
Syx Pek Total Positivity Lecture #7

In this week, we study the interplay between total positivity and conjugacy classes of groups. First,
let us recall the abstract Jordan decomposition.

Definition 7.1. Let G be a connected complex reductive group and g ∈ G. Then,

• the element g is semisimple if for all representations (ρ, V ) of G such that ρ(g) ∈ Aut(V ) is
diagonalizable,

• the element g is unipotent if for all representations (ρ, V ) of G such that ρ(g) ∈ Aut(V ) is
unipotent.

Theorem 7.2 (Abstract Jordan Decomposition). Let G be a connected complex reductive group and
g ∈ G. Then, there exists an unique pair of elements gs, gu ∈ G such that

1. the element gs is semisimple,

2. the element gu is unipotent,

3. we can express g as g = gsgu = gugs.

Example 7.3. Let us illustrate this example in G = GLn. This is just the Jordan Canonical Form.
For any matrix M ∈ GLn(C), we know that it is conjugate to

M ∼=



J1 0 0 . . . 0 0
0 J2 0 . . . 0 0
0 0 J3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Jk−1 0
0 0 0 . . . 0 Jk


where Jk are the Jordan blocks. But every Jordan block

Ji ∼=



λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


=



λ 0 0 . . . 0 0
0 λ 0 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 0
0 0 0 . . . 0 λ





1 λ−1 0 . . . 0 0
0 1 λ−1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 λ−1

0 0 0 . . . 0 1


as a product of a semisimple part and a unipotent element.

Example 7.4. We also have that elements in T are semisimple and elements in U± are unipotent.
Moreover, over C, any semisimple element in (connected) G is conjugate to some element in T by an
element of W = N(T )/T and any unipotent element is conjugate to some element in U±.

Definition 7.5. We also can define the Steinberg map St : G → G//G ∼= T/W where G//H is the
GIT quotient by sending g to the conjugacy class of gs (as Theorem 7.2).



Next, we can define regular elements.

Lemma 7.6. Let g ∈ G be an element, then the following are equivalent.

• The centralizer dim CG(g) = rk(G),

• The centralizer dim CG(g) is minimal,

Proof. See [Humphreys’ Conjugacy Classes in Semisimple Algebraic Groups §1.6, 2.3]

Definition 7.7. An element g ∈ G satisfying any of the properties in Theorem 7.6 is said to be
regular.

Example 7.8. For any element t ∈ T , t is regular if and only if α(t) ̸= 1 for all roots α. For
any element u ∈ U−, if the map γ in Lemma 6.1 has all its coordinates non-zero. In particular, for
G = GLn, where

t =


a1 0 ... 0
0 a2 ... 0
...

...
. . .

...
0 0 ... an


we require ai = aj if and only if i = j. Similarly,

t =


1 b1 ... ∗
0 1 ... ∗
...

...
. . .

...
0 0 ... bn−1

0 0 ... 1


we require bi ̸= 0 for all i ∈ {1, 2, ..., n− 1}.
Theorem 7.9. The Steinberg map is a well-defined bijection from the regular conjugacy classes (con-
jugacy classes of regular elements) to the semisimple conjugacy classes.

Proof. See [Humphreys’ Conjugacy Classes in Semisimple Algebraic Groups §4.10]

Theorem 7.10. For any connected reductive group, there is a unique regular unipotent conjugacy
class.

Proof. [Humphreys’ Conjugacy Classes in Semisimple Algebraic Groups §4.5] shows that such an
element must exist, while [Humphreys’ Conjugacy Classes in Semisimple Algebraic Groups §4.6] shows
that all regular unipotent elements are conjugate to one another.

Definition 7.11. Let g ∈ G≥0 be an element. We say that g is oscillatary if gm ∈ G>0 for some
m ∈ Z>0. Moreover, we denote the set of oscillatary elements in G≥0 as Gosc

≥0 .

