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ABSTRACT. This is a survey on our recent works [5–7] which reveal new relationships
among deformation quantization, geometric quantization, Berezin-Toeplitz quantization
and BV quantization on Kähler manifolds.

1. INTRODUCTION

Quantization is an important subject in symplectic geometry, mathematical physics,
as well as in representation theory. There are various quantization schemes including de-
formation quantization, geometric quantization, Berezin-Toeplitz quantization and quan-
tum field theories such as Batalin-Vilkovisky (BV) quantization. In this survey article, we
will explain our recent works [5–7] on new relationships among them. We will concen-
trate on Kähler manifolds (X, ω, J), namely, symplectic manifolds endowed with complex
polarizations.

Geometric quantization is about producing a Hilbert space H associated to X, depending
on the quantum parameter h̄ = 1/k for k a large integer [11]. We need to assume that [ω]
is integral (i.e., [ω] ∈ H2(X, Z)). The procedure would depend on a choice of polarization,
but the resulting H should be canonical up to scalings. When (X, ω) has a Hamiltonian
symmetry group G and there is an invariant polarization, the group G would act on the
corresponding H. Conversely, Kirillov’s program says that most important representa-
tions of G should arise in this way.

On the other hand, deformation quantization is a formal deformation of the commuta-
tive algebra (C∞(X), ·) equipped with pointwise multiplication to a noncommutative one
(C∞(X)[[h̄]], ?h̄) equipped with a star product, so that the leading order of noncommuta-
tivity is given by the Poisson bracket {−,−}, i.e.,

(1.1)
d

dh̄

∣∣∣
h̄=0

( f ?h̄ g− g ?h̄ f ) = { f , g} .

Here { f , g} is the Lie algebra structure on C∞ (X) induced from the Lie algebra Vect(X, ω)
of symplectic vector fields via f 7→ X f , where X f is the Hamiltonian vector field deter-
mined by ω

(
X f ,−

)
= d f .
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When X = T∗M equipped with the canonical symplectic form ω = ∑j dxj ∧ dpj where
xj’s are local coordinates of M and pj’s are corresponding cotangent coordinates, we could
choose H = L2(M), the space of L2-functions on M. To view s(x) ∈ H globally on X, they
are certain functions on X which are constant along the p-directions. The span D =
〈∂/∂p1, . . . , ∂/∂pn〉 ⊂ TX, where n = dim M, is an integrable Lagrangian distribution of
X, which is a real polarization. Since X = T∗M, the trivial line bundle L over X admits
a Hermitian metric with a unitary connection DA whose curvature is FA = −2π

√
−1ω.

Therefore H can be identified as the space ΓD (X, L) of L2-sections of L over X which are
covariantly constant along D.

To explain deformation quantization, we consider X = T∗Rn. Given f (x, p) ∈ C∞(T∗Rn),
if its dependency on pj’s is polynomial, i.e., f ∈ Γ(Rn, Sym∗ TRn), then we could view it as
the symbol of a linear differential operator f̂ operating on functions s(x) by treating pj as
p̂j =

√
−1h̄ ∂

∂xj . The deformed product f ?h̄ g becomes the composition of the differential
operators f̂ and ĝ and equation (1.1) is just the uncertainty principle

[x̂j, p̂k] ∼
√
−1h̄δ

j
k.

On a general symplectic manifold X, equipped with a real polarization D, we could
set H = ΓD(X, L) in the same manner as above provided that such an L exists. L is
called a prequantum line bundle (i.e., c1(L) = [ω]) and its existence is guaranteed if [ω]
is integral. It may not be easy to construct real polarizations on a general symplectic
manifold. But if we allow Lagrangian foliations Dc on the complexified tangent bundle,
i.e., TX⊗C = Dc⊕D̄c, then such structures are equivalent to Kähler structures on X with
holomorphic tangent bundle given by T1,0X = Dc. These are called complex polarizations
on (X, ω). The integrality condition on [ω] is the same as X being a complex projective
manifold by the Kodaira embedding theorem. In this case, H = ΓDc(X, L) = H0(X, L),
the space of L2-holomorphic sections of L.

For a Kähler manifold (X, ω, J), taking holomorphic sections Hk = H0(X, L⊗k) is the
recipe of producing geometric quantization when [ω] is integral. For every smooth func-
tion f on X, there is an associated operator given by the multiplication m f by f followed
by the orthogonal projection Πk : ΓL2(X, L⊗k)→ H0(X, L⊗k) and this is called the Toeplitz
operator Tf ,k := Πk ◦ m f . Then there are bi-differential operators Ci(−,−) and constants
KN( f , g), which are independent of k, such that the following estimates hold:

(1.2)

∥∥∥∥∥Tf ,k ◦ Tg,k −
N−1

∑
i=0

(
1
k

)i
TCi( f ,g),k

∥∥∥∥∥ ≤ KN( f , g)
(

1
k

)N
.

Here ‖ · ‖ denotes the operator norm. This defines the Berezin-Toeplitz star product ?BT and
the Berezin-Toeplitz deformation quantization algebra (C∞(X)[[h̄]], ?BT) [4, 20, 27] (see also
[2, 3, 10, 17–19, 23, 26]). The Berezin-Toeplitz quantization is a special example of Wick
type deformation quantization of Kähler manifolds.
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When X = Cn equipped with the trivial holomorphic line bundle L, we may take k = 1.
Then H = H0(X, L) consists of holomorphic functions s(z) which are L2 with respect to
‖s‖2 =

∫
X |s(z)|

2 e−|z|
2/2. For deformation quantization on Cn, we restrict ourselves to

polynomials. Explicitly, f (z, z̄) acts as a linear differential operator Tf acting on s(z) ∈
H0(X, L) by letting Tzj = zj· and Tz̄j = h̄ ∂

∂zj
with together with the Wick ordering. (See

section 2.1 for more details). Then the composition of these Tf ’s defines a deformation
quantization of polynomials on Cn, with h̄ = 1 not only a formal variable. In this case, the
left hand side of the estimate in equation (1.2) vanishes if N > max{deg( f ), deg(g)}. This
implies that for X = Cn, there is Tf ◦ Tg = Tf ?BT g, and H forms an honest representation
of this deformation quantization of polynomials.

