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Abstract. In this paper, we compute the open Gromov-Witten invariants for

every compact toric surface X which is semi-Fano (i.e. the anticanonical line

bundle K−1
X is nef). Unlike the Fano case, this involves non-trivial obstructions

in the corresponding moduli problem. As a consequence, an explicit formula
for the Lagrangian Floer superpotential W is obtained, which in turn gives

an explicit presentation of the small quantum cohomology ring of X. We

also provide a computational verification of the conjectural ring isomorphism
between the small quantum cohomology of X and the Jacobian ring of W .
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1. Introduction

Let X be a compact toric manifold of complex dimension n. The mirror for
X is given by a so-called Landau-Ginzburg model which consists of a noncompact
complex n-dimensional manifold X̌ together with a holomorphic function W : X̌ →
C called the superpotential. From the perspective of the Strominger-Yau-Zaslow
conjecture [21], the manifold X̌, which is a bounded domain in (C∗)n, is given by
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taking the fiberwise torus dual of the moment map restricted to the complement
of toric divisors in X [1, 5]. Furthermore, as shown by the work of Cho-Oh [6]
and Fukaya-Oh-Ohta-Ono [9, 10], the superpotential W comes from Lagrangian
Floer theory for the moment map fibers. More precisely, the coefficients of W are
generating functions of genus zero open Gromov-Witten invariants which are virtual
counting of Maslov index two holomorphic stable disks bounded by the Lagrangian
torus fibers of the moment map.

In this paper, we investigate the computation of open Gromov-Witten invari-
ants and superpotentials for a class of toric surfaces. Similar problems have been
studied by various authors. In [6], Cho and Oh classified all non-singular holo-
morphic disks in a compact toric manifold X with boundary lying in Lagrangian
torus fibers. In case X is Fano, since the moduli spaces of holomorphic stable disks
do not contain any bubbling configurations, Cho-Oh’s results imply that all open
Gromov-Witten invariants are equal to one, and hence they obtained an explicit
formula for the superpotential W , which agrees with the one predicted by Hori and
Vafa [14]. For non-Fano toric manifolds, however, bubbling configurations do con-
tribute to open Gromov-Witten invariants (Fukaya-Oh-Ohta-Ono [9, 10]), so there
are “quantum corrections” to Hori-Vafa’s formula for the superpotential. In this
situation, the obstruction theory is non-trivial and this makes explicit computations
of open Gromov-Witten invariants much more difficult than the Fano case.

There are very few known computations for non-Fano toric manifolds: In [2],
by using toric degenerations and studying the wall-crossing phenomenon for disk
counting, Auroux was able to compute open Gromov-Witten invariants and write
down explicitly the superpotentials for the Hirzebruch surfaces F2 and F3. Later,
Fukaya, Oh, Ohta and Ono [11], again making use of toric degenerations, gave
another proof for the example F2. More recently, the first author [4] established a
formula relating open and closed Gromov-Witten invariants. Applying this formula,
the open Gromov-Witten invariants for all toric Calabi-Yau surfaces and certain
toric Calabi-Yau threefolds (including the total space of the canonical line bundles
of any toric Del Pezzo surface) were computed in the joint works [17, 18] of the
second author with Leung and Wu.

The purpose of this paper is to compute all genus zero open Gromov-Witten
invariants and hence obtain an explicit formula for the superpotential for any semi-
Fano toric surface X. We call a compact toric surface semi-Fano if its anti-canonical
bundle is nef (or equivalently, if every toric prime divisor has self-intersection at
least −2). To state our main result, let T be a Lagrangian torus fiber of the moment
map for a semi-Fano toric surface X. Let b ∈ π2(X,T) be a relative homotopy class
of Maslov index two.

Definition 1.1. We call a Maslov index two class b ∈ π2(X,T) admissible if and
only if b is of the form

b = β +

n∑
k=−m

skDk,

where

(1) β ∈ π2(X,T) is a class represented by a non-singular holomorphic disk D2 ⊂ X
with boundary ∂D2 ⊂ T which intersects a unique irreducible toric divisor D0

with multiplicity one; such a class is called a basic disk class;
(2) Dk’s are toric prime divisors which form a chain of (−2)-curves in X;
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(3) m,n are non-negative integers, and both s0 ≥ s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 and
s0 ≥ s−1 ≥ s−2 ≥ · · · ≥ s−m ≥ 0 are nonincreasing integer sequences with
|sk − sk+1| = 0 or 1 for each k, and the last term of each sequence is not
greater than one.

We can now state our main result:

Theorem 1.2. Let X be a compact semi-Fano toric surface. Let b ∈ π2(X,T) be
a relative homotopy class of Maslov index two. Then the genus zero one-pointed
open Gromov-Witten invariant nb is either one or zero according to whether b is
admissible or not. As a consequence, the superpotential for the mirror of X is given
explicitly by

W =
∑

b admissible
b∈π2(X,T)

Zb,

where Zb is an explicit holomorphic function (in fact a monomial) on X̌ defined by
Equation (2).

The proof of Theorem 1.2 is based on the comparison between open and closed
Gromov-Witten invariants in [4] (and its generalization in [17]) and the computation
on local Gromov-Witten invariants obtained by Bryan and Leung [3]. The idea is
similar to the proof of Theorem 4.2 in [18].

As a consequence of Theorem 1.2, we can write down an explicit formula for the
superpotential for a semi-Fano toric surface (see the tables in Appendix A). We
apply this to verify the conjectural ring isomorphism between the small quantum
cohomology QH∗(X) of a semi-Fano toric surface X and the Jacobian ring Jac(W )
of its superpotential W via direct computations.

Corollary 1.3. Let X be a compact semi-Fano toric surface, and W its superpo-
tential. Then there is a natural ring isomorphism

(1) QH∗(X) ∼= Jac(W ).

In a recent work [7], Fukaya, Oh, Ohta and Ono proved a much stronger result
than Corollary 1.3: For every compact toric manifold X and b ∈ H∗(X), there is
a ring isomorphism

QH∗b(X) ∼= Jac(Wb)

where QH∗b(X) is the big quantum cohomology ring and Wb is the superpoten-
tial bulk-deformed by b. We remark that their proof uses their big machinery
of Lagrangian Floer theory and does not involve explicit computations of open
Gromov-Witten invariants.

On the other hand, via the isomorphism (1), our explicit formula for the supepo-
tential W leads to an explicit presentation of the small quantum cohomology ring
QH∗(X) for a semi-Fano toric surface X. Indeed we can achieve more:

Corollary 1.4. Let X be a compact semi-Fano toric surface and b = D + aX be
a linear combination of toric cycles, where D is a toric divisor and a ∈ C. Then
the bulk-deformed superpotential is

Wb = a+
∑

β admissible

exp(〈β,D〉)Zβ .

Then by using the results of Fukaya, Oh, Ohta and Ono mentioned above, an
explicit ring presentation of QH∗b(X) can be obtained for b ∈ H2(X)⊕H4(X).
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Remark 1.5. Fukaya-Oh-Ohta-Ono [9, 10, 7] used a Novikov ring instead of C as
the coefficient ring, which is more appropriate in general. Throughout this paper we
stick to the tradition of using C as the coefficient ring because it turns out that the
superpotential W , which is a priori a formal power series, is a finite sum for any
toric semi-Fano surface X. All the statements in this paper remains unchanged if
C is replaced by a Novikov ring.

