
MATH6032 - Topics in Algebra II - 2021/22

Total positivity - Lecture 11

Lecturer: Prof.Xuhua He

Institute: The Chinese University of Hong Kong

Date: 2022/3/30



Today we discuss the total positivity on flag manifolds.
Assume that G is a reductive group. Fix a pinning (G,B+, B−, T = B+ ∩ B−, xi, yi). Let G≥0 =

⟨xi(a), yi(a), ti(a)⟩i∈I,a>0 be the totally nonnegative submonoid of G. We have the decomposition into cells

G≥0 =
∐

w1,w2∈W
Gw1,w2,>0

where
Gw1,w2,>0

∼= Rl(w1)+l(w2)+rankG
>0

and the closure relation
Gw1,w2,>0 =

∐
w′

1≤w1,w′
2≤w2

Gw′
1,w

′
2,>0

Let B = G/B+ be the (full) flag variety. And PK = G/P+
K be the notation for the partial flag variety.

Definition 1

♣

The totally positive flags are
B>0 = U−

>0 ·B
+

and the totally nonegative flags B≥0 are the closure of B>0.

In general, if G is a Kac-moody group, then U>0 does not make sense. B≥0 is defined to be the closure of
U−
≥0 ·B+ in B.

Note that in a reductive group G, U−
≥0 is the closure of U−

>0. So U−
≥0 · B+ is contained in the closure of

U−
>0 ·B+. So when G is a reductive group, the two definitions of B≥0 coincide.

More on Kac-Moody groups
If G is a reductive group, the Weyl group W has a longest element w0 and U−

>0 is defined to be U−
w0,>0. In

general , W is an infinite group and there is no longest element. So U−
>0 can not be defined. Another way is to

use representation theory (for simply laced group via canonical basis).
Let G be a reductive group, Vλ be a highest weight representation, and vλ ∈ β be the canonical basis. For

u ∈ U−, write u · vλ =
∑

b∈β cb ∈ Vλ. Here cb ∈ C.
Fact u ∈ U−

>0 ⇔ cb > 0,∀b ∈ β.

However, if G is a Kac-Moody group, u ∈ U−
≥0, then there are only finitely many b ∈ β, s.t.cb ̸= 0, as u

is a finite product of yi(> 0). In particular, one never reach the lowest weight vector.
Example 1 Let G = GL2,B = G/B+ ∼= P1. B+ corresponds to the point [1 : 0] ∈ P1. So

yi(a) ·B+ =

(
1 0

a 1

)
·

[
1

0

]
=

[
1

a

]
B>0 = {[1 : a], 0 < a <∞} is an open half circle in RP1 and B≥0 = {[1 : a], 0 ≤ a ≤ ∞} is the closed half
circle.

And a cell decomposition is given
B>0 = R>0

B≥0 = R>0

∐
{0}

∐
{∞}



Also xi(a) ·B− =

(
1 a

0 1

)
·

[
0

1

]
=

[
a

1

]
. Hence we have a duality U−

>0 ·B+ = u+>0 ·B−.

General theory
Let G be a Kac-Moody group. Recall that we have the Bruhat decomposition

G =
∐
w∈W

B+wB+

.
Then B =

∐
w∈W B̊w where B̊w = B+wB+/B+ is a schubert cell. And schubert variety Bw := Zