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Abstract. We prove a Frölicher-type inequality for a compact generalized

complex manifold M , and show that the equality holds if and only if M sat-
isfies the generalized ∂∂̄-Lemma. In particular, this gives a unified proof of

analogous results in the complex and symplectic cases.

1. Introduction

In [2], Angella and Tomassini proved the following deep and beautiful Frölicher-
type inequality for a compact complex manifold (M,J) ([2, Theorems A and B]):∑

p+q=k

dimCH
p,q
BC(M) +

∑
p+q=k

dimCH
p,q
A (M) ≥ 2 dimCH

k
dR(M ;C),(1)

where H•,•BC(M) and H•,•A (M) are the Bott-Chern and Aeppli cohomologies of M
respectively. In fact, (1) follows from a stronger inequality:

dimCH
p,q
BC(M) + dimCH

p,q
A (M) ≥ dimCH

p,q

∂̄
(M) + dimCH

p,q
∂ (M),(2)

by summing up over p+ q = k and applying the classical Frölicher inequality [7]:

dimCH
k
∂̄ (M) ≥ dimCH

k
dR(M ;C).

They also proved that the equality in (1) holds for all k ∈ N if and only if M
satisfies the ∂∂̄-Lemma, hence giving an elegant characterization of the validity of
the ∂∂̄-Lemma.

In a recent work [1], the same authors generalized their results to an algebraic and
more general setting. As a consequence, they obtained an analogous inequality for
generalized complex manifolds - a very interesting class of geometric structures first
introduced by Hitchin [10] and studied in depth by Gualtieri [9]. More precisely, for
a compact generalized complex manifold (M,J ) of real dimension 2n, they proved
the following inequality [1, Theorem 4]:

dimCGH
k
BC(M) + dimCGH

k
A(M) ≥ dimCGH

k
∂̄ (M) + dimCGH

k
∂ (M),(3)

where GHk
BC(M), GHk

A(M) and GHk
∂̄

(M) (and GHk
∂ (M)) denote the generalized

Bott-Chern, Aeppli and Dolbeault cohomologies of M respectively, and showed that
M satisfies the generalized ∂∂̄-Lemma if and only if the equality in (3) holds for all
k ∈ Z and the corresponding Hodge and Frölicher spectral sequences degenerate at
E1.

For a compact symplectic manifold (M,ω), their result specializes to the inequal-
ity [1, Theorem 3]:

dimCH
k
BC(M) + dimCH

k
A(M) ≥ 2 dimCH

k
dR(M ;C),(4)

1
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where H•BC(M) and H•A(M) are the symplectic versions of the Bott-Chern and
Aeppli cohomologies respectively, as defined by Tseng and Yau [12, 13], and the
equality in (4) holds for all k ∈ N if and only if M satisfies the ddΛ-Lemma - the
symplectic counterpart of the ∂∂̄-Lemma.

In this short note, using Hodge theory and a bigrading on differential forms
introduced by Cavalcanti [4], we give a different, and more geometric, proof of the
inequality (3) and obtain a stronger statement in the equality case:

Theorem 1.1. Let (M,J ) be a compact generalized complex manifold of real di-
mension 2n. Then, for every k ∈ [−n, n] ∩ Z, the following inequality between the
dimensions of the generalized Bott-Chern and the generalized Dolbeault cohomolo-
gies of M holds:

dimCGH
k
BC(M) ≥ dimCGH

k
∂̄ (M).(5)

Moreover, the equality in (5) holds for all k ∈ [−n, n]∩Z if and only if M satisfies
the generalized ∂∂̄-Lemma.

Remark 1.2. By using Hodge theory, we see that dimCGH
k
A(M) = dimCGH

k
BC(M)

and dimCGH
k
∂ (M) = dimCGH

k
∂̄

(M) (see Section 2.2 and Proposition 2.7), so the
inequality (5) we proved is in fact equivalent to (3). However, again because of
our use of Hodge theory, we are able to remove the condition that the Hodge and
Frölicher spectral sequences degenerate at E1 in proving the validity of the general-
ized ∂∂̄-Lemma when the equality holds.