The rest of this paper is arranged as follows. Section 2 is a brief review on
toric manifolds and their Landau-Ginzburg mirrors. In Section 3 we compute the
open Gromov-Witten invariants for compact semi-Fano toric surfaces and prove
Theorem 1.2. In Section 4, we outline our computational proof of the isomorphism
QH∗(X) ∼= Jac(W ) and demonstrate the explicit calculations by several examples.
Corollary 1.4 is proved in Section 5. We end by some further discussions on bulk-
deformation by points.
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2. Landau-Ginzburg models as mirrors for toric manifolds

The purpose of this section is to set up some notations and give a review on
certain basic facts in toric geometry and mirror symmetry for toric manifolds that
we will need in this paper.

2.1. A quick review on toric manifolds. Let N ∼= Zn be a lattice of rank n.
For simplicity we will always use the notation NR := N ⊗R for a Z-module R. Let
XΣ be a compact complex toric n-fold XΣ defined by a fan Σ supported in NR.
XΣ admits an action by the complex torus NC/N ∼= (C×)n, whence its name “toric
manifold”. There is an open orbit in XΣ on which NC/N acts freely, and by abuse
of notation we shall also denote this orbit by NC/N ⊂ XΣ.

We denote by M the dual lattice of N . Every lattice point ν ∈ M gives a
nowhere-zero holomorphic function exp (ν , ·) : NC/N → C which extends to a
meromorphic function on XΣ. Its zero and pole sets define a toric divisor which is
linearly equivalent to the zero divisor. (By a toric divisor XΣ we mean a divisor
D ⊂ X which is invariant under the action of NC/N .)
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If we further equip XΣ with a toric Kähler form ω, then the action of NR/N on
XΣ induces a moment map

µ0 : XΣ →MR,

whose image is a polytope P ⊂MR defined by a system of inequalities

(vi , ·) ≥ ci, i = 1, . . . , d,

where vi are all primitive generators of rays of Σ, and ci ∈ R are some suitable
constants.
P admits a natural stratification by its faces. Each codimension-one face Ti ⊂ P

which is normal to vi ∈ N gives an irreducible toric divisor Di = µ−1
0 (Ti) ⊂ XΣ for

i = 1, . . . , d, and all other toric divisors are generated by {Di}di=1. For example,

the anti-canonical divisor of XΣ is given by
∑d
i=1Di.

2.2. Gromov-Witten invariants. First we recall the definition of closed Gromov-
Witten invariants for a projective manifold. Let β ∈ H2(X,Z) be a 2-cycle in a
smooth projective variety X. Let Mg,k(X,β) be the moduli space of stable maps

f : (C;x1, · · ·xk) −→ X,

where C is a genus g nodal curve with k marked points and f∗[C] = β. Let
evi : Mg,k(X,β)→ X (i = 1, . . . , k) be the evaluation maps f 7→ f(xi).

Definition 2.1. Given cohomology classes γi ∈ H∗(X), 1 ≤ i ≤ k, the closed

Gromov-Witten invariant GWX,β
g,k (γ1, · · · , γk) is defined by

GWX,β
g,k (γ1, · · · , γk) :=

∫
[Mg,k(X,β)]vir

k∏
i=1

ev∗i (γi),

where [Mg,k(X,β)]
vir

denotes the virtual fundamental class of the moduli space

Mg,k(X,β).

For toric manifolds, Fukaya-Oh-Ohta-Ono [9] defined open Gromov-Witten in-
variants as follows. Let X = XΣ be a toric manifold defined by a fan Σ. For a
moment map Lagrangian torus fiber T ⊂ X, let π2(X,T) be the group of homotopy
classes of maps

u : (∆, ∂∆) −→ (X,T)

where ∆ := {z ∈ C : |z| ≤ 1} denotes the standard closed unit disk in C. Then
π2(X,T) is generated by the basic disk classes βi ∈ π2(X,T) which correspond to
the primitive generators vi ∈ N of rays in Σ for i = 1, . . . , d. The two most impor-
tant classical symplectic invariants associated to β ∈ π2(X,T) are its symplectic
area

∫
β
ω and its Maslov index µ(β).

Now for β ∈ π2(X,T), let Mk(T, β) be the moduli space of stable maps from a
bordered Riemann surface of genus zero with k boundary marked points respecting
the cyclic order of the boundary in the class β. Notice that the bordered Riemann
surface could have disk or sphere bubbles. It is known that Mk(T, β) has expected

dimension n + µ(β) + k − 3. Let [Mk(T, β)]
vir

be its virtual fundamental chain
constructed in [9]. We let

evi : Mk(T, β) −→ T

be the evaluation maps defined by evi([u; p0, . . . , pk−1]) = u(pi) for 0 ≤ i ≤ k − 1.
Consider the case k = 1 and µ(β) = 2. Note that the virtual dimension of

M1(T, β) is equal to dim T = n if and only if µ(β) = 2. Since the minimal Maslov
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index is two, the virtual fundamental chain [Mk(T, β)]
vir

becomes a cycle when
µ(β) = 2. Hence we can define:

Definition 2.2 ([9]). Given a Lagrangian torus fiber T ⊂ X and β ∈ π2(X,T),
the genus zero one-pointed open Gromov-Witten invariant nβ is defined as

nβ := ev0∗([M1(T, β)]
vir

) ∈ Hn(T;Q) ∼= Q.

It was shown in [9] that the number nβ is independent of the perturbations
used to define the virtual fundamental cycle and hence the above indeed defines
an invariant. One should view the invariant nβ ∈ Q as the virtual number of
holomorphic stable disks representing the class β such that their boundaries pass
through a fixed generic point in T.

Let us consider the situation where X = XΣ is semi-Fano, i.e. with nef anti-
canonical line bundle. By the classification result of Cho-Oh [6], a class β ∈
π2(X,T) represented by a stable disk must be of the form β = β′ + α, where
β′ is a disk class represented by sum of holomorphic disks and α ∈ H2(X) is rep-
resented by sum of rational curves. The Maslov index of β′ is 2k where k is the
intersection number of β′ with the toric anti-canonical divisor, and the first Chern
number c1(α) :=

∫
α
c1(X) of α must be non-negative since X is semi-Fano. This

shows that any holomorphic stable disk with Maslov index two must be of the form
βi +α where βi is a basic disk class and α ∈ H2(X) is an effective curve class with
first Chern number c1(α) = 0.

2.3. The LG mirror of toric manifolds. The mirror of a toric manifold X = XΣ

is a Landau-Ginzburg model (X̌,W ), which consists of a noncompact complex man-
ifold X̌ together with a holomorphic function W : X̌ → C called the superpoten-
tial. From the perspective of Lagrangian Floer theory, the superpotential W comes
from the boundary-deformed Floer potential for Lagrangian torus fibers, and can
be written down in terms of Kähler parameters and open Gromov-Witten invari-
ants of X [6, 9, 10, 1]. The following is a brief review of this procedure from the
SYZ viewpoint. See [5] for more details.

First of all, we recall that the semi-flat mirror of X is

X̌0 :=
{

(Tr,∇) : r ∈ P int,∇ is a flat U(1)-connection on Tr

}
,

where Tr ⊂ X denotes the moment-map fiber over r and P int denotes the interior
of P . It is well known that X̌0 can be equipped with the so-called semi-flat complex
structure, making it into a complex manifold [19]. In this toric case, X̌0 is simply
P int ×MR/M equipped with the standard complex structure.