For a general compact Kähler manifold X, however, the estimate (1.2) only says that
the difference Tf ,k ◦ Tg,k − Tf ?BT g,k is asymptotically zero when k tends to infinity. Thus we
only have an “asymptotic action” of the Berezin-Toeplitz deformation quantization on
the Hk’s as k approaches infinity. Although it is enough to recover the star product, none
of the Hilbert spaces Hk’s actually form a representation of the deformation quantization
algebra. It is therefore natural to ask the following question (cf. problem iv in [3, Section
9]):

Question 1.1. Do we have an honest Toeplitz action of C∞ (X) [[h̄]] on a “geometric quantiza-
tion” so that this would automatically determine a star product ?h̄ as in the flat case?

In [5–7] we gave a positive answer to this question: by suitably localizing the Hilbert
spaces H0 (X, L⊗k) using so-called peak sections, we can construct a family of represen-
tations Hx0 of C∞ (X) [[h̄]] parametrized by points in X via a formal Toeplitz action. Com-
bining with Fedosov’s approach to deformation quantization, we can patch these Hx0 ’s
together to produce a sheaf version of geometric quantization over X. Our construction is
more natural from a quantum geometric perspective: notice that a star product is local in
nature, so a deformation quantization defines the structure sheaf of a “quantum geome-
try” on X. In the rest of this introduction, we will briefly explain our results; more detailed
descriptions of our constructions and results will be given in subsequent sections.

Using peak sections technique [28], we localize global holomorphic sections of L⊗k to
approximate the flat model near x0. In [5], we devised a method to link localized sections
of L⊗k with different k’s so that we could honestly take the k → ∞ limit of all these
sections to recover the Hilbert space Hx0 as constructed in the standard flat situation. As
a consequence, we obtained a representation of C∞ (X) [[h̄]] on Hx0 by restricting smooth
functions on X to a formal neighborhood of x0. More precisely, we proved the following
theorem (see Section 2 for more details):

Theorem 1.2 (Theorem 1.1 in [5]). For every x0 ∈ X, the vector spaces Hx0 constructed above
form a representation of the Berezin-Toeplitz deformation quantization (C∞(X)[[h̄]], ?BT) satis-
fying locality, i.e., for every smooth function f , its action on Hx0 depends only on the infinite jets
of f at x0.
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To put all these Hx0’s together to form a sheaf over X, we mimic Fedosov’s approach.
In [12, 13], Fedosov gave a geometric construction of deformation quantization on sym-
plectic manifolds by gluing the Moyal product on each tangent space TxX ' T∗Rn ' Cn

using a flat connection. This is now known as a Fedosov abelian connection. On a Kähler
manifold X, the fiberwise Moyal product is replaced by the polarized Wick product on the
complexified Weyl spaceWx0 ' C[[z1, z̄1, · · · , zn, z̄n]][[h̄]]. In [6], we constructed a special
family of Fedosov abelian connections which are natural quantizations of Kapranov’s L∞
structure [16] (see also [21]), and showed that every Wick type star product on X can be
obtained by these Fedosov abelian connections (see Section 3.1 for more details):

Theorem 1.3 (Theorem 1.1 in [6]). Let α be a representative of a formal cohomology class in
h̄H2

dR(X)[[h̄]] of type (1, 1). Then there exists γα ∈ A0,1
X (WX,C) solving the Fedosov equation

∇γα +
1
h̄

γα ? γα + R∇ = α,

so that DF,α := ∇+ 1
h̄ [γα,−]? defines a Fedosov abelian connection. This is a quantum extension

of Kapranov’s L∞ structure DK in the sense that DF,α|WX = DK. Furthermore, the star product
associated to DF,α is of Wick type with Karabegov form given by 2

√
−1ω− α.

The Wick product on the Weyl spaceWx0 ' C[[z1, z̄1, · · · , zn, z̄n]][[h̄]] acts on the Fock
space Hx0 ' C[[z1, · · · , zn]][[h̄]], which is known as the Bargmann-Fock representation. By
gluing these fiberwise representations together using Fedosov’s technique, we obtained
in [7] a global vector bundle FX,α over X equipped with a natural flat connection which is
compatible with the Fedosov abelian connection onWX,C via the above fiberwise action.
This compatibility enables us to construct a module sheaf via (local) flat sections:

Theorem 1.4 (Theorem 1.1 in [7]). The Bargmann-Fock sheaf Fflat
X,α, which consists of flat

sections of FX,α satisfying a convergence property, is a sheaf of modules over (Cω
X [[h̄]], ?α).

Here we need the Toeplitz action of functions on F f lat
X,α to preserve the convergence

property, so we restrict to the subspace Cω[[h̄]] of formal analytic functions. Furthermore,
we showed that this action is indeed given by the formal Toeplitz action. More precisely,
we have the following

Theorem 1.5 (Theorem 1.2 in [7]). For every x0 ∈ X, there exists a subspace Vx0 of the
stalk

(
Fflat

X,α

)
x0

isomorphic to the space of germs of formal holomorphic functions at x0, i.e.,

Vx0
∼= OX,x0 [[h̄]], such that the representation of smooth functions on Vx0 is via formal Toeplitz

operators.

See Section 3.2 for more details.

Now the following corollary gives an answer to Question 1.1:

Corollary 1.6. Action of the formal Toeplitz operators of Cω (X) [[h̄]] on the Bargmann-Fock sheaf
Fflat

X,α uniquely determines the Wick type star product whose Karabegov form is 2
√
−1ω− α.
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Following [15], we considered in [6] the Batalin-Vilkovisky (BV) quantizations of Kähler
manifolds associated to the Fedosov abelian connections we obtained. By running the ho-
motopy group flow operator to γα, we obtain a solution γ∞ of the quantum master equa-
tion (QME). This is the ∞-scale effective renormalization of a one-dimensional Chern-
Simons theory with target X. A significant feature of γ∞ is that, in contrast with the
real symplectic case studied in [15], its graph expansion involves only trees and one-loop
graphs. So this produces one-loop exact BV quantizations on a Kähler manifold X. In
particular, this gives an explicit, cochain level computation of the trace of Wick type star
products on X. More details can be found in Section 4.
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2. BEREZIN-TOEPLITZ QUANTIZATION AND ITS REPRESENTATIONS

Deformation quantization is the mathematical description of quantum observables on
phase spaces. From the canonical quantization point of view, these quantum observables
are operators on Hilbert spaces. We would like to understand those operators on Hilbert
spaces corresponding to smooth functions, or equivalently Hilbert representations of the
deformation quantization algebras.