To understand more precisely what oscillatary elements are, we would have to define the notion of
“support” of an element in the Weyl group.

Theorem 7.12. Let w ∈ W be an element in the Weyl group. Moreover, let s be a simple reflection
appearing in some reduced expression of w. Then, for any reduced expression of w, s would occur.

Proof. This is as the only relations to be applied are braid relations. (Quadratic relations would
reduce the length, contradicting the minimality of the reduced expression) However, braid relations
do not change the occurence of simple reflections.

Remark 7.13. For any w ∈ W as the above theorem, we define supp(s) to be the set of simple
reflections occuring in any (equivalently all) reduced expressions of w.



Theorem 7.14. The set of oscillatory elements can be decomposed as

Gosc
≥0 =

⊔
u,v∈W

supp(u)=supp(v)=I

Gu,v,>0

Proof. Let u, v ∈ W and g ∈ Gu,v,>0. Then,

g2 ∈ Gu,v,>0Gu,v,>0

= Gu∗u,v∗v,>0

where ∗ is the monoidal product. We denote u∗n as u∗n−1 ∗ u when n > 1 and u when n = 1. Then,
we have

gn ∈ Gu∗n,v∗n,>0.

Here, we also note that supp(α ∗ β) = supp(α) ∪ supp(β). Hence, supp(u∗n) = supp(u) and similarly
supp(v∗n) = supp(v). Now, we further suppose that g is oscillatary with gn ∈ G>0 = Gw0,w0,>0. Then,

supp(u) = supp(v) = supp(w0) = I

where w0 is the longest element, and thus would consist of all the simple reflections.
Conversely, there exists an m ∈ Z≥0 such that for any u satisfying supp(u) = I, then u∗m = w0. Thus,
for any g ∈ Gu,v,>0, g

m ∈ Gw0,w0,>0 = G>0.

7.1 Oscillatory Decomposition Lemma

The next lemma pertains to a decomposition of oscillatory elements.

Lemma 7.15 (Oscillatory Decomposition). Let σ ∈ Gosc
≥0 be an oscillatory element. Then, there exists

unique u ∈ U−
>0, u

′ ∈ U+
>0 and t ∈ T>0, such that σu = uu′t. Moreover, for any simple root α, α(t) > 1.

Remark 7.16. The proof of this statement relies on the theory of Canonical Basis, as well as the flag
variety, and would be deferred to a later part in the course.

Remark 7.17. It is an open question to determine if such a decomposition can hold over a general
semifield k.

Example 7.18. Let us illustrate Theorem 7.15 in the case where G = GL2 and a special choice of
oscillatory element.
We note that the elements in the torus of the form{(

a 0
0 b

) ∣∣∣∣ a > b > 0

}
are oscillatory elements. (The condition a > b is such that the only simple root α acting on this
element would give us a/b > 1.)
Then, if we pick

u−1 =

(
1 0
c 1

)
∈ U−

>0

, where c > 0, we have

u−1tu =

(
1 0
c 1

)(
a 0
0 b

)(
1 0
−c 1

)
=

(
1 0

c(1− b
a
) 1

)(
a 0
0 b

)
∈ U−

>0T>0



For the rest of this lecture, we shall see various applications of this lemma.
We shall denoteGreg (resp. Guni orGreg, s.s) as the set of regular (resp. unipotent or regular semisimple)
elements in G.

Theorem 7.19. Let w1, w2 ∈ W . We have that

1. each totally positive cell Gw1,w2,>0 in G contains a regular semisimple element. (i.e. Gw1,w2,>0 ∩
Greg, s.s ̸= ∅.)

2. the totally positive cell Gw1,w2,>0 lies in Greg, s.s if and only if supp(w1) = supp(w2) = I.

3. the decomposition

Guni ∩G≥0 =
⊔

u,v∈W
supp(u) ∩ supp(v)=∅

U+
u,>0U

−
w2,>0.