Let Λ∗ be the lattice bundle over B0 whose fiber at r ∈ P int is Λ∗r = π1(Tr). For
each λ ∈ Λ∗, we may consider the following weighted count of stable holomorphic
disks:

F(λ) :=
∑
∂β=λ

nβ exp

(
−
∫
β

ω

)
.

This defines a function F : Λ∗ → R. Applying fiberwise Fourier transform on F ,
we obtain the superpotential

W : X̌0 → C,

W (Tr,∇) =
∑

β∈π2(X,Tr)

nβ exp

(
−
∫
β

ω

)
Hol∇(∂β).
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Notice that the above expression can be an infinite series. Nevertheless we will
see that for semi-Fano toric surfaces, this is just a finite sum and hence there are
no convergence issues for all the examples we consider in this paper. In general,
assuming convergence, W is a holomorphic function on X̌0.

For β ∈ π2(X,Tr), we define a function Zβ : X̌0 → C by

(2) Zβ(Tr,∇) := exp

(
−
∫
β

ω

)
Hol∇(∂β),

so that the superpotential can be written in the form W =
∑
β∈π2(X,Tr) nβZβ .

Note that Zβ is holomorphic and in fact it is a monomial in terms of the standard
coordinates on MC∗ .

It is already known by Cho-Oh [6] that nβi = 1 for all the basic disk classes

βi. When X is semi-Fano, as we have seen above, the moduli space M1(T, β) is
non-empty only when β = βi +α for some i = 1, . . . , d and α ∈ H2(X) represented
by a rational curve of Chern number zero. Thus we may write

W = W0 +

d∑
i=1

∑
α6=0,c1(α)=0

nβi+αZβi+α,

where W0 =
∑d
i=1 Zβi

. In general it is very hard to compute nβi+α starting from
the definition. In the following section, we will give a method to compute these
invariants when X is a semi-Fano toric surface.

3. Disk counting and GW invariants

3.1. A fact on toric surfaces. In this subsection we discuss some elementary
results on toric surfaces, which will be needed in the proof of Theorem 1.2. These
are probably well-known facts among experts; but for convenience of the reader,
we include their proofs here.

We start with the well-known formula for the self-intersection number of a toric
prime divisor in a compact toric surface. Let X = XΣ be a smooth toric surface
defined by a fan Σ in Z2. Suppose D ⊂ X is a compact toric prime divisor. Then
D corresponds to a ray τ ∈ Σ, so that τ = σ− ∩ σ+ for two 2-dimensional cones
σ−, σ+ ∈ Σ. (See Figure 1).

B
B
B
B
BM

B
B
B
B
B
BB

Q
Q

Q
QQk

��
��*

u

v

w

τ

σ+

σ−

O

Figure 1. Cones corresponding to a compact divisor.

Let τ be generated by v ∈ Z2, σ− be generated by u, v and σ+ be generated
by v, w such that u, v, w are placed in a counterclockwise fashion. Then the self-
intersection of D is given by

D2 = −
∣∣∣∣u1 w1

u2 w2

∣∣∣∣
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where

u =

(
u1

u2

)
and w =

(
w1

w2

)
.

Proposition 3.1. Let D = ∪li=1Di be a connected union of compact toric prime
divisors with D2

i = −2, and τi be the ray corresponding to Di. Suppose σi ∈ Σ are
2-dimensional cones so that τi = σi−1∩σi. Then the cone ∪ni=0σi is strictly convex.

Proof. Suppose τi is generated by vi ∈ Z2. Without loss of generality, we can
assume vi are labeled in a counterclockwise order as vectors in R2. We further let
σ0 be generated by v0, v1; and σn be generated by vn, vn+1.

Let

vi =

(
ai
bi

)
.

Since Di is a (−2)-curve, we have∣∣∣∣ai−1 ai+1

bi−1 bi+1

∣∣∣∣ = 2.

In other words, the area of the triangle spanned by vi−1 and vi+1 is 1.

B
B
B
BBM

Q
Q

Q
QQk

�
�
�
�
���

vk
vk+1

vk−1

B

A

L

���
���

����

O

Figure 2. −2 toric divisors.

On the other hand, let A be the triangle spanned by vectors vi−1 and vi; and let
B be the triangle spanned by vi and vi+1. Since X is smooth, the areas of A and
B are 1

2 . Now because the sum of areas of A and B is 1, which is equal to the area
of the triangle spanned by vi−1 and vi+1, we know the heads of the vectors vi−1, vi
and vi+1 are on the same line L. Moreover,

vi =
1

2
(vi−1 + vi+1).

Now since the heads of all vectors vi are on the same line, the cone ∪ni=0σi must
be strictly convex. �

3.2. Proof of Theorem 1.2. We are now in a position to give a proof of the main
result (Theorem 1.2) of this paper.

Let X be a compact semi-Fano toric surface. Let D1, · · · , Dd denote the toric
prime divisors of X. Let T be a Lagrangian torus fiber and let βi ∈ π2(X,T) be
the basic disk class such that βi · Dj = δij . Recall that, given any b ∈ π2(X,T)

of Maslov index two, the moduli space M1(T, b) of stable maps from bordered
Riemann surfaces of genus zero with one boundary marked point to X in the class
b is empty unless b = βi, or b = βi + α for some i ∈ {1, . . . , d} and α ∈ H2(X,Z)
with c1(α) = 0. Moreover, such an α must be of the form α =

∑
skDk where all

Dk have self-intersection −2.
Our goal is to compute the open Gromov-Witten invariant nb for all Maslov index

two classes b ∈ π2(X,T). To state the result, we need the following definitions.
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Definition 3.2. Let m1,m2 ∈ Z. We call a sequence {sk | m1 ≤ k ≤ m2}
admissible with center l if each sk is a positive integer, and

(1) si ≤ si+1 ≤ si + 1 when i < l;
(2) si ≥ si+1 ≥ si − 1 when i ≥ l;
(3) sm1

, sm2
≤ 1.

For any toric prime divisor Di with self-intersection −2, we have a maximal chain
Dmax
i of compact toric (−2)-divisors containing Di. Given a sequence {sk}, we have

an induced sequence {s̃k} with respect to Di, defined as s̃j = sj if Dj ⊂ Dmax
i and

sj = 0 otherwise.

Definition 3.3. Let b = βi + α with α =
∑
skDk. We say b is admissible if

D2
i = −2 and the sequence {sk} is identical to its induced sequence with respect to

Di, and {sk} is admissible with center i.

To prove Theorem 1.2, we recall the computations of local Gromov-Witten in-
variants for a configuration of P1’s in a complex surface which was obtained by
Bryan and Leung in [3] as follows. Let L(n) be a genus 0 nodal curve consisting
of a linear chain of 2n + 1 smooth components L−n, · · · , Ln with an additional
smooth component L∗ meeting L0. So we have Lk ∩ Lj = ∅ unless |k − j| = 1 and
L∗ ∩ Lk = ∅ unless k = 0. It was shown in [3] that L(n) can be embedded into a
smooth surface S so that all Lk are (−2)-curves and L∗ is a (−1)-curve, where S
can be taken as a certain blowup of P2 along points.

q
q q q q qq qq · · · q q· · ·

1

s0 s1 s2 sn−1 sns−1s−2s−n s−n+1

Figure 3. The graph of L(n).