We focus on phase spaces which are Kähler manifolds and Wick type deformation
quantizations.

2.1. Flat space Cn.

First we recall the Toeplitz operators on X = Cn associated to polynomials. On the flat
spaces Cn with trivial prequantum line bundle L, the Hilbert space on which the Toeplitz
operators act is the well-known Bargmann-Fock space HL2(Cn, µh̄) consisting of L2 inte-
grable entire holomorphic functions with respect to the density µh̄(z) = (πh̄)−ne−|z|

2/h̄;
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here h̄ is regarded as a positive real number. It is easy to see, by direct computations, that
the holomorphic polynomials

zI√
I!h̄|I|

,

where I runs over all multi-indices, form an orthonormal basis of HL2(Cn, µh̄). For a
monomial f (z, z̄) = zi1 · · · zik z̄j1 · · · z̄jl , the associated Toeplitz operator is given by the
following Wick ordering:

Tf1(z) f2(z̄) =

(
h̄

∂

∂zj1

)
◦ · · · ◦

(
h̄

∂

∂zj1

)
◦mzi1 ···zik ,

Let f , g ∈ C[z, z̄]. Then there is a formula for the composition of Toeplitz operators:
Tf ◦ Tg = Tf ?g, where

f ? g := exp

(
−h̄

n

∑
i=1

∂

∂zi

∂

∂w̄i

)
( f (z, z̄)g(w, w̄))|z=w.

This clearly defines a Wick type deformation quantization of polynomials on Cn, which
can be extended to an associative product on formal power series and giving rise to the
Wick algebra:

Definition 2.1. The Wick product on the spaceWCn := C[[z1, z̄1, · · · , zn, z̄n]][[h̄]] is defined
by

f ? g := exp

(
−h̄

n

∑
i=1

∂

∂zi
∂

∂w̄i

)
( f (z, z̄)g(w, w̄))

∣∣∣
z=w

We define a weight onWCn such that |zi| = |z̄j| = 1, |h̄| = 2. We let (WCn)k denote those
sums of monomials of weight at least k.

Lemma/Definition 2.2. The Bargmann-Fock space FCn := C[[z1, · · · , zn]][[h̄]] is a representa-
tion of WCn : we define an action of a monomial f = zα1 · · · zαk z̄β1 · · · z̄βl ∈ WCn on s ∈ FCn

by

(2.1) f ~ s := h̄l ∂

∂zβ1
◦ · · · ◦ ∂

∂zβl
◦mzα1 ···zαk (s),

where mzα1 ···zαk denotes the multiplication by zα1 · · · zαk . It is known that

f ~ (g ~ s) = ( f ? g)~ s,

so this defines an action of the Wick algebraWCn on FCn , known as the Bargmann-Fock repre-
sentation (or the Wick normal ordering in physics literature).
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2.2. General Kähler manifolds: peak sections and large volume limits.

For a Kähler manifold X whose prequantum line bundle is not trivial, the situation
is much more complicated since there are no polynomial sections as on Cn. The idea
is to localize the holomorphic sections of L⊗k to a neighborhood of any point x0 ∈ X
as an analogue of polynomial sections as in Cn, so that the computation on Cn can be
generalized to X.

First of all, we recall the notion of K-frame and K-coordinate in Kähler geometry. Sup-
pose for every x0 ∈ X, there exists a local holomorphic frame eL,x0 of L and holomorphic
coordinates centered at x0 such that the hermitian inner product of L is locally given by
〈eL,x0 , eL,x0〉 = e−ρx0 , where the Taylor expansion of ρz0 is of the form

(2.2) ρx0(z, z̄) ∼ δijzi z̄j + ∑
|I|,|J|≥2

1
|I|!|J|!

∂|I|+|J|ρx0

∂zI z̄J (x0)zI z̄J .

Then eL,x0 and (z1, · · · , zn) are called K-frame and K-coordinate of order ∞ respectively.
Throughout this paper, we will assume the existence of these coordinates and frames.

Remark 2.3. We refer to [22] for more details on the existence and more details of K-
coordinates and K-frames. For instance, complex normal coordinates are K-coordinates
of order 3.

The closest analogue of polynomial sections is the notion of peak sections introduced
in [28]. Peak sections are, roughly speaking, global holomorphic sections of L⊗k for k >>
0 whose L2-norm is concentrated around x0 with a prescribed leading term of Taylor
expansion at x0. Explicitly, for every multi-index p = (p1, · · · , pn) and r > |p| = p1 +
· · ·+ pn, there exist normalized peak sections Sk,p,r such that, under a K-coordinate system
and K-frame eL,x0 , we have

Sk,p,r(z) =
(

zp1
1 · · · z

pn
n + O(|z|2r)

)
· ek

L,x0
;

in this way they give generalizations of polynomial sections in the flat case X = Cn. These
peak sections also help us relate holomorphic sections for different tensor powers of L.

Peak sections are closely related to the concept of a large volume limit. First note that
L⊗k can be seen as the prequantum line bundle on X with the rescaled Kähler form kω.
Thus letting the tensor power k→ ∞ is equivalent to taking a large volume limit of X. In
particular, the unit ball around any point x0 ∈ (X, kω) becomes closer and closer to that
in the flat case 0 ∈ Cn.

To compute the inner product 〈Sk,p,r, Sk,p′,r′〉, since the norms of these peak sections are
concentrated in the unit ball D centered at x0, we can focus on the following integral:∫

D

(
zp1

1 · · · z
pn
n + O(|z|2r)

)
·
(

zp′1
1 · · · z

p′n
n + O(|z|2r′)

)
e−

ρx0 (z,z̄)
h̄ dvol,

where h̄ = 1/k. In the large volume limit, the inner products of the peak sections can be
approximated by a Gaussian type integral concentrated around x0, and we can use the
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technique of Feynman graph expansion to compute the asymptotic of the inner products.
An obvious difference from the flat case in Section 2.1 is that here the volume form of
the Gaussian integral contains “interaction terms” consisting of the higher order Taylor
expansion of ρx0 .