Remark 1.3. As in [1], our results still hold when the generalized complex structure
is twisted by a 3-form H; we leave the straightforward generalization of our proofs
to the reader.

Before going into the details of the proof, let us explain what Theorem 1.1 means
in the two extreme cases. In the complex case, we have

Corollary 1.4. Let (M,J) be a compact complex manifold. Then, for every k ∈
[−n, n] ∩ Z, the following inequality holds:∑

p−q=k

dimCH
p,q
BC(M) ≥

∑
p−q=k

dimCH
p,q

∂̄
(M).(6)

Moreover, the equality in (6) holds for all k ∈ [−n, n]∩Z (or equivalently, dimCH
p,q
BC(M) =

dimCH
p,q

∂̄
(M) for all p, q ∈ N) if and only if M satisfies the ∂∂̄-Lemma.

Proof. When the generalized complex structure is an ordinary complex structure,
the generalized ∂∂̄-Lemma is equivalent to the ordinary ∂∂̄-Lemma. Also, we have

GHk
∂̄ (M) =

⊕
p−q=k

Hp,q

∂̄
(M), GHk

BC(M) =
⊕
p−q=k

Hp,q
BC(M).

So if the ∂∂̄-Lemma holds, we have dimCH
p,q
BC(M) = dimCH

p,q

∂̄
(M) for all p, q ∈ N

and hence equality in (6) holds for all k ∈ [−n, n] ∩ Z. Conversely, if the equality
holds for all k ∈ [−n, n] ∩ Z, then the ∂∂̄-Lemma holds by Theorem 1.1. �

Remark 1.5. The inequality (2) of Angella and Tomassini is more refined than
(6) above. This can be seen as follows: Conjugation and the Hodge star operator
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associated to a given Hermitian metric induce isomorphisms between cohomologies
which give the following equalities:

hp,qBC = hq,pBC = hn−p,n−qA = hn−q,n−pA ;

hp,q
∂̄

= hq,p
∂̄

= hn−p,n−q∂ = hn−q,n−p∂

(7)

for all p, q ∈ N, where hp,q] := dimCH
p,q
] (M) for ] ∈ {∂, ∂̄, A,BC}, so that (2) can

be rewritten as

hp,qBC + hn−q,n−pBC ≥ hp,q
∂̄

+ hn−q,n−p
∂̄

,

from which (6) follows by summing over p− q = k.
In retrospect, the fact that we have a stronger inequality (namely, (2)) in the

complex case is because there is a natural bigrading on differential forms; in contrast,
we only have an artificial bigrading on differential forms in the generalized complex
case (see Section 2.3).

In the symplectic case, we have

Corollary 1.6 (Theorem 4.4 in [1]). Let (M,ω) be a compact symplectic manifold.
Then, for every k ∈ N, the following inequality holds:

dimCH
k
BC(M) ≥ dimCH

k
dR(M).(8)

Moreover, the equality in (8) holds for all k ∈ N if and only if M satisfies the
ddΛ-Lemma.

Proof. When the generalized complex structure is an ordinary symplectic structure,
we have the isomorphisms

GHk
∂̄ (M) ∼= Hn−k

dR (M ;C), GHk
BC(M) ∼= Hn−k

BC (M), GHk
A(M) ∼= Hn−k

A (M).

Also, the generalized ∂∂̄-Lemma is equivalent to the ddΛ-Lemma. So the results
follow immediately from Theorem 1.1. �

Remark 1.7. The inequalities (4) and (8) are equivalent because the Hodge star
operator ∗ : Ωk(M)→ Ω2n−k(M) (associated to any compatible metric) induces an
isomorphism

Hk
BC(M) ∼= H2n−k

A (M),

while the Lefschetz operator induces another isomorphism

Ln−k : Hk
BC(M) ∼= H2n−k

BC (M),

(see [12]), so that in fact dimCH
k
BC(M) = dimCH

k
A(M) for any k ∈ N.