The local Gromov-Witten invariant of L(n) is well-defined1 for the curve classes

L∗ +

n∑
k=−n

skLk, sk ≥ 0.

Theorem 3.4. [3] The genus zero local Gromov-Witten invariants N(sk) of L(n)
for the class L∗ +

∑n
k=−n skLk is given by

N(sk) =

{
1 if {sk} is admissible with center 0.
0 otherwise.

We remark that admissible with center 0 here is an equivalent term for 1-
admissible used in [3], and the invariant N(sk) is independent of the surface S
into which we embed L(n).

We will need to apply Theorem 3.4 to situations which are (apparently) more
general than those we described above. Let us explain why this can be done as
follows. Let s := {sk | m1 ≤ k ≤ m2} (with m1 ≤ 0 and m2 ≥ 0) be a sequence

1The local Gromov-Witten invariants of L(n) are the usual genus-zero Gromov-Witten invari-

ants with no marked point of the curve classes L∗ +
∑

k skLk in S. It turns out that the invariants
are independent of the choice of the surface S that L(n) is embedded into, and this is the meaning
of well-defindness in this context.
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which is admissible with center 0. Let L(s) be a genus 0 nodal curve consisting of
a linear chain of m2−m1 + 1 smooth components Lm1 , . . . , Lm2 with an additional
smooth component L∗ meeting L0, so that we have Lk ∩ Lj = ∅ unless |j − k| = 1
and L∗ ∩ Lk = ∅ unless k = 0. We shall regard L(s) as part of the genus 0 nodal
curve L(n) where n = max{−m1,m2}. Now let M(s) be the moduli space of genus
0 stable maps to L(s) in the class

L∗ +

m2∑
k=m1

skLk.

Also let M(n) be the moduli space of genus 0 stable maps to L(n) in the class

L∗ +

n∑
k=−n

skLk,

where we set sk = 0 for k < m1 and for k > m2. Then the moduli spaces M(s) and
M(n) can naturally be identified. More importantly, the proof of Lemma 5.3 on p.
385 of [3] shows that they have the same deformation and obstruction theories, and
hence define the same invariants. Therefore, Theorem 3.4 still works in situations
where the configuration of curves L(s) is not symmetric with respect to the center
L0.

Proof of Theorem 1.2. Given a semi-Fano toric surface X defined by a fan Σ, we
would like to compute the open Gromov-Witten invariant nb for b ∈ π2(X,T). First
of all, by [6, 9], nb is non-zero only when b = βi + α for some i and α ∈ H2(X,Z)
represented by rational curves with c1(α) = 0. It is already known that nb = 1
when α = 0, so it suffices to consider α 6= 0.

Suppose nβi+α 6= 0 and α 6= 0. Then Di must have self-intersection −2, and α
must be of the form α =

∑
k∈I skDk, where I is the index set containing all the

natural numbers k such that Dk ⊂ Dmax
i , and si 6= 0. We want to show that the

sequence {sk} is admissible, and in such cases nb = 1.
This is done by equating the open Gromov-Witten invariant nb to a closed

Gromov-Witten invariant of yet another toric manifold Y , which is a toric modi-
fication of X. The modification is constructed as follows. Let vi be the primitive
generator of the ray of Σ corresponding to Di, and let Σ1 be the refinement of Σ
by adding the ray generated by v∞ := −vi (and then completing it to a complete
fan)2. In general the corresponding toric variety XΣ1 may not be smooth. If this
is the case, then we take a toric desingularization Y of XΣ1

by adding rays which
are adjacent to v∞. By abuse of notations we still denote the divisors in Y corre-
sponding to vl’s by Dl, and α =

∑
k∈I skDk is regarded as a homology class in Y .

We remark that the above procedure does nothing if the ray generated by v∞ is
already in Σ.

By Proposition 3.1, since Dk’s have self-intersection (−2) for k ∈ I (I is the index
set introduced above) and ∪k∈IDk is connected, the union of the top-dimensional
cones adjacent to the rays generated by vk for k ∈ I is strictly convex. Thus the
ray generated by v∞ cannot be adjacent to those generated by vk for k ∈ I. Then

2Note that Σ1 may no longer be convex, which means that XΣ1
may no longer be semi-Fano.

Nevertheless, as we shall see in the next paragraph, that the curve classes under our consideration
never intersect the new toric divisor and they are rigid (because they are (−2) curves). Thus their

invariants can be computed by Theorem 3.4.
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the newly added rays are not adjacent to any vk for k ∈ I, and thus each Dk ⊂ Y
for k ∈ I still has self-intersection number (−2). Let f ∈ H2(Y ) be the fiber class,
that is, f = βi + β∞, where β∞ is the disk class corresponding to v∞.

By Theorem 1.1 in [4] and its generalization in [17], we have the following equality
between open and closed Gromov-Witten invariants:

nb = GWY,α+f
0,1 ([pt]).

The proof was by showing that the open moduli space M
ev=p

1 (X, b) and the closed

moduli space M
ev=p

1 (Y, f + α) are isomorphic as Kuranishi spaces. We refer the
reader to [4, 17] for details.

Next we identify GWY,α+f
0,1 ([pt]) with the local Gromov-Witten invariant of a

configuration of P1’s. Let Ỹ be the blowup of Y at a generic point p. Then, by the
result of Hu [15] and Gathmann [12], which relates Gromov-Witten invariants of
blowups along points, we know that the Gromov-Witten invariant of Y for a class γ
with one point constraint is equal to that of Ỹ for the strict transform of γ without
this point constraint. More precisely, we have

GWY,α+f
0,1 ([pt]) = GW Ỹ ,α+f ′

0,0 ,

where f ′ is the strict transform f , which is the class of a (−1)-curve.
Because α =

∑
skDk, with all Dk have self-intersection −2, it is easy to see

that every curve in α + f ′ is a tree of P1’s, with the same configuration as L(s),

up to a relabeling of its indices and shifting of the center. Therefore, GW Ỹ ,α+f ′

0,0 is

precisely the local Gromov-Witten invariant of L(s) for the class f ′ + α. Theorem
1.2 now follows from Theorem 3.4 and the discussion that follows. �

Theorem 1.2 allows us to explicitly compute the superpotential for any compact
semi-Fano toric surface. Since these surfaces can be completely classified (there are
totally 16 such surfaces, 5 of which are Fano), we can give explicit formulas for
all their superpotentials; a list of which is given in the appendix. In a very recent
work Fukaya-Oh-Ohta-Ono [8], our explicit formula for the superpotential W of the
semi-Fano toric surface X11 in the table was used in their proof of the existence of a
continuum of mutually disjoint non-displaceable Lagrangian tori in a cubic surface.

4. Small quantum cohomology and Jacobian ring

For a toric Fano manifold X, the map

ψ : QH∗(X)→ Jac(W ), Di 7→ Zβi ,

gives a canonical ring isomorphism between the small quantum cohomologyQH∗(X)
of X and the Jacobian ring Jac(W ) of the superpotential W [5, 9]. Recall that the
Jacobian ring of W is defined as

Jac(W ) = C[z±1
1 , . . . , z±1

n ]/〈∂1W, . . . , ∂nW 〉,

where ∂j denotes zj
∂
∂zj

and n = dimX. In the non-Fano case, it is expected that

we still have an isomorphism QH∗(X) ∼= Jac(W ),3 but the map ψ : QH∗(X) →
Jac(W ) needs to be modified by quantum corrections.