Theorem 2.4 (Feynman-Laplace). Let X be a compact n-dimensional manifold (possibly with
boundary), and let f be a smooth function attaining a unique minimum on X at an interior point
x0 ∈ X, and assume that the Hessian of f is non-degenerate at x0; also, let µ = α(x) · eg(x)dnx
be a top-degree form. Then the integral

I(h̄) :=
1

h̄n/2

∫
X

µe−
1
h̄ f (x) =

1

h̄n/2

∫
X

α(x) · e
− f (x)+h̄g(x)

h̄ dx1 · · · dxn,

has the following asymptotic expansion as h̄→ 0+:

I(h̄) ∼ ∑
k≥0

ak · h̄k,

where each coefficient ak is a sum of Feynman weights which depends only on the infinite jets of
the functions f , g at the point x0.

2.3. The Hilbert space and Toeplitz action.

The idea is to construct the desired Hilbert space by taking the span of these peak
sections {Sm,p,r}, similar to the flat case. There is a technical issue: there is the index r in
a peak section which measures the order of the error term. Thus we need to consider the
following double sequence

V := ∏
r≥0

(
∏
k≥0

H0(X, L⊗k)

)
.

We define a subspace of V consisting of those holomorphic sections which satisfy the
following asymptotic properties:

Definition 2.5. For every point x0 ∈ X, we fix a set {Sk,p,r} of normalized peak sections
centered at x0. A sequence of holomorphic sections α = {αk,r ∈ H0(X, L⊗k)}, regarded
as an element in V, is called an admissible sequence at x0 if it satisfies the following two
conditions:

(1) For every fixed r, the norm of the sequence {αk,r}k>0 has a uniform bound:

‖αk,r‖k ≤ Cr.

(2) There is a sequence of complex numbers {ap,m}p,m≥0 such that, for each fixed r > 0,
we have

(2.3) 〈αk,r − ∑
2m+|p|≤r

ap,m ·
1

km · Sk,p,r+1, Sk,q,r+1〉k = O
(

1
kr+1

)
,

for any multi-index q with |q| ≤ r.
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We define the subspace Ux0 ⊂ V as the C-linear span of admissible sequences at x0.

The complex numbers {ap,k} are called the coefficients of the admissible sequence α.
Note that they are independent of either the tensor power m and the weight index r. The
coefficients define a natural equivalence relation ∼ on Ux0 , namely, α is equivalent to β

(denoted as α ∼ β) if the coefficients of α− β are all 0. The vector space we would like to
construct is then simply the quotient by this equivalence relation:

Hx0 := Ux0/ ∼ .

We have the following explicit isomorphism, by turning the coefficients of an admissi-
ble sequence to the coefficients of formal power series.

Lemma 2.6. We have the following isomorphism of C-vector spaces:

(2.4) Hx0
∼= C[[y1, · · · , yn]][[h̄]].

For every smooth function f ∈ C∞(X), there is a natural action of f on the double
sequence V via the corresponding Toeplitz operators:

Tf : {αk,r} 7→ {Tf ,k(αk,r)}.

Proposition 2.7 (Lemmas 3.12 and 3.13 in [5]). For every f ∈ C∞(X), the above action satisfies
the following properties:

(1) Suppose that α = {αk,r} is an admissible sequence. Then {Tf ,k(αk,r)} is also an admissible
sequence for any smooth function f .

(2) Suppose that two admissible sequences are equivalent, i.e., α ∼ β. Then for any smooth
function f , we have Tf (α) ∼ Tf (β).

Thus the operator Tf on V preserves the sub-quotient Hx0 . Moreover, these operators
defines a representation of (C∞(X)[[h̄]], ?BT) on Hx0 :

Theorem 2.8 (Theorem 3.16 in [5]). Let x0 ∈ X be any point. The action of C∞(X)[[h̄]] on the
vector space Hx0 satisfies the following relation:

(2.5) Tf ◦ Tg = Tf g + ∑
k≥1

h̄k · TCk( f ,g), f , g ∈ C∞(X),

where Ck(−,−) are the bi-differential operators which appear in the Berezin-Toeplitz quantization.

Now we give an explicit formula of our representation, in terms of formal Toeplitz op-
erators. First of all, by turning the real number h̄ in the Feynman-Laplace Theorem to a
formal variable, we can define formal integral:

Definition 2.9. For φ(y, ȳ) ∈ (WCn)3 and h(y, ȳ) ∈ WCn , we define the following formal
integral:

1
h̄n

∫
h(y, ȳ) · e

−|y|2+φ(y,ȳ)
h̄ ∈ C[[h̄]]

via the Feynman rule in the Feynman-Laplace Theorem.
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Here h(y, ȳ) ∈ WCn corresponds to the Taylor expansion of α(x) in Theorem 2.4. Using
this formal integral, we can define a Hilbert space in the formal sense, namely, its inner
product takes values in the formal Laurent series C((

√
h̄)):

Definition 2.10. On the C((
√

h̄))-vector spaceWCn ⊗C[[h̄]] C((
√

h̄)), we define a complex
conjugation by extending the complex conjugation on polynomials in Cn:

(
√

h̄)kaI,JyI ȳJ 7→ (
√

h̄)k āI,J ȳIyJ .

Fix φ(y, ȳ) ∈ (WCn)3. Then for f , g ∈ WCn((
√

h̄)), we define their formal inner product as
the following formal integral:

(2.6) 〈 f , g〉 :=
1
h̄n ·

∫
f ḡ · e

−|y|2+φ(y,ȳ)
h̄ ,

which is in turn defined using Feynman graph expansions as in Definition 2.9 and takes
value in C((

√
h̄)).

With respect to the inner product on the above Hilbert space, there is an orthogonal
projection fromWCn to the subspace C[[z1, · · · , zn]][[h̄]]. In particular, for any f ∈ WCn ,
there is an associated formal Toeplitz operator defined as the composition of orthogonal
projection with multiplication. The following theorem describes these operators in terms
of asymptotic of Gaussian integrals:

Theorem 2.11 (Theorem 2.26 in [5]). Suppose ϕ(z, z̄) is a smooth function on D2n which attains
its unique minimum at the origin. Let f , ϕ, s be functions on D2n such that ∂̄s = 0, ϕ has a unique
minimum at the origin and satisfies

(2.7) Jϕ = |y|2 + ∑
I,J≥2

1
I!J!

∂|I|+|J|ϕ

∂zI∂z̄J (0)yI ȳJ .

There exist complex numbers ak,I so that for every fixed multi-index J, we have the following
asymptotics as h̄→ 0:

(2.8)
1
h̄n

∫
D2n

(
f · s− ∑

2k+|I|≤r

1

h̄k ak,IzI
)
· z̄Je−

ϕ(z,z̄)
h̄ dvolD2n = O(h̄r+1).