Proof. Let supp(wi) = Ji for i ∈ {1, 2}.
Step 1: We reduce to the case where J1 ∩ J2 = ∅.
Let k = J1∩J2. The idea here is that we have the “overlap” can be encapsulated in the Levi subgroup
corresponding to k, Lk. Thus, for any σ = u1tu2 where u1 ∈ U−

w1,>0, t ∈ T>0 and u2 ∈ U+
w2,>0, we will

be able to factor

u1 = u′′
1u

′
1 such that

u′
1 ∈ U− ∩ Lk

u′′
1 ∈ U− ∩Ru(P

−
k )

where Pk is the parabolic subgroup corresponding to k and Ru(H) refers to the unipotent radical of
H. Similarly,

u2 = u′
2u

′′
2 such that

u′
2 ∈ U+ ∩ Lk

u′′
2 ∈ U+ ∩Ru(P

+
k )

But, we have that u′
1tu

′
2 is not just an element of Lk but an oscillatory element of (Lk)≥0. Hence, by

Theorem 7.15, we have u− ∈ U−
k,>0, u

+ ∈ U+
k,>0 and t′ ∈ T≥0 satisfying

(u′
1tu

′
2)u

− = u−u+t′

(u′
1tu

′
2) = u−u+t′(u−)−1

αi(t
′) > 1 for all i ∈ k.

The second line here shows that after conjugation by u− we are only left with the positive part. Thus,

(u−)−1σu− = (u−)−1u1tu2u
−

= (u−)−1u′′
1u

′
1tu

′
2u

′′
2u

−

∈ (LJ1 ∩Ru(P
−
k ))((u−)−1u′

1tu
′
2u

−)(LJ2 ∩Ru(P
+
k ))

= (LJ1 ∩Ru(P
−
k ))(u+t′)(LJ2 ∩Ru(P

+
k ))

The upshot is we can find corresponding changes for u1, u2 when we change t to t′.
Step 2: In this step we specify t such that the t′ constructed from Step 1 satisfy αi(t

′) > 1 for i ∈ I \k.
This is possible as (LJ1 ∩ Ru(P

−
k )) and (LJ2 ∩ Ru(P

+
k )) commute with conjugation of the centralizer

of Lk. In particular, this means that t′ is regular semisimple in T . Thus, there exists a σ such that it
can be conjugated to yield t′, a regular semisimple element. Hence, part (1) is shown.



Step 3: Next we shall show part (2).
If supp(w1) = supp(w2) = I, then by Theorem 7.15, we have Gw1,w2,>0 ⊆ Greg, s.s

≥0 . Conversely, if k ̸= I,
then there exists σ such that the t′ constructed in Step 1 satisfy αi(t

′) ≤ 1 for i ∈ k. But this means
that the elements in (LJ1 ∩Ru(P

−
k ))(u+t′)(LJ2 ∩Ru(P

+
k )) are not regular semisimple, which contradict

our assumptions on σ.

The proof of part (3) is deferred to the following lecture.

Remark 7.20. For part (2) in Theorem 7.19, this can be relaxed to Gw1,w2,>0 lies in Greg if and only if
supp(w1) = I or supp(w2) = I. This is the main result of [He-Lusztig Total Positivity and Conjugacy
Classes].

Corollary 7.21. Let G̊reg, s.s
≥0 (resp. G̊reg

≥0) be the union of all the cells of G≥0 lying entirely in Greg, s.s

(resp. Greg). Then, G̊reg, s.s
≥0 = Gosc

≥0 is an open subgroup of G≥0 and G̊reg
≥0 is also an open subgroup of

G≥0.
Moreover, they are also two-sided ideals.

G≥0G̊
reg, s.s
≥0 , G̊reg, s.s

≥0 G≥0 ⊆ G̊reg, s.s
≥0

G≥0G̊
reg
≥0, G̊

reg
≥0G≥0 ⊆ G̊reg

≥0
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