Remark 1.8. Notice that we have∑
p−q=k

dimCH
p,q
] (M) =

∑
p+q=n−k

dimCH
n−p,q
] (M),

for ] ∈ {∂̄, BC} and for any k ∈ [−n, n] ∩ Z. So from the point of view of mirror
symmetry, the inequalities (6) and (8) are mirror to each other.
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2. Basics of generalized complex geometry

In this section, we briefly review the notions and several basic results which we
will need in the proof of our main theorem. Basically we will follow the notations
in [4, 9].

2.1. Generalized Bott-Chern and Aeppli cohomologies and the general-
ized ∂∂̄-Lemma. Let M be a compact manifold of real dimension 2n. Recall that
a generalized almost complex structure on M is an endomorphism J ∈ End(T ⊕T ∗)
satisfying J 2 = −1.

The canonical line bundle Un of (M,J ) is defined as the complex pure spinor
line bundle Un ⊂ ∧•T ∗ ⊗ C annihilated by the i-eigenbundle L of J :

Un := {ϕ ∈ ∧•T ∗ ⊗ C | L · ϕ = 0} .

By putting Uk := ∧n−kL · Un for k ∈ [−n, n] ∩ Z, we have a decomposition

∧•T ∗ ⊗ C = U−n ⊕ · · · ⊕ Un,

which induces a Z-grading on differential forms. Indeed, the space Uk is the ik-
eigenbundle of J acting on the spin representation.

Consider the operators

∂ = πk+1 ◦ d : Uk → Uk+1,

∂̄ = πk−1 ◦ d : Uk → Uk−1,

where d is the exterior derivative and πk denotes the projection onto Uk. By [9,
Theorem 3.15], a generalized almost complex structure J is integrable, i.e. [L,L] ⊂
L, if and only if d = ∂ + ∂̄. From now on, we will assume that J is integrable so
that (M,J ) is a compact generalized complex manifold.

The property that d2 = 0 is equivalent to

∂2 = 0, ∂̄2 = 0, ∂∂̄ = −∂̄∂.

This in turn implies that the operator dJ : Uk → Uk+1 ⊕ Uk−1 defined by

dJ := −i(∂ − ∂̄)

satisfies

ddJ = −2i∂∂̄ : Uk → Uk.

Definition 2.1 ([4]). A generalized complex manifold (M,J ) is said to satisfy the
generalized ∂∂̄-Lemma (or equivalently, the ddJ -Lemma) on Uk if

ker(∂̄) ∩ im(∂) ∩ Uk = ker(∂) ∩ im(∂̄) ∩ Uk = im(∂∂̄) ∩ Uk.

We say (M,J ) satisfies the generalized ∂∂̄-Lemma if it satisfies the generalized
∂∂̄-Lemma on Uk for all k ∈ [−n, n] ∩ Z.

Definition 2.2. The generalized Bott-Chern, Aeppli and Dolbeault cohomologies
of (M,J ) are defined respectively as the following Z-graded algebras:

GH•∂(M) :=
ker ∂

im ∂
, GH•∂̄(M) :=

ker ∂̄

im ∂̄

and

GH•BC(M) :=
ker d

im ∂∂̄
, GH•A(M) :=

ker ∂∂̄

im ∂ + im ∂̄
.
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Remark 2.3. Since dJ := −i(∂− ∂̄), the definitions of the generalized Bott-Chern
and Aeppli cohomologies here coincide with that in [14].

The aim of this note is to investigate the relations between these cohomologies
and validity of the generalized ∂∂̄-Lemma.

Example 2.4. If the generalized complex structure is given by an ordinary complex
structure J on M , namely, if

J =

−J 0

0 J∗

 ,

then dJ is given by the dc operator defined by dc = −i(∂ − ∂̄), and the generalized
∂∂̄-Lemma is equivalent to the usual ∂∂̄-Lemma.