3This is now proved in the recent work [7] of Fukaya, Oh, Ohta and Ono (as a special case of
their main result).
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In the following, we briefly recall the definition of the corrected map following
Fukaya, Oh, Ohta and Ono [9, 10]. As before, X is a compact toric manifold and T
is a Lagrangian torus fiber. Consider the moduli space Mk,l(T, β) of stable maps
from genus 0 bordered Riemann surfaces to (X,L) with k boundary marked points
and l interior marked point in the class β. We have evaluation maps

evint : Mk,l(T, β)→ X l, [u; p0, p1, . . . , pk−1; z1, . . . , zl] 7→ (u(z1), . . . , u(zl)),

and
evi : Mk,1(T, β)→ T, [u; p0, p1, . . . , pk−1; z] 7→ u(pi),

i = 0, 1, . . . , k − 1, at the interior and boundary marked points respectively.
Let V1, . . . , Vl ⊂ X be toric subvarieties. Consider the fiber product

M1,l(T, β;V1, . . . , Vl) := M1,l(T, β)evint ×Xl

 l∏
j=1

Vj

 .

More precisely, M1,l(T, β;V1, . . . , Vl) is the set of all elements

([u; p0; z1, . . . , zl], x1, . . . , xl) ∈M1,l(T, β)×
l∏

j=1

Vj

such that u(z1, . . . , zl) = (x1, . . . , xl). The expected dimension ofM1,l(T, β;V1, . . . , Vl)

is given by n+ µ(β) + 2l − 2−
∑l
j=1 codimR(Vj).

Definition 4.1 ([10, 11]). The genus zero open Gromov-Witten invariant n(β;V1, . . . , Vl)
is defined as

n(β;V1, . . . , Vl) = ev0∗([M1,l(T, β;V1, . . . , Vl)]
vir

) ∈ Q.
It is non-zero only when

µ(β) = 2− 2l +

l∑
j=1

codimR(Vj).

By Lemma 6.8 in [10], the number n(β;V1, . . . , Vl) ∈ Q is independent of the

auxiliary Tn-equivariant perturbation data used to define [M1,1(T, β;V )]
vir

and
hence gives an invariant. Definition 2.2 is the special case when l = 0.

Choose an additive basis {Ti = PD[Vi]} of H∗(X,C) represented by the Poincaré
duals of fundamental classes of toric subvarieties Vi ⊂ X.

Definition 4.2 ([10, 11]). Define an additive map ψ : QH∗(X) → Jac(W ) by
setting

ψ(Ti) =
∑

β:µ(β)=codimR(Vi)

n(β;Vi)Zβ ,

and extending linearly.

Remark 4.3. Fukaya, Oh, Ohta and Ono [10] also study the so-called potential
function with bulk of a toric manifold X, by incorporating deformations of Floer
cohomology by cycles on the ambient space X. (In contrast, the superpotential, or
what Fukaya, Oh, Ohta and Ono called the potential function, W just encodes defor-
mations of Floer cohomology by the cycles on L.) In the recent work [7], they proved
that the Jacobian ring of the potential function with bulk is canonically isomorphic
to the big quantum cohomology ring of X. The map ψ : QH∗(X) → Jac(W ) we
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discuss here is a special case of this isomorphism, when the bulk deformation is set
to zero. We will also discuss the potential function with bulk in Section 5.

Now, for the toric prime divisors D1, . . . , Dd, the map ψ is given by

Di 7→
∑

β:µ(β)=2

n(β;Di)Zβ .

A special case of Lemma 9.2 in [10] gives the following analogue of the divisor
equation for open Gromov-Witten invariants.

Proposition 4.4 ([10]). If D is a toric divisor, then we have the following equality

n(β;D) = (D · β)nβ .

Combining with our Theorem 1.2, we can compute the map ψ : QH∗(X) →
Jac(W ) on toric divisors for any compact semi-Fano toric surface. As an applica-
tion, we outline a proof of Corollary 1.3 in the following.

To begin with, recall that the cohomology ring H∗(X,C) of a compact toric
manifold X is generated by the divisor classes D1, . . . , Dd ∈ H2(X,C). Moreover,
a presentation of H∗(X,C) is given by

H∗(X,C) = C[D1, . . . , Dd]/(L+ SR),

where L is the ideal generated by linear equivalences among divisors and SR is the
Stanley-Reisner ideal generated by primitive relations.

By a result of Siebert and Tian [20], when X is semi-Fano, the small quantum
cohomology QH∗(X) is also generated by the divisor classes D1, . . . , Dd and a
presentation of QH∗(X) is given by replacing each relation in SR by its quantum
counterpart, i.e. denoting the quantum Stanley-Reisner ideal by SRQ, then we
have

QH∗(X) = C[D1, . . . , Dd]/(L+ SRQ).

Consider the case when X = XΣ is a semi-Fani toric surface. We also assume
that X is not P2. Then any primitive collection is of the form P = {vi, vj} so that
vi, vj do not generate a cone in Σ. To compute SRQ, we need to calculate Di ∗Dj ,
where ∗ denotes the small quantum product. Choose dual bases {Dm}, {Dm} of
H2(X), both represented by toric divisors. Then, by the divisor equation and a
straightforward manipulation, we have

Di ∗Dj =
∑

α:c1(α)=2

(Di · α)(Dj · α)GWX,α
0,1 ([pt])qα

+
∑
m

 ∑
α:c1(α)=1

(Di · α)(Dj · α)(Dm · α)GWX,α
0,0 qα

Dm.

The Gromov-Witten invariants GWX,α
0,1 ([pt]), GWX,α

0,0 can be computed using the

results of Bryan-Leung [3] as follows. To compute GWX,α
0,1 ([pt]), note that we have

c1(α) = 2 so that α2 = 0. Such an α must be of the form α′ + f where α′ is
represented by a chain of (−2)-toric prime divisors and f is a fiber class. We are
therefore in exactly the same situation as in the proof of Theorem 1.2. Hence,

GWX,α
0,1 ([pt]) can be computed as before.

As forGWX,α
0,0 , we have c1(α) = 1, so that α is represented by a chain

∑q
k=−p skDik

of toric prime divisors such that D2
ik

= −2 for all k 6= 0, D2
i0

= −1 and s0 = 1.
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The results of Bryan and Leung also apply in this situation: namely, the Gromov-

Witten invariant GWX,α
0,0 = 1 if both the chains

∑0
k=−p skDik and

∑q
k=0 skDik are

admissible with center 0 and GWX,α
0,0 = 0 otherwise.

Let us give an example to illustrate the explicit computations.

Example. Let Σ be the fan whose rays are generated by

v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1), v4 = (0,−1), v5 = (1,−1), v6 = (2,−1).

This determines a toric surface X. We equip X with a toric Kähler form such that
the polytope P is given by

P = {(x1, x2) ∈ R2 : x1 ≥ 0, 0 ≤ x2 ≤ t1 + t3 + 2t4, x1 + x2 ≤ t1 + t2 + 2t3 + 3t4,

t1 + t4 + x1 − x2 ≥ 0, t1 + 2x1 − x2 ≥ 0},
where ti > 0 are the Kähler parameters.