In particular, these ak,I’s only depend on the Taylor expansions of f , s, ϕ and ψ at the origin.

It follows from asymptotics of inner products of peak sections Sm,p,r’s as m → ∞ and
equation (2.3) that Hx0 is a formal Hilbert space. We define J f ,x0 ∈ WCn via the jets of f
under K-coordinates:

(2.9) J f ,x0 := ∑
|I|,|J|≥0

1
I!J!

∂|I|+|J| f
∂zI z̄J (x0)yI ȳJ ,

where the sum is over all multi-indices.
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Theorem 2.12 (Theorem 3.18 in [5]). Let f be any smooth function on X, and J f ,x0 be defined
as above. We define O f ,x0 ∈ WCn as the unique solution of the following equation:

(2.10) J f ,x0 · e
Φ/h̄ = eΦ/h̄ ? O f ,x0 .

Then the action of Tf on α ∈ Hx0 is given by

Tf (α) = O f ,x0 ? α.

In particular, this implies that the representation Hx0 is local in f ∈ C∞(X), i.e., it only depends
on the infinite jets of f at x0.

3. QUANTIZATION OF KAPRANOV’S L∞ STRUCTURES ON KÄHLER MANIFOLDS AND

BARGMANN-FOCK SHEAVES

In this section, we will explain how the the formal Hilbert spaces Hx0 constructed in the
previous section can be glued together consistently on X. A short answer to this question
is that there is a sheaf of modules over deformation quantization algebra which admits
a flat Fedosov connection. In particular, for every x0 ∈ X, the germ of flat sections at
x0 contains a dense subspace of Hx0 . We will first recall Fedosov connections on Kähler
manifolds via quantization of L∞ structure, and explain how these connections can be
extended to a module sheaf compatibly.

3.1. Kapranov’s L∞ structures on Kähler manifolds and their quantizations.

Fedosov’s connection was introduced in [12] to give a geometric construction of defor-
mation quantization on symplectic manifolds. On a Kähler manifold X, we can imple-
ment Fedosov’s approach. First of all, there are the following Weyl bundles on X:

WX := ŜymT∗X[[h̄]], WX := ŜymT∗X[[h̄]],

WX,C :=WX ⊗WX = ŜymT∗XC[[h̄]].

The fiberwise Hermitian structure on the complexified tangent bundle TXC enables us to
define a fiberwise (non-commutative) Wick product onWX,C:

α ? β := ∑
k≥0

1
k!
·
(√
−1 · h̄

2

)k

ωi1 j̄1 · · ·ωik j̄k ∂kα

∂yi1 · · · ∂yik

∂kβ

∂ȳj1 · · · ∂ȳjk
.

There is the following symbol map:

(3.1) σ : A•X(WX,C)→ A•X.

Definition 3.1. A connection onWX,C of the form

D = ∇− δ +
1
h̄
[I,−]?
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is called a Fedosov abelian connection if D2 = 0. Here ∇ is the Levi-Civita connection, and
I ∈ A1(X,WX,C) is a 1-form valued section ofWX,C, with

(3.2) δ := dzi ∧ ∂a
∂yi + dz̄j ∧ ∂a

∂ȳj .

Kapranov’s L∞ structure on a Kähler manifold can be summarized in the following:

Theorem 3.2 (Theorem 2.6 and Reformulation 2.8.1 in Kapranov [16]). Let X be a Kähler
manifold. Then there exist

(3.3) R∗n ∈ A0,1
X (Hom(T∗X, Symn(T∗X))), n ≥ 2

such that their extensions R̃∗n to the holomorphic Weyl bundleWX by derivation satisfy(
∂̄ + ∑

n≥2
R̃∗n

)2

= 0,

or equivalently,

(3.4) ∂̄R̃∗n + ∑
j+k=n+1

R̃∗j ◦ R̃∗k = 0

for any n ≥ 2.

It is easy to show that the L∞ structure induces a flat connection DK on the holomorphic
componentWX of the Weyl bundle:

DK = ∇− δ1,0 + ∑
n≥2

R̃∗n.

Here δ1,0 denotes the (1, 0)-part of δ in equation (3.2). The symbol map induces a nat-
ural one-to-one correspondence σ : Γ f lat(U,WX) ∼= OX(U). For a (local) holomorphic
function f , the associated flat section under DK gives the Taylor expansion of f under
K-coordinate at every point x0 ∈ X. And we denote this flat section by J f (“J” for jets).

3.1.1. Classical and quantum extensions of DK.

There are two ways to extend DK to flat connections on the complexified Weyl bundle
WX,C, one classical and the other quantum. For the classical extension, notice that the
complex conjugate of the connection DK is a flat connection DK onWX. Then

DC := DK ⊗ 1 + 1⊗ DK

is naturally a flat connection onWX,C =WX⊗WX such that DC|WX = DK. The geometry
behind this extension is very simple: since the flat sections with respect to DK correspond
to (local) holomorphic functions on X, by adding the anti-holomorphic components in
WX,C, we shall see all the smooth functions. This is indeed the case.

Proposition 3.3 (Proposition 2.10 in [7]). There is a one-to-one correspondence between C∞(X)[[h̄]]
and the space of flat sections of the Weyl bundleWX,C with respect to the flat connection DC.
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We also denote by the flat section associated to a smooth function by J f since it gives the
Taylor expansion of f under K-coordinates and their conjugates. This is also the reason
we call DC a classical extension of DK.

In [6], we constructed a family of Fedosov abelian connections on Kähler manifolds via
a quantum extension of DK. Explicitly, we use the following A•X-linear operator

L : A•X
(

Ŝym(T∗X)⊗ TX
)
→ A•X

(
Ŝym(T∗X)⊗ T∗X

)
“lifting the last subscript” using the Käher form to define

In := L(R∗n) = Rj
i1···in,l̄ωjk̄dz̄l ⊗ (yi1 · · · yin ȳk) ∈ A0,1

X (WX,C).

There is a simple observation behind this operator L: we simply replace the contraction
between TX in R̃n and T∗X inWX by a bracket [−,−]?, which can be extended toWX,C.
Let I := ∑n≥2 In. Then we proved in [6] that

Theorem 3.4 (Theorems 2.17 and 2.25 in [6]). Let α be a representative of a formal cohomology
class in h̄H2

dR(X)[[h̄]] of type (1, 1). Then there exists a solution of the Fedosov equation of the
form Iα = I + Jα ∈ A0,1

X (WX,C):

(3.5) ∇Iα − δIα +
1
h̄

Iα ? Iα + R∇ = α.