In this case, we have

Uk =
⊕
p−q=k

Ωp,q(M),

for k ∈ [−n, n]∩Z and the splitting d = ∂+∂̄ is exactly the usual Dolbeault splitting.
Hence we have

GHk
] (M) =

⊕
p−q=k

Hp,q
] (M),

for ] ∈ {∂, ∂̄, A,BC}.

Example 2.5. When the generalized complex structure J is an ordinary symplectic
structure ω, namely, when

J =

0 −ω−1

ω 0

 ,

the differential operator dJ is given by the symplectic adjoint dΛ = Λd− dΛ intro-
duced by Brylinski [3], where Λ is the interior product with the bivector −ω−1. The
generalized ∂∂̄-Lemma is equivalent to the ddΛ-Lemma.

In [4, Theorems 2.2 and 2.3], it was shown that the natural map

ϕ : Ωk(M)→ Un−k, ϕ(α) = eiωe
Λ
2iα

gives an isomorphism Ωk(M) ∼= Un−k satisfying

ϕ(dα) = ∂̄(ϕ(α)), ϕ(dΛα) = −2i∂(ϕ(α)).

This implies that we have the following isomorphisms

GHk
∂̄ (M) ∼= Hn−k

dR (M), GHk
∂ (M) ∼= Hn−k

dΛ (M),

GHk
BC(M) ∼= Hn−k

BC (M), GHk
A(M) ∼= Hn−k

A (M).

2.2. Generalized metric and Hodge theory. Since the exterior derivative com-
mutes with the conjugation C : Uk → U−k, the following diagram

Uk

∂
��

C // U−k

∂̄
��

Uk+1 C // U−k−1
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commutes. Hence conjugation gives rise to the isomorphisms:

GHk
∂ (M) ∼= GH−k

∂̄
(M), GHk

BC(M) ∼= GH−kBC(M), GHk
A(M) ∼= GH−kA (M),

(9)

for k ∈ [−n, n] ∩ Z.
On the other hand, recall that a generalized metric G on M is defined as a

self-adjoint orthogonal transformation G ∈ End(T ⊕ T ∗) such that 〈Gv, v〉 > 0 for
v ∈ T ⊕T ∗ \ {0}, where 〈·, ·〉 denotes the natural pairing on T ⊕T ∗. By choosing a
generalized metric G on (M,J ) compatible with the generalized complex structure
J (meaning that [G,J ] = 0), we can define the generalized Hodge star operator ∗G
as

∗Gα = (−1)|α|(n−1)τ · α,
where τ := e1 · · · en ∈ Clif(T ⊕ T ∗) and {ei} is an orthonormal basis of the +1-
eigenbundle of G. It is not hard to check that ∗G preserves the decomposition
Ω•(M) =

⊕n
k=−n U

k, i.e. ∗G maps Uk to Uk (cf. [4, Lemma 3.1]).

Now we define ∂∗ = −∗̄G∂∗̄−1
G and ∂̄∗ = −∗̄G∂̄∗̄−1

G , where ∗̄Gα := ∗Gᾱ and
consider the various Laplacian operators defined by

∆∂ = ∂∂∗ + ∂∗∂, ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄,

∆BC = (∂∂̄)(∂̄∗∂∗) + (∂̄∗∂∗)(∂∂̄) + (∂̄∗∂)(∂∗∂̄) + (∂∗∂̄)(∂̄∗∂) + ∂̄∗∂̄ + ∂∗∂,

∆A = (∂̄∗∂∗)(∂∂̄) + (∂∂̄)(∂̄∗∂∗) + (∂∂̄∗)(∂̄∂∗) + (∂̄∂∗)(∂∂̄∗) + ∂∂∗ + ∂̄∂̄∗.

Since these are all elliptic operators and GHk
] (M) ∼= ker ∆] for ] ∈ {∂, ∂̄, A,BC}

(cf. [11]), the cohomology groups in Definition 2.2 are all finite dimensional and
each cohomology class has a unique harmonic representative.