D1

D6

D5

D4

D3

D2

-2

1

0

-2
-2

-1

Figure 4. The fan Σ and the polytope P defining X. The num-
bers beside the divisors indicate their self-intersection numbers.

The linear equivalences among divisors are generated by the following two rela-
tions

D1 −D3 +D5 + 2D6 = 0,

D2 −D3 −D4 −D5 −D6 = 0.

Hence, H2(X) is of rank 4. We choose the dual bases {Dm} and {Dm} to be
{D1, D4, D5, D6} and {D2, D3, D4 + 2D3, D1 + 2D2} respectively.

We can now start to compute the primitive relations. For example, we want
to compute D2 ∗ D4. We need to look for all curve classes with c1 = 1, 2 which
intersect both D2 and D4 non-trivially. There are two such classes with c1 = 2:
the classes represented by D3 and D3 + D4, and also two with c1 = 1: the classes
represented by D1 +D5 +D6 and D1 +D4 +D5 +D6. Since all these configurations
are admissible, the corresponding Gromov-Witten invariants are all equal to one,
by the above discussion. Hence, we get

D2 ∗D4 = q1q3q
2
4 − q1q2q3q

2
4 + q1q3q4(−D2 +D3 − (D4 + 2D3) + (D1 + 2D2))

−q1q2q3q4(−D2 −D3 + (D1 + 2D2))

= q1q3q
2
4 − q1q2q3q

2
4 + q1q3q4(D1 +D5 +D6)

−q1q2q3q4(D1 +D4 +D5 +D6),

where we have used linear equivalences to get the second equality. Similarly, we
can compute all other primitive relations.

Having computed all the primitive relations, we can go on to show the following
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Lemma 4.5. The map

ψ : C[D1, . . . , Dd]→ C[z±1
1 , z±1

2 ], Di 7→
∑

β:µ(β)=2

n(β;Di)Zβ

defines a ring homomorphism ψ : QH∗(X)→ Jac(W ).

Sketch of proof. First of all, we show that the ideal L of linear equivalences is
mapped to the ideal 〈∂1W, . . . , ∂nW 〉 by ψ. Linear equivalences are generated by

the relations
∑d
i=1 v

j
iDi = 0, j = 1, 2, where we write vi = (v1

i , v
2
i ) in coordinates.

By Proposition 4.4, we have

ψ(Di) =

d∑
k=1

∑
α:c1(α)=0

n(βk + α;Di)Zβk+α

=

d∑
k=1

∑
α:c1(α)=0

(Di · (βk + α))n(βk + α)Zβk+α.

Hence, we have

ψ

(
d∑
i=1

vjiDi

)
=

d∑
i=1

vji

 d∑
k=1

∑
α:c1(α)=0

(Di · (βk + α))n(βk + α)Zβk+α


=

d∑
k=1

∑
α:c1(α)=0

(
d∑
i=1

vji (δik +Di · α)

)
n(βk + α;Di)Zβk+α

=

d∑
k=1

∑
α:c1(α)=0

vjkn(βk + α;Di)Zβk+α

= ∂jW.

Next, we need to show that each primitive relation is mapped by ψ to a relation
in the ideal 〈∂1W, . . . , ∂nW 〉. This can be done by explicit computations. Again,
we illustrate this by an example.

Consider X in the previous example. By Theorem 1.2, we can compute the
superpotential explicitly. The result is given by

W = (1 + q1)z1 + z2 +
q1q2q

2
3q

3
4

z1z2
+ (1 + q2 + q2q3)

q1q3q
2
4

z2

+(1 + q3 + q2q3)
q1q4z1

z2
+
q1z

2
1

z2
,
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where ql = exp(−tl), l = 1, . . . , 4. We can also compute the images of the divisors
Di under ψ:

ψ(D1) = (1− q1)z1,

ψ(D2) = z2 + q1z1,

ψ(D3) =
q1q2q

2
3q

3
4

z1z2
+ (q2 + q2q3)

q1q3q
2
4

z2
+
q1q2q3q4z1

z2
,

ψ(D4) = (1− q2)(
q1q3q

2
4

z2
+
q1q3q4z1

z2
),

ψ(D5) = (1− q3)(
q1q4z1

z2
+
q1q2q3q

2
4

z2
),

ψ(D6) =
q1z

2
1

z2
+ q1z1 + (q3 + q2q3)

q1q4z1

z2
+
q1q2q

2
3q

2
4

z2
.

Using what we have computed before,

D2 ∗D4 = q1q3q
2
4 − q1q2q3q

2
4 + q1q3q4(D1 +D5 +D6)

−q1q2q3q4(D1 +D4 +D5 +D6)

= q1q3q4[(1− q2)(q4 +D1 +D5 +D6)− q2D4].

This is mapped by ψ to

q1q3q4[(1− q2)(q4 + z1 +
q1z

2
1

z2
+ (1 + q2q3)

q1q4z1

z2
+
q1q2q3q

2
4

z2
)

−q2(1− q2)(
q1q3q

2
4

z2
+ q3

q1q4z1

z2
)]

= q1q3q4(1− q2)(q4 + z1 +
q1z

2
1

z2
+
q1q4z1

z2
),

which is exactly ψ(D2) · ψ(D4).
Similarly, we can show that ψ(SRQ) = {0} ⊂ Jac(W ). Hence, ψ defines a ring

homomorphism ψ : QH∗(X)→ Jac(W ). �

Corollary 1.3 now follows from the following lemma.

Lemma 4.6. For generic choices of the Kähler parameters ql, ψ : QH∗(X) →
Jac(W ) is a bijective map.

Sketch of proof. Having computed the superpotential W and the images of the
divisors Di under ψ, we can check surjectivity of ψ in a straightforward way. For
instance, for the surface X in the previous example, we have

z1 = ψ((1− q1)−1D1), z2 = ψ(D2 − q1(1− q1)−1D1),

z−1
2 = ψ([q1q3q

2
4(1− q2)(1− q2q3)]−1D4 − [q1q

2
4(1− q3)(1− q2q3)]−1D5).

Also, since we have the relation ∂1W = 0 which gives

z−1
1 = (q1q2q

2
3q

3
4)−1[(1 + q1)z1z2 + (1 + q3 + q2q3)q1q4z1 + 2q1z

2
1 ],

and ψ is a homomorphism, z−1
1 also lies in the image of ψ. The surjectivity of ψ

for all other examples can be checked in this way.
On the other hand, by Proposition 3.7 and Lemma 3.9 in Iritani [16] (which

were proved by using Kouchnirenko’s results), we have dimH∗(X) = dim Jac(W )
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for generic choices of the Kähler parameters ql. Hence, ψ : QH∗(X) → Jac(W ) is
bijective. �

5. The big quantum cohomology

5.1. The potential with bulk. For a Lagrangian torus fiber T in a compact toric
manifold X and b ∈ A, where A := C〈toric invariant cycles〉, Fukaya, Oh, Ohta
and Ono [10] defined the potential with bulk Wb as

Wb :=
∑

β∈π2(X,T)
l≥0

1

l!
nl(β; b, . . . ,b︸ ︷︷ ︸

l

)Zβ

where the open Gromov-Witten invariants n(β;V1, . . . , Vl) (see Definition 4.1) ex-
tend multilinearly to give a function nl : π2(X,T)×A⊗l → C. In a recent preprint
[7] they proved that

QH∗b(X) ∼= Jac(Wb).

Thus an explicit expression of Wb would give an explicit presentation of the big
quantum cohomology ring QH∗b(X).