We denote the corresponding Fedosov abelian connection by DF,α. Every such DF,α is a quantum
extension of DK, i.e., DF,α|WX = DK. And the deformation quantization associated to DF,α is a
Wick type star product whose Karabegov form is 2

√
−1ω− α.

There are several nice properties of these Fedosov connections DF,α. First of all, the
Karabegov form of the associated star products is clear from the connection. Secondly, the
connection DF,α “looks classical” because it does not contain any h̄. Lastly, the equality
DF,α|WX = DK implies that for a (local) holomorphic function f , we have DF,α(J f ) =
0. This is saying that holomorphic functions do not receive any “quantum corrections”.
This property makes the Fedosov quantization more compatible with the Berezin-Toeplitz
quantization: when f is holomorphic, the Toeplitz operator Tf ,k = Πk ◦m f is simply the
“classical” operator given by multiplication by f .

3.2. Bargmann-Fock sheaves.

The idea behind Fedosov’s approach to deformation quantization is clear: the fiberwise
Moyal-Weyl product on the Weyl bundle describes the local picture of star products, and a
Fedosov abelian connection gives the gluing data for a global star product. We follow the
same line of thought in our construction of Bargmann-Fock sheaves on Kähler manifolds,
starting with the fiberwise Bargmann-Fock action of the Weyl bundle WX,C (equipped
with the fiberwise Wick product ?) onWX = ŜymT∗X as in Definition 2.2.
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It is easy to see that there is a unique choice of a connection on WX[h̄−1] compatible
with DF,α in the obvious sense, which is explicitly given by

(3.6) Dα = ∇+
1
h̄

γα ~−.

However, this connection is not flat:

Lemma 3.5 (Lemma 3.8 in [7]). The curvature of Dα is given by

D2
α =

1
h̄

ωh̄ − RicX,

where ωh̄ = 2
√
−1ω − α and RicX = Rk

ij̄kdzi ∧ dz̄j is the Ricci form of X. In particular, the
connection Dα onWX,e is not flat.

A naive idea is to twist WX by a line bundle to cancel its curvature. However, the
curvature (1, 1)-form 1

h̄ ωh̄ involves the formal variable h̄ and does not satisfy the integral-
ity condition. What we need is the notion of formal line bundles, which we formulate as
sheaves. First of all, we consider the following extensions of WX and OX by allowing
formal exponentials:

Definition 3.6. We define the sheafWX,e of extended Weyl algebra with exponentials as
follows: for every open set U ⊂ X, we consider the space of finite sum of pairs

(3.7)
k

∑
i=1

( fi, egi/h̄),

where fi, gi’s are smooth sections ofWX on U. We define the multiplication by the linear
extension of

( f1, eg1/h̄) · ( f2, eg2/h̄) := ( f1 f2, e(g1+g2)/h̄).

These are subject to the equivalence relation that ( f1, eg1/h̄) ∼ ( f2, eg2/h̄) if f1 = f2 and
g1 − g2 ∈ C[[h̄]]. Then the spaceWX,e(U) of sections ofWX,e over U is given by the set of
equivalence classes. There is a sub-sheaf OX,e of WX,e consisting of those finite sums in
equation (3.7) where fi, gi ∈ OX(U)[[h̄]]

Notation 3.7. We will use the notation f · eg/h̄ for the the pair ( f , eg/h̄) inWX,e (and also
OX,e).

The fiberwise Bargmann-Fock action can be extended on WX,e with some care: for a
monomial as in Definition 2.2, we can extend its action to WX,e by the same differential
operator as in equation (2.1). In particular,

ȳj ~ ( f · eg/h̄) = h̄
ωi j̄

2
√
−1

∂

∂yi ( f · eg/h̄) = h̄
ωi j̄

2
√
−1

(
∂ f
∂yi +

1
h̄

f · ∂g
∂yi

)
· eg/h̄
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However, for general elements ofWX,C onWX,e we could run into infinite sums such as
the following example: when X = C, g = y and f = ∑k≥1 ȳk,

f ~ eg/h̄ =

(
∑
k≥1

ȳk

)
~ ey/h̄ = ∑

k≥1

(
h̄∂y
)k

(ey/h̄) = ey/h̄ + ey/h̄ + · · · .

If we write f = ∑k,I,J h̄k f I, J̄,kyI ȳJ and g = ∑I,k h̄kgk,IyI , then it is not difficult to see from
the above example that the infinite sums come from two sources:

(1) Those terms g0,iyi in g which are linear inWX and do not include h̄;
(2) The infinite sums ∑J fk0,I0, J̄ h̄

k0yI0 ȳJ for fixed indices I0, k0.

A section α = ∑k,I,J h̄kαk,I, J̄y
I ȳJ of WX,C is called admissible if it satisfies the condition

that for every fixed I0 and k0, ∑J h̄k0αk0,I0, J̄y
I0 ȳJ is a finite sum. It is easy to see from the

construction that the term γα in equation (3.6) is admissible. (We refer to the proof of
Theorem 2.17 in [6] for the details). Thus Dα extends to a well-defined connection on
WX,e whose curvature is 1

h̄ ωh̄ − RicX.

We now define a formal line bundle as an invertible OX,e-module, on which we can
also define connection and curvature. This is analogue to the definition of holomorphic
line bundle: the exponentials in OX,e plays the role of the transition function. They are
also similar to local line bundles in [24] and twisting bundles in [29].

Proposition 3.8 (Lemma 3.5 in [7]). For every formal closed (1, 1)-form α ∈ A1,1
closed(X)[[h̄]],

there is a formal line bundle Lα/h̄ with connection ∇Lα/h̄ whose curvature is given by 1
h̄ · α.

Thus we can take the tensor product ofWX,e with a formal line bundle, on which there
exists a compatible Fedosov flat connection.

Definition 3.9. For a representative α of a formal (1, 1)-class [α] ∈ h̄H1,1
dR (X)[[h̄]], let ωh̄ :=

2
√
−1 ·ω− α and α′ := −ωh̄ + h̄ ·RicX. Then we define the sheaf of Bargmann-Fock modules

as

FX,α :=WX,e ⊗OX,e Lα′/h̄.

It is equipped with the connection

DB,α := (∇+
1
h̄

γα ~−)⊗∇Lα′/h̄
.

