.33]. We denote by Στ the normal fan of τ defined in [28, Definition 1.35] on Qτ,R,
equipped with the strictly convex piecewise linear function ϕ : |Στ | = Qτ,R → Qgp

R induced by ϕ. We

let ∆̌1, . . . , ∆̌r be the dual monodromy polytopes associated to τ as defined in [28, Definitions 1.58
& 1.60], and ψi(m) := − inf{〈m,n〉 | m ∈ Qτ,R, n ∈ ∆i} be the integral piecewise linear function on
Qτ,R.

We define monoids Pτ and Qτ by

Pτ :={(m, a0, . . . , ar) | m ∈ Qτ , a0 ∈ Qgp, ai ∈ Z, a0 − ϕ(m) ∈ Q,
ai − ψi(m) ≥ 0 for 1 ≤ i ≤ r},

Qτ :={(m, a0, . . . , ar) | m ∈ Qτ , a0 ∈ Qgp, ai ∈ Z, a0 = ϕ(m)} ∪ {∞},

where the monoid structure on Qτ is given as in [29, p. 22 in Construction 2.1]. Also let Vτ =
Spec(C[Pτ ]) which comes with a natural family π : Vτ → Spec(C[Q]) = S†, Vτ = π−1(0) =
Spec(C[Qτ ]) and kVτ = π−1(kS†) be the k-th order thickening of Vτ in Vτ .

For i = 1, . . . , r and a vertex v ∈ ∆̌i, we define a submonoid Di,v := w⊥i,v∩Pτ , where wi,v = v+e∨i ,
and let Di,v be the corresponding toric divisor of Vτ . To simplify notations, we often omit the
dependence on v and write wi, Di, Di instead of wi,v, Di, Di. Let v1, . . . , vl be the generators
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of 1-dimensional cones in the dual cone P∨τ other than the wj ’s, with corresponding toric divisors
D1, . . . ,Dl. Writing D =

⋃
j Dj , we equip Vτ with the divisorial log structure induced by the divisor

D ↪→ Vτ , which is denoted as V†τ . Pull back the log structure from Vτ give the log schemes V†τ and
kV†τ . [29, Theorem 2.6] holds for this setting as described in Notation 7.5, by taking P = Pτ and
Q = Qτ for some τ ∈ P.

As in §7.2, analytification of the log schemes V†τ and kV†τ give the log analytic schemes V
†
τ and

kV†τ respectively, and Definition 7.6 can be carried through. We can deduce that kG∗α and kK∗α are
coherent sheaves which are also sheaves of free modules over kR, and that k

rσ
−1 is an isomorphism,

by using the following variant of [29, Proposition 1.12 & Corollary 1.13].

Proposition 7.9. Let Z := Vτ ∩Dsing ↪→ | kVτ | = |Vτ | be the inclusion. Then we have the following
decomposition into Pτ -homogeneous pieces as

Γ(Vτ \ Z,Ωr
kV†τ

) =
⊕

p∈Pτ\Pτ+kQ+

zp ·
r∧( ⋂
{j|p∈Dj}

Dgp
j ⊗Z C

)
,

Γ(Vτ \ Z,Ωr
kV†τ/ kS†

) =
⊕

p∈Pτ\Pτ+kQ+

zp ·
r∧( ⋂
{j|p∈Dj}

(Dgp
j /Q

gp)⊗Z C
)
.

The construction of the higher order patching data described in §7.2.1 can be carried through
because divisorial deformations over 0S† can be defined as in [29, Definition 2.7], and [29, Theorem
2.11 & Lemma 2.15] hold accordingly with the local models Vτ ’s.

7.4.4. Opposite filtration and pairing. The weight filtration in Assumption 6.12 is taken to be the
filtration described in [29, Remark 5.7], which is opposite to the Hodge filtration and preserved
by the nilpotent operators Nν ’s. The trace map tr in Assumption 6.18 can be defined via the
isomorphism tr : Hd(X, j∗(Ω

d
X†/ 0S†

)) ∼= H2d(X, j∗(Ω
∗
X†/ 0S†

)) ∼= C. We conjecture that the induced

pairing 0p is non-degenerate.

Corollary 7.10. There exists a structure of log F-manifold on the formal extended moduli Ŝ†T near
the maximally degenerate log Calabi-Yau variety (X,OX). If the pairing 0p is non-degenerate, it
can be enhanced to a logarithmic Frobenius manifold structure.
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