In the previous section, we have given an explicit expression of Wb when b = 0
for a semi-Fano toric surface X. We consider its potential with bulk in this section.
For the purpose of computing QH∗b(X), it is enough to consider b = aX +D+ cp,
where D is a toric divisor, p is the intersection point of two toric prime divisors
(say D1 and D2), and a, c ∈ C.

Proposition 5.1 (Restatement of Corollary 1.4). Let X be a semi-Fano toric
surface, and b = aX +D + cp as described above. Then

Wb = a+
∑
β 6=0

exp(〈β,D〉)

( ∞∑
k=0

ck

k!
nk(β; p, . . . , p)

)
Zβ .

In particular, when c = 0,

Wb = a+
∑

β admissible

exp(〈β,D〉)Zβ .

Proof. When β 6= 0,

nk(β; [X], γ1, . . . , γk−1) = 0

for all k ≥ 1 and γ1, . . . , γk−1 ∈ H∗(X) due to dimension reason. Thus

Wb :=
∑

β∈π2(X,T)
l≥0

1

l!
nl(β; b, . . . ,b)Zβ

=
∑
l≥0

1

l!
nl(0; b, . . . ,b) +

∑
β 6=0
l≥0

1

l!
nl(β;D + cp, . . . ,D + cp)Zβ .

Moreover, n1(0;X) = 1 (M1,1(T, 0;X) contains the constant map only) and n1(0; p) =
n1(0;D) = 0 (the corresponding moduli spaces are empty). Also by dimension
counting, nl(0; γ1, . . . , γl) = 0 for all l 6= 1. Thus the first term is∑

l≥0

1

l!
nl(0; b, . . . ,b) = a.
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Using the divisor equation for open Gromov-Witten invariants ([10]; see Proposition
4.4), the second term is∑
β 6=0
l≥0

1

l!
nl(β;D + cp, . . . ,D + cp)Zβ =

∑
β 6=0
l≥0

1

l!

l∑
k=0

Clkc
knl(β;D, . . . ,D︸ ︷︷ ︸

l−k

, p, . . . , p︸ ︷︷ ︸
k

)Zβ

=
∑
β 6=0
l≥0

1

l!

l∑
k=0

Clkc
k(〈β,D〉)l−knk(β; p, . . . , p)Zβ

=
∑
β 6=0
j,k≥0

ck

j!k!
(〈β,D〉)jnk(β; p, . . . , p)Zβ

=
∑
β 6=0

exp(〈β,D〉)

( ∞∑
k=0

ck

k!
nk(β; p, . . . , p)

)
Zβ .

When c = 0,

Wb = a+
∑
β 6=0

exp(〈β,D〉)nβZβ .

By Theorem 1.2, nβ = 1 when β is admissible, and 0 otherwise. Thus

Wb = a+
∑

β admissible

exp(〈β,D〉)Zβ .

�

5.2. Speculations and discussions. In Proposition 5.1, nl(β; p, . . . , p) (l ≥ 1)
has not been computed. In the following we give an informal discussion concerning
these invariants.

One of the issues involved in computing these invariants is the presence of “ghost
bubbles” in the moduli space M1,l(T, β; p, . . . , p) (see Figure 5) when p is chosen to
be a toric fixed point. On the other hand, if we consider p1, . . . , pl ∈ X in generic
positions, which is the approach taken by Gross [13] where he used tropical geometry
to define the superpotential with bulk, the moduli space M1,l(T, β; p1, . . . , pl) does
not involve disk bubbling (when β has the suitable Maslov index

µ(β) = 2− 2l +

l∑
j=1

codimR(pj ⊂ X) = 2 + 2l

so that the moduli has expected dimension n = dim T)4. Since the moduli space
M1,l(T, β; p1, . . . , pl) does not have codimension-one boundary, the invariant nl(β; p1, . . . , pl)
are well-defined. The invariants may become more computable.

4In general stable discs with Maslov index greater than or equal to two have disc bubblings.

The moduli space M1,l(T) has codimension-one boundary and the invariant depends on the
perturbation data. The work of Fukaya-Oh-Ono-Ohta restricted to Tn-equivariant perturbations

to define the invariants. On the other hand, if the disc is required to pass through l points in
generic positions (l determined by µ(β) = 2 + 2l), then it consists of only one disc component and

hence disc bubbling cannot occur. This means M1,l(T, β; p1, . . . , pl) does not have codimension-

one boundary, and so the corresponding invariant is independent of the perturbation data.
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D1

D2p

Figure 5. Ghost bubbles in M1,4(T, β; p, p, p, p). The whole
sphere bubble is contracted to the toric fixed point p. The disk
class is taken such that M1,4(T, β; p, p, p, p) has expected dimen-
sion 2. However the actual dimension is bigger than 2 since the
interior marked points are free to move in the bubble.

This motivates us to consider p′ ∈ D1 which is not fixed by the torus action,
and define the invariant nl(β; p′, . . . , p′) by taking a generic perturbation of the l
points around p′.

p’

D1

D2

D3

D4

Figure 6. The polytope of the Hirzebruch surface F2.

Example 5.2 (The Hirzebruch surface F2). Consider The Hirzebruch surface F2

whose polytope picture is shown in Figure 6. If we take the above approach, then
nl(β; p′, . . . , p′) equals to 1 when β = lβ1 + βi for i = 2, 3, 4 or β = lβ1 + β4 +D4,
and 0 otherwise. Then for b = a[X] +D + cp,

Wb = a+
∑
β 6=0

exp(〈β,D〉)

( ∞∑
k=0

ck

k!
nk(β; p, . . . , p)

)
Zβ

= a+ exp(〈β1, D〉)Zβ1
+

4∑
i=2

exp(c e〈β1,D〉Zβ1
) exp(〈βi, D〉)Zβi

+ exp(c e〈β1,D〉Zβ1
) exp(〈β4 +D4, D〉)q4Zβ4

.

The above consideration is tentative, and we are still investigating whether this
idea is in the right direction.

Appendix A. List of superpotentials for semi-Fano toric surfaces

Using the fact that any smooth compact toric surface is a blowup of either P2

or a Hirzebruch surface Fm (m ≥ 0) at torus fixed points, it is easy to see that
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there are finitely many isomorphism classes of semi-Fano toric surfaces. In fact, all
except F2 and P1×P1 are blowups of P2; there are 16 of such surfaces, five of which
are Fano (namely, P2, P1 × P1 and the blowup of P2 at 1, 2 or 3 points).