Lemma 3.10 (Lemma 3.10 in [7]). The connection DB,α is compatible with the Fedosov connec-
tion DF,α, i.e., if O ∈ WX,C is an admissible section and s is a section of FX,α , then we have

DB,α(O ~ s) = DF,α(O)~ s + (−1)|O|O ~ (DB,α(s)).

In particular, if O and s are flat sections ofWX,C and FX,α respectively, then O ~ s is also a flat
section.
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Since formal smooth functions C∞(X)[[h̄]] is canonically isomorphic to the flat sections
ofWX,C under DF,α, it is natural to expect that the above compatibility of DB,α and DF,α
implies that those flat sections of FX,α form a module over C∞

X (X)[[h̄]]. However, we do
not expect that the flat section O f corresponding to a smooth function to be admissible.
Thus an infinite sum can not be avoided, and we need to assume certain analytic condi-
tion on both functions and sections of FX,α.

We define the following sub-class of real analytic functions, which roughly speaking
consists of analytic functions with analyticity at least the same as that of ωh̄. Precisely,
for any x0 ∈ X we let r(x0) denote the radius of convergence of ωh̄ under a K-coordinate
centered at x0.

Lemma/Definition 3.11. For every open set U ⊂ X, let Cωh̄
X (U)[[h̄]] denote the set of real

analytic functions on X such that at every point x0 ∈ X, the radius of convergence is greater than
or equal to r(x0) under a K-coordinate centered at x0. These functions are closed under the star
product ?α, and form a sheaf Cωh̄

X [[h̄]] of algebras on X under the Fedosov star product ?α.

Definition 3.12. The Bargmann-Fock sheaf Fflat
X,α is defined as the sub-sheaf of FX,α which

consists of flat sections that are finite sums of the following form: α · eβ/h̄ ⊗ eU, where we
can write β = ∑|I|≥0 β IyI locally. We require that the coefficients of the degree 1 terms,
i.e., βi, 1 ≤ i ≤ n, satisfy the following boundedness condition:

(3.8)

∥∥∥∥∥ n

∑
i=1

βiyi

∥∥∥∥∥
x0

< r(x0),

where the norm is defined using the Hermitian metric on T∗X.

These analytic conditions guarantee that for f ∈ Cωh̄
X (U) and s ∈ Fflat

X,α(U), there is a
well-defined O f ~ s ∈ Fflat

X,α(U).

Theorem 3.13 (Theorem 3.17 in [7]). The Bargmann-Fock sheaf Fflat
X,α is a sheaf of modules over(

Cωh̄
X [[h̄]], ?α

)
.

Our construction and proof of Theorem 3.13 in [7] are analytic in nature and follow
Fedosov’s original approach closely. On the other hand, closely related studies on such
module sheaves have been carried out algebraically using deformation-obstruction the-
ory. In the real symplectic manifolds context, such constructions were established in the
work of Nest-Tsygan [25] and Tsygan [29]. In [1], Baranovsky, Ginzburg, Kaledin and
Pecharich gave a deformation theoretic construction of quantizations of line bundles as
module sheaves in the algebraic setting.

3.2.1. Prequantum Bargmann-Fock sheaf and Berezin-Toeplitz quantization.

In particular, when the Kähler manifold X is prequantizable and α = h̄c1(X), it is
known that the star product is exactly given by the Berezin-Toeplitz star product ?BT
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and the corresponding formal line bundle precisely characterizes the asymptotics of the
tensor powers L⊗k of the prequantum line bundle as k→ ∞.

In this subsection, we consider the example of FX,α where α = −h̄RicX = −h̄ · Rk
ij̄kdzi ∧

dz̄j. Explicitly,
FX,α =WX,e ⊗OX,e L−2

√
−1ω/h̄,

We choose a holomorphic frame ex0 of L−2
√
−1ω/h̄ satisfying the following condition:

∇L−2
√
−1ω/h̄

(ex0) = −
1
h̄

∂ρx0 ⊗ ex0 ,

and define a local section ofWX by β = ∑k≥1(∇̃1,0)k(ρx0).

Theorem 3.14 (Theorem 4.4 in [7]). There is eβ/h̄ ⊗ ex0 ∈ F
flat
X,α. And a section of FX,α of the

form A · eβ/h̄ ⊗ ex0 around x0 is flat, i.e., DB,α
(

A · eβ/h̄ ⊗ ex0

)
= 0 if and only if DK(A) = 0, or

equivalently, A = Js for some holomorphic function s.

According to this theorem, there exists a subspace Vx0 of the stalk (Fflat
X,α)x0 , which is

isomorphic to the space of germs of formal holomorphic functions at x0 , i.e., Vx0
∼=

OX,x0 [[h̄]], such that Vx0 is a representation of the Berezin-Toeplitz deformation quanti-
zation.

After a choice of a K-coordinate centered at x0, the vector space Vx0 is naturally a sub-
space of Hx0 consisting of those formal power series which are convergent in some neigh-
borhood of 0 ∈ Cn.

Theorem 3.15 (Theorem 4.10 in [7]). The representation of Cωh̄(X)[[h̄]] on Vx0 is given ex-
plicitly as follows: Let f ∈ Cωh̄(X)[[h̄]] and Ψs := Js · eβ/h̄ ⊗ ex0 ∈ Vx0 ⊂ (Fflat

X,α)x0 where
s ∈ OX,x0 [[h̄]]. Then

(3.9) O f ~
(

Js · eβ/h̄ ⊗ ex0

)
= Js′ · eβ/h̄ ⊗ ex0 ,

where s′ ∈ OX,x0 [[h̄]] is determined by its jets Js′ at x0 explicitly given by

T(J f )x0 ,Φ (Js) = Js′ .

By comparing equation (2.10) with (3.9), we can see that s′ is obtained by applying the
formal Toeplitz operator associated to J f to Js. Thus this theorem tells us that, modulo
technical issues (dense subspace, analyticity), every representation Hx0 is a subspace of
the stalk (FX,α)x0 of Bargmann-Fock sheaf.