Lemma 2.6. We have the commutation relations

∗̄G∆∂ = ∆∂ ∗̄G, ∗̄G∆∂̄ = ∆∂̄ ∗̄G, ∗̄G∆BC = ∆A∗̄G.
In particular, for k ∈ [−n, n] ∩ Z, we have the following isomorphisms induced by
∗̄G:

GHk
∂̄ (M) ∼= GH−k

∂̄
(M), GHk

∂ (M) ∼= GH−k∂ (M), GHk
BC(M) ∼= GH−kA (M).

As a whole, we get the following equalities in dimensions:

Ghk∂̄ = Gh−k
∂̄

= Ghk∂ = Gh−k∂ ,

GhkBC = Gh−kA = GhkA = Gh−kBC ,

where we denote Ghk] := dimCGH
k
] (M) for ] ∈ {∂, ∂̄, A,BC}.

Proof. We have

(∂∂̄)(∂̄∗∂∗)∗̄G = ∗̄G(∂∗∂̄∗)(∂̄∂), (∂̄∗∂∗)(∂∂̄)∗̄G = ∗̄G(∂̄∂)(∂∗∂̄∗),

(∂̄∗∂)(∂∗∂̄)∗̄G = ∗̄G(∂̄∂∗)(∂∂̄∗), (∂∗∂̄)(∂̄∗∂)∗̄G = ∗̄G(∂∂̄∗)(∂̄∂∗),

and
∂̄∗∂̄∗̄G = ∗̄G∂̄∂̄∗, ∂∗∂∗̄G = ∗̄G∂∂∗,
∂̄∂̄∗∗̄G = ∗̄G∂̄∗∂̄, ∂∂∗∗̄G = ∗̄G∂∗∂.

Also ∂∂̄ = −∂̄∂, so we have ∂∗∂̄∗ = −∂̄∗∂∗. It is now straightforward to see that
the desired commutation relations

∗̄G∆∂ = ∆∂ ∗̄G, ∗̄G∆∂̄ = ∆∂̄ ∗̄G, ∗̄G∆BC = ∆A∗̄G
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hold. �

Together with the isomorphisms (9) induced by conjugation, we obtain the fol-
lowing equalities between dimensions of cohomologies, analogous to those (7) in the
complex case:

Proposition 2.7. For a compact generalized complex manifold (M,J ) of real di-
mension 2n, we have

Ghk∂̄ = Gh−k
∂̄

= Ghk∂ = Gh−k∂ ,

GhkBC = Gh−kA = GhkA = Gh−kBC ,
(10)

k ∈ [−n, n] ∩ Z.

2.3. A bigrading on differential forms. To analyze the equality case of our
inequality, we need one more ingredient, namely, a bigrading on the complex of
differential forms introduced by Cavalcanti [4, Section 5], who mimicked the con-
structions of Goodwillie [8] and Brylinski [3].

We consider a formal element β of degree 2, and the canonical complex A•,•
defined by

Ap,q = Up−qβq

for p, q ∈ N. We extend the exterior derivative d by

dβ(αβk) = (∂α)βk + (∂̄α)βk+1.

Then dβ splits into two components

∂β : Ap,q → Ap+1,q, ∂̄β : Ap,q → Ap,q+1.

Definition 2.8. A generalized complex manifold is said to satisfy the ∂β ∂̄β-Lemma
on Ap,q if

ker(∂̄β) ∩ Im(∂β) ∩ Ap,q = ker(∂β) ∩ Im(∂̄β) ∩ Ap,q = Im(∂β ∂̄β) ∩ Ap,q.

The following lemma is immediate:

Lemma 2.9. The generalized ∂∂̄-Lemma holds if and only if the ∂β ∂̄β-Lemma
holds on Ap,q for all p, q ∈ N.

We can also define the generalized Bott-Chern, Aeppli and Dolbeault cohomolo-
gies with respect to the operators ∂β , ∂̄β in exactly the same way as in Definition
2.2. Recall that the differential complex Ω•(M) sits inside A•,• via the map ([4,
Section 5])

τ : Uk →
⊕
p−q=k

Ap,q =
⊕
p−q=k

Up−qβq

defined by

τ(α) =
∑
q∈Z

αβq.