By using Theorem 1.2, we can compute the superpotentials for all these surfaces
explicitly. In this appendix, we provide a list of the superpotentials for the 11
semi-Fano but non-Fano toric surfaces. We enumerate them as X1, . . . , X11, and
each surface is specified by the primitive generators ρ(Σ) of rays of its fan and
the defining inequalities of its polytope. Also, in the following tables, the tl’s are
positive numbers and ql = exp(−tl) are the Kähler parameters.
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ρ(Σ) polytope P superpotential W

X1

v1 = (1, 0) x1 ≥ 0

z1 + z2 +
q21q2
z1z22

+ (1 + q2) q1z2
v2 = (0, 1) x2 ≥ 0
v3 = (−1,−2) 2t1 + t2−x1−2x2 ≥ 0
v4 = (0,−1) t1 − x2 ≥ 0

X2

v1 = (1, 0) x1 ≥ 0

z1 + z2 +
q1q2q

2
3

z1z2
+ (1 + q2) q1q3z2

+ q1z1
z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1,−1) t1+t2+2t3−x1−x2 ≥

0
v4 = (0,−1) t1 + t3 − x2 ≥ 0
v5 = (1,−1) t1 + x1 − x2 ≥ 0

X3

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 +
q1q2q

2
3q

3
4

z1z2
+ (1 +

q2 + q2q3)
q1q3q

2
4

z2
+ (1 + q3 +

q2q3) q1q4z1z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1,−1) t1+t2+2t3+3t4−x1−

x2 ≥ 0
v4 = (0,−1) t1 + t3 + 2t4 − x2 ≥ 0
v5 = (1,−1) t1 + t4 + x1 − x2 ≥ 0
v6 = (2,−1) t1 + 2x1 − x2 ≥ 0

X4

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 + q2q3q4
z1

+
q1q3q

2
4

z2
+

(1 + q3) q1q4z1z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 0) t2 + t3 + t4 − x1 ≥ 0
v4 = (0,−1) t1 + t3 + 2t4 − x2 ≥ 0
v5 = (1,−1) t1 + t4 + x1 − x2 ≥ 0
v6 = (2,−1) t1 + 2x1 − x2 ≥ 0

X5

v1 = (1, 0) x1 ≥ 0

z1 + z2 + q2q3q4
z1

+
q1q3q

2
4

z1z2
+ (1 +

q3) q1q4z2
+ q1z1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 0) t2 + t3 + t4 − x1 ≥ 0
v4 = (−1,−1) t1+t3+2t4−x1−x2 ≥

0
v5 = (0,−1) t1 + t4 − x2 ≥ 0
v6 = (1,−1) t1 + x1 − x2 ≥ 0

X6

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 + q2q3q4q5
z1

+
q1q3q

2
4q

3
5

z1z2
+ (1 + q3 + q3q4)

q1q4q
2
5

z2
+

(1 + q4 + q3q4) q1q5z1z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 0) t2+t3+t4+t5−x1 ≥ 0
v4 = (−1,−1) t1+t3+2t4+3t5−x1−

x2 ≥ 0
v5 = (0,−1) t1 + t4 + 2t5 − x2 ≥ 0
v6 = (1,−1) t1 + t5 + x1 − x2 ≥ 0
v7 = (2,−1) t1 + 2x1 − x2 ≥ 0
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ρ(Σ) polytope P superpotential W

X7

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 + q2q3z2
q1q5z1

+ q3q4q5
z1

+
q1q4q

2
5

z2
+ (1 + q4) q1q5z1z2

+
q1z

2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 1) t2 + t3− t1− t5−x1 +

x2 ≥ 0
v4 = (−1, 0) t3 + t4 + t5 − x1 ≥ 0
v5 = (0,−1) t1 + t4 + 2t5 − x2 ≥ 0
v6 = (1,−1) t1 + t5 + x1 − x2 ≥ 0
v7 = (2,−1) t1 + 2x1 − x2 ≥ 0

X8

v1 = (1, 0) x1 ≥ 0
(1 + q1)z1 + z2 + (1 +
q1q5q

2
6

q22q3
) q2q3q4q5q6z1

+
q1q3q

2
4q

3
5q

4
6

z21z2
+ (1 +

q3 +q3q4 +q3q4q5)
q1q4q

2
5q

3
6

z1z2
+(1+q4 +

q3q4 +q4q5 +q3q4q5 +q3q
2
4q5)

q1q5q
2
6

z2
+

(1 + q5 + q4q5 + q3q4q5) q1q6z1z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 0) t2 + t3 + t4 + t5 + t6 −

x1 ≥ 0
v4 = (−2,−1) t1+t3+2t4+3t5+4t6−

2x1 − x2 ≥ 0
v5 = (−1,−1) t1+t4+2t5+3t6−x1−

x2 ≥ 0
v6 = (0,−1) t1 + t5 + 2t6 − x2 ≥ 0
v7 = (1,−1) t1 + t6 + x1 − x2 ≥ 0
v8 = (2,−1) t1 + 2x1 − x2 ≥ 0

X9

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 +
q2q

2
3q4z2

q1q6z1
+ (1 +

q2) q3q4q5q6z1
+

q1q4q
2
5q

3
6

z1z2
+ (1 + q4 +

q4q5)
q1q5q

2
6

z2
+ (1 + q5 + q4q5) q1q6z1z2

+
q1z

2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 1) t2 +2t3 + t4− t1− t6−

x1 + x2 ≥ 0
v4 = (−1, 0) t3+t4+t5+t6−x1 ≥ 0
v5 = (−1,−1) t1+t4+2t5+3t6−x1−

x2 ≥ 0
v6 = (0,−1) t1 + t5 + 2t6 − x2 ≥ 0
v7 = (1,−1) t1 + t6 + x1 − x2 ≥ 0
v8 = (2,−1) t1 + 2x1 − x2 ≥ 0

X10

v1 = (1, 0) x1 ≥ 0

(1+q1)z1+z2+(1+
q1q5q

2
6

q22q3
) q2q3q4z2q1q6z1

+

q24q5z2
q1q3z21

+ (1 + q3) q4q5q6z1
+

q1q5q
2
6

z2
+

(1 + q5) q1q6z1z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 1) t2 + t3 + t4 − t1 − t6 −

x1 + x2 ≥ 0
v4 = (−2, 1) 2t4+t5−t1−t3−2x1+

x2 ≥ 0
v5 = (−1, 0) t4 + t5 + t6 − x1 ≥ 0
v6 = (0,−1) t1 + t5 + 2t6 − x2 ≥ 0
v7 = (1,−1) t1 + t6 + x1 − x2 ≥ 0
v8 = (2,−1) t1 + 2x1 − x2 ≥ 0

X11

v1 = (1, 0) x1 ≥ 0
(1 + q1 +

q2q
2
3q

3
4q5

q1q6q37
)z1 + (1 +

q2q
2
3q

3
4q5

q21q6q
3
7

+
q2q

2
3q

3
4q5

q1q6q37
)z2 +

q2q
2
3q

3
4q5z

2
2

q21q6q7z1
+

(1 + q2 + q2q3)
q3q

2
4q5z2

q1q7z1
+ (1 + q3 +

q2q3) q4q5q6q7z1
+

q1q5q
2
6q

3
7

z1z2
+ (1 + q5 +

q5q6)
q1q6q

2
7

z2
+ (1 + q6 + q5q6) q1q7z1z2

+
q1z

2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 2) t2+2t3+3t4+t5−2t1−

t6−3t7−x1 + 2x2 ≥ 0
v4 = (−1, 1) t3 +2t4 + t5− t1− t7−

x1 + x2 ≥ 0
v5 = (−1, 0) t4+t5+t6+t7−x1 ≥ 0
v6 = (−1,−1) t1+t5+2t6+3t7−x1−

x2 ≥ 0
v7 = (0,−1) t1 + t6 + 2t7 − x2 ≥ 0
v8 = (1,−1) t1 + t7 + x1 − x2 ≥ 0
v9 = (2,−1) t1 + 2x1 − x2 ≥ 0
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Figure 7. Polytopes defining the semi-Fano but non-Fano toric
surfaces. The numbers indicate the self-intersection numbers of
the toric divisors.
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