4. BV QUANTIZATION OF KÄHLER MANIFOLDS

In this section we give an application of the Fedosov connection. In [15], it is shown that
the physical interpretation of deformation quantization and algebraic index theorem of a
symplectic manifold X is the Batalin-Vilkovisky (BV) quantization of the one-dimensional
Chern-Simons theory, which describes a sigma model with domain S1 and target X in a
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neighborhood of the constant maps. This model is quantized rigorously using Costello’s
formalism of effective renormalization [8]. An effective quantization must satisfy the
Quantum Master Equation (QME) which describes the gauge invariance at the quantum
level. In this model, the QME can be described using the geometry of BV bundles:

Definition 4.1 (cf. Definition 2.19 in [15]). The BV bundle of a Kähler manifold X is defined
to be

Ω̂−•TX := Ŝym(T∗XC)⊗∧−•(T∗XC), ∧−•(T∗XC) :=
⊕

k

∧k(T∗XC)[k],

where ∧k(T∗XC) has cohomological degree −k.

Definition 4.2 (Definition 2.22 in [15]). The operator

QBV := ∇+ h̄∆ +
1
h̄

dTXR∇

is a differential on the BV bundle (i.e., Q2
BV = 0), which we call the BV differential. A

section γ∞ of the BV bundle is said to satisfy the quantum master equation (QME) if

(4.1) QBV(eγ∞/h̄) = 0.

A solution γ∞ of the QME (4.1) induces a differential

(4.2) ∇+ h̄∆ + {γ∞,−}∆

on the BV bundle. The cochain complex (A•X
(
Ω̂−•TX

)
[[h̄]],∇ + h̄∆ + {γ∞,−}∆) is called

the global quantum observables of the one-dimensional Chern-Simons model. In [15], it is
shown that the fiberwise Berezin integration, defined by taking the top degree component
in odd variables and setting the even variables to 0:∫

Ber
: A•X

(
Ω̂−•TX

)
→ A•X, a 7→ 1

n!
(ιΠ)

n(a)
∣∣∣∣
yi=ȳj=0

,

is a cochain map, with respect to the BV differential QBV on A•X
(
Ω̂−•TX

)
and the de Rham

differential on A•X. Thus we get a well-defined composition map on cohomology classes,
which enables us to define the correlation functions (or expectation values) of global
quantum observables:

H∗(A•X
(
Ω̂−•TX

)
[[h̄]])

∫
Ber−→ H∗dR(X)[[h̄]]

∫
X−→ C[[h̄]].

The main ingredient in BV quantization is to find a solution for the Quantum Master
Equation (QME). This can be obtained by applying the homotopy group flow operator us-
ing the propagator ∂P of the one-dimensional sigma model to a solution of the Fedosov
equation. Our formulation here follows that in [15, Section 2.4] but with a significant
modification of the definition of the propagator in order to adapt to the Kähler setting.
We refer to [6, 15] for details on the explanation of the notations here.
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Theorem 4.3 (Theorem 2.26 in [15] and Theorem 3.15 in [6]). Let γ ∈ A1
X(WX,C), we define

γ∞ ∈ A•X(Ω̂
−•
TX)[[h̄]] by

eγ∞/h̄ := Mult
∫

S1[∗]
eh̄∂P+De⊗γ/h̄.

Suppose that γ is a solution of the Fedosov equation. Then eR̃∇/2h̄ · eγ∞/h̄ is a solution of the QME
(4.1), i.e., QBV

(
eR̃∇/2h̄ · eγ∞/h̄

)
= 0.

It turns out that, in the Kähler case, if γ is the solution of the Fedosov equation obtained
by quantizing Kapranov’s L∞-algebra structure, then the Feynman graph expansion of
the QME solution γ∞ involves only trees and one-loop graphs; in other words, γ∞ gives a
one-loop exact BV quantization of the Kähler manifold X. This is in sharp contrast with
the general symplectic case [15], in which the BV quantization involves all-loop quan-
tum corrections. The same kind of one-loop exactness was observed for the holomorphic
Chern-Simons theory by Costello [9] and for a sigma model from S1 to the target T∗Y
(cotangent bundle of a smooth manifold Y) by Gwilliam-Grady [14].

In the BV formalism, there is a rich structure of factorization algebra of quantum ob-
servables, including the local-to-global factorization map of quantum observables. In our
models, the cochain complex of local quantum observable is (A•X(WX,C), DF,α). And the
factorization map is explicitly

[−]∞ : A•X(WX,C)→ A•X(Ω̂−•TX)[[h̄]]

O 7→ [O]∞ := e−γ∞/h̄ ·
(

Mult
∫

S1[∗]
eh̄∂P+D(Odθ1 ⊗ e⊗γ/h̄)

)
.

This enables us to define the correlation function of a local quantum observable O f corre-
sponding to a smooth function f ∈ C∞(X) as

〈 f 〉 :=
∫

X
◦
∫

Ber
[O f ]∞.

A computation shows that 〈 f ? g〉 = 〈g ? f 〉, and that 〈 f 〉 =
∫

X f · ωn + O(h̄). Thus
the correlation function gives rise to the (unique) trace of the deformation quantization
algebra, as in the following

Definition 4.4. Let (C∞(X)[[h̄]], ?) denote a deformation quantization of X. A trace of the
star product ? is a linear map Tr : C∞(X)[[h̄]]→ C[[h̄]] such that

(1) Tr( f ? g) = Tr(g ? f );
(2) Tr( f ) =

∫
X f ·ωn + O(h̄).

In particular, Tr(1) is called the algebraic index of ?.

As a corollary, we obtain a succinct explicit expression of the algebraic index Tr(1) of
the deformation quantization algebra:
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Theorem 4.5 (Theorem 3.39 and Corollary 3.40 in [6]). Let γ be a solution of the Fedosov
equation and γ∞ be the associated solution of the QME as defined in Theorem 4.3. Then we have

σ
(

eh̄ιΠ(eR̃∇/2h̄eγ∞/h̄)
)
= Â(X) · e−

ωh̄
h̄ + 1

2 Tr(R+) = Td(X) · e−
ωh̄
h̄ +Tr(R+),

where Td(X) is the Todd class of X. In particular, the trace of the function 1 is given by

Tr(1) =
∫

X
Â(X) · e−

ωh̄
h̄ + 1

2 Tr(R+) =
∫

X
Td(X) · e−

ωh̄
h̄ +Tr(R+).

This is a cochain level enhancement of the result in [15]: there the technique of equi-
variant localization was applied to show that all graphs of higher genera (≥ 2) give rise
to exact differential forms after the Berezin integration and thus do not contribute after
integration over X, while the Feynman weights associated to these graphs in our QME
solution γ∞ vanish already on the cochain level.
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