The sum is in fact finite since one can only write k in the form p − q in finitely
many ways. One can check that

τ(∂α) = ∂βτ(α), τ(∂̄α) = ∂̄βτ(α).

Since each piece Ap,q is nothing but (isomorphic to) Up−q, we obtain the isomor-
phisms

Hp,q
]β

(M) ∼= GHp−q
] (M),
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for ] ∈ {∂, ∂̄, BC,A}.
Now let Ak :=

⊕
p+q=kAp,q. The bigrading naturally gives the bounded filtra-

tions:

F pA :=
⊕
q

⊕
r≥p

Ar,q,

F pAm :=
⊕
r≥p

Ar,m−r,

from which we obtain the canonical spectral sequence, which converges to the coho-
mology of dβ . The first term of the spectral sequence is given by Ep,q1 = GHp−q

∂̄
(M).

If the generalized ∂∂̄-Lemma holds, then this spectral sequence degenerates at E1;
conversely, if the canonical spectral sequence degenerates at E1 and the decomposi-
tion of Ω•(M) by Uk induces a decomposition in cohomology, then the generalized
∂∂̄-Lemma holds ([6]; for a more detailed discussion, see [4, Section 5]). This is a
characterization of the generalized ∂∂̄-Lemma in terms of cohomological decompo-
sition.

3. Proof of Theorem 1.1

We are now ready to prove our main results.

Theorem 3.1. For a compact generalized complex manifold (M,J ) of real dimen-
sion 2n, we have the inequality

GhkBC ≥ Ghk∂̄
for all k ∈ [−n, n] ∩ Z.

Proof. We follow the same strategy as in [2], namely, we define

A• :=
im ∂̄ ∩ im ∂

im ∂∂̄
, B• :=

ker ∂̄ ∩ im ∂

im ∂∂̄
, C• :=

ker ∂∂̄

ker ∂̄ + im ∂
,

and

D• :=
im ∂̄ ∩ ker ∂

im ∂∂̄
, E• :=

ker ∂∂̄

ker ∂ + im ∂̄
, F • :=

ker ∂∂̄

ker ∂̄ + ker ∂
.

Note that conjugation induces the isomorphisms

Dk ∼= B−k, Ek ∼= C−k,

and hence gives the equalities

dk = b−k, ek = c−k.

On the other hand, as in Varouchas [15], we have the following exact sequences:

0→ A• → B• → GH•∂̄(M)→ GH•A(M)→ C• → 0

and
0→ D• → GH•BC(M)→ GH•∂̄(M)→ E• → F • → 0.

Each of the cohomologies is finite dimensional and, in particular, we have the
following equalities between dimensions

GhkA = Ghk∂̄ + ak + ck − bk,

GhkBC = Ghk∂̄ + dk + fk − ek,
for any k ∈ [−n, n] ∩ Z.
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Using these equalities together with (10), we have

2GhkBC = GhkBC +Gh−kA

= Ghk∂̄ + dk + fk − ek +Gh−k
∂̄

+ a−k + c−k − b−k

= Ghk∂̄ +Gh−k
∂̄

+ fk + a−k

≥ Ghk∂̄ +Gh−k
∂̄

= 2Ghk∂̄ .

�

Lemma 3.2. For fixed p, q ≥ 0, the map

ι∗ : Hp,q
BCβ

(M)→ Hp,q

∂̄β
(M)

induced by inclusion is injective if and only if (M,J ) satisfies the ∂β ∂̄β-Lemma.

