Suggested Solution to Homework 2

Yu Mei[†]

P46, 7. If (X, d) is complete, show that (X, \tilde{d}) , where $\tilde{d} = d/(1+d)$, is complete.

Proof. Let (X,d) be a complete metric space. Then, for $\tilde{d}=d/(1+d)$, it is clear that \tilde{d} is nonnegative. Moreover, $\tilde{d}(x,y)=\frac{d(x,y)}{1+d(x,y)}=0$ if and only if d(x,y)=0, that is x=y, since d is a metric. Now, we show that \tilde{d} satisfies the triangle inequality, i.e.

$$\tilde{d}(x,y) \le \tilde{d}(x,z) + \tilde{d}(z,y), \quad \forall x, y, z \in X.$$

Since d is a metric, then $d(x,y) \le d(x,z) + d(z,y)$. Note that the function $f(t) = \frac{t}{1+t}$ is increasing on $[0,\infty)$. Therefore,

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)} \le \frac{d(x,z)}{1 + d(x,z)} + \frac{d(x,z)}{1 + d(x,z)} = \tilde{d}(x,z) + \tilde{d}(z,y).$$

It suffices to show that (X, \tilde{d}) is complete. Let (x_n) is a Cauchy sequence in (X, \tilde{d}) . Then, $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. for all m, n > N,

$$\tilde{d}(x_n, x_m) = \frac{d(x_n, x_m)}{1 + d(x_n, x_m)} < \frac{\epsilon}{1 + \epsilon}, \tag{*}$$

which implies

$$d(x_n, x_m) < \epsilon.$$

Thus, (x_n) is a Cauchy sequence in (X, d).

By the completeness of (X, d), there exists a $x \in X$ such that $d(x_n, x) \to 0$ as $n \to +\infty$. That is, $\exists N' \in \mathbb{N}$ s.t. for all m > N', $d(x_m, x) < \epsilon$.

Therefore, for all $n, m > \max\{N, N'\}$,

$$\tilde{d}(x_n, x) \le \tilde{d}(x_n, x_m) + \tilde{d}(x_m, x) < \frac{\epsilon}{1 + \epsilon} + \epsilon < 2\epsilon.$$

So, $\tilde{d}(x_n, x) \to 0$ as $n \to +\infty$. We conclude that (X, \tilde{d}) is complete.

P46, 8. Show that in Prob. 7, completeness of (X, \tilde{d}) implies completeness of (X, d).

Proof. Assume (X, \tilde{d}) is complete. Let (x_n) by a Cauchy sequence in (X, d). Then $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. $\forall n, m > N \ d(x_n, x_m) < \epsilon$. It yields that

$$\tilde{d}(x_n, x_m) = \frac{d(x_n, x_m)}{1 + d(x_n, x_m)} < \frac{\epsilon}{1 + \epsilon} < \epsilon.$$

Thus, (x_n) is a Cauchy sequence in (X, \tilde{d}) .

By the completeness of \tilde{d} , there exists a $x \in X$ such that $\tilde{d}(x_n, x) \to 0$ as $n \to +\infty$. That is, $\exists N' \in \mathbb{N}$ s.t. $\forall m > N', \, \tilde{d}(x_m, x) < \frac{\epsilon}{1 + \epsilon}$. Therefore, for all $n, m > \max\{N, N'\}$,

$$d(x_n, x) < d(x_n, x_m) + d(x_m, x) = \frac{\tilde{d}(x_n, x_m)}{1 - \tilde{d}(x_n, x_m)} + \frac{\tilde{d}(x_m, x)}{1 - \tilde{d}(x_m, x)} < 2 \frac{\frac{\epsilon}{1 + \epsilon}}{1 - \frac{\epsilon}{1 + \epsilon}} = 2\epsilon.$$

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

So, $d(x_n, x) \to 0$ as $n \to +\infty$, which implies the completeness of (X, d).

P46, **14** Does

$$d(x,y) = \int_{a}^{b} |x(t) - y(t)| dt$$

define a metric or pseudometric on X if X is (i) the set of all real-valued continuous functions on [a, b], (ii) the set of all real-valued Riemann integrable functions on [a, b]?

Proof. For $d(x,y) = \int_a^b |x(t) - y(t)| dt$, it follows from the properties of Riemann integral that, whether X be the set of all real-valued contions or Riemann integrable functions on [a,b],

(a)
$$d(x,y) = \int_a^b |x(t) - y(t)| dt \ge 0$$
, $d(x,x) = \int_a^b |x(t) - x(t)| dt = 0$, $\forall x, y \in X$;

(b)
$$d(x,y) = \int_a^b |x(t) - y(t)| dt = \int_a^b |y(t) - x(t)| dt = d(y,x), \quad \forall x, y \in X;$$

(c)
$$d(x,y) = \int_a^b |x(t) - y(t)| dt \le \int_a^b |x(t) - z(t)| dt + \int_a^b |z(t) - y(t)| dt = d(x,z) + d(z,y), \quad \forall x, y, z \in X.$$

However,

(i) If X = C[a, b] be the set of all real-valued continous functions on [a, b], then d(x, y) = 0 yields that x = y. Indeed, suppose not, that is, there exists at least a point $t_0 \in [a, b]$ such that $x(t_0) \neq y(t_0)$, then there exists an interval $(t_0 - \delta, t_0 + \delta)$ such that $|x(t_0) - y(t_0)| > 0$ since the function |x(t) - y(t)| is continous. Therefore,

$$d(x,y) = \int_0^t |x(t) - y(t)| dt \ge \int_{t_0 - \delta}^{t_0 + \delta} |x(t) - y(t)| dt > 0,$$

which is a contradiction!

(ii) If X = R[a, b] be the set of all real-valued Riemann integrable functions on [a, b]. Then d(x, y) = 0 can not imply x = y. For example, define

$$x(t) = \begin{cases} 1, x \in [a, \frac{a+b}{2}], \\ 0, x \in (\frac{a+b}{2}, b]. \end{cases} \qquad y(t) = \begin{cases} 1, x \in [a, \frac{a+b}{2}), \\ 0, x \in [\frac{a+b}{2}, b]. \end{cases}$$

It is clear that $x, y \in R[a, b]$ and $d(x, y) = \int_a^b |x(t) - y(t)| = 0$. But $x(\frac{a+b}{2}) = 1$, $y(\frac{a+b}{2}) = 0$. They are not equal at the point $t = \frac{a+b}{2}$.

Therefore, we conclude that

- (i) d is a metric on C[a, b].
- (ii) d is only a pseduometric on R[a, b].