Proof. Let [α]BCβ ∈ H
p,q
BCβ

(M) with [α]∂̄β = 0. Then ι∗ is injective if and only if

[α]BCβ = 0, if and only if α = ∂β ∂̄βγ for some γ. That is, for any α ∈ ker(∂) ∩
Im(∂̄) ∩Ap,q, we have α ∈ Im(∂β ∂̄β), which is just the ∂β ∂̄β-Lemma on Ap,q. �

Theorem 3.3. On a compact generalized complex manifold (M,J ) of real dimen-
sion 2n, the equality

GhkBC = Ghk∂̄
holds for all k ∈ [−n, n] ∩ Z if and only if M satisfies the generalized ∂∂̄-Lemma.

Proof. If the generalized ∂∂̄-Lemma holds, then the inclusion induces an isomor-
phism GHk

BC(M) ∼= GHk
∂̄

(M), and hence GhkBC = Ghk
∂̄

for every k ∈ [−n, n] ∩ Z.
To prove the converse, we make use of the bigrading introduced in Section 2.3;

similar arguments were used in [5]. We first fix k. Then, for any p, q ∈ N such that
p− q = k, we define the following maps

φp,q+ : Hp,q
BCβ

(M)→ Hp,q
∂β

(M),

φp,q− : Hp,q
BCβ

(M)→ Hp,q

∂̄β
(M),

where φp,q± are induced by inclusions.

We claim that, for fixed p, q ≥ 0, if φp,q+ is injective, then φp−1,q
− is surjective

and, if φp,q− is injective, then φp,q−1
+ is surjective. To prove the first assertion, we

suppose that φp,q+ is injective. Then the ∂β ∂̄β-Lemma holds on Ap,q. Pick any

α ∈ ker(∂̄β) ∩ Ap−1,q. Then we have

∂βα ∈ im ∂β ∩ ker ∂̄β ∩ Ap,q = im ∂β ∂̄β ∩ Ap,q.

Hence there exists γ ∈ Ap−1,q−1 such that ∂βα = ∂β ∂̄βγ. Therefore, α − ∂̄βγ ∈
ker ∂β ∩ ker ∂̄β ∩ Ap−1,q and

φp−1,q
− ([α− ∂̄βγ]BCβ ) = [α− ∂̄βγ]∂̄β = [α]∂̄β ,

which proves the surjectivity of φp−1,q
− . The second assertion can be proved in

exactly the same way.
Now suppose that GhkBC = Ghk

∂̄
. Then we have

hp,q
BCβ

= GhkBC = Ghk∂̄ = hp,q
∂̄β

= hp,q
∂β
.

We need to show that the map φp,q− is an isomorphism for all p, q ≥ 0, and we will
prove this by contradiction.
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So suppose that φr,s− is not an isomorphism for some r, s ≥ 0. Then φr,s− is neither
injective nor surjective by our dimension assumption. Since φr,s− is not surjective,

our claim above shows that φr+1,s
+ is not injective and hence not surjective. Apply-

ing the claim again, we see that φr+1,s+1
− is again neither injective nor surjective.

By induction, this implies that φr+j,s+j− cannot be an isomorphism for all j ≥ 0.
However, this is impossible since Hp,q

]β
(M) is trivial for p, q � 0.

We thus conclude that φp,q− is an isomorphism for all p, q ≥ 0. Therefore, the

∂β ∂̄β-Lemma holds on Ap,q for all p, q ≥ 0, which is equivalent to the validity of
the generalized ∂∂̄-Lemma by Lemma 2.9. �
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pactes, Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, Lecture
Notes in Math., vol. 1198, Springer, Berlin, 1986, pp. 233–243. MR 874775 (88h:32007)

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong

Kong

E-mail address: kwchan@math.cuhk.edu.hk

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong

Kong
E-mail address: yhsuen@math.cuhk.edu.hk

http://arxiv.org/abs/1403.2298
http://arxiv.org/abs/1311.4667
http://arxiv.org/abs/0709.3528

	1. Introduction
	Acknowledgment
	2. Basics of generalized complex geometry
	2.1. Generalized Bott-Chern and Aeppli cohomologies and the generalized -Lemma
	2.2. Generalized metric and Hodge theory
	2.3. A bigrading on differential forms

	3. Proof of Theorem 1.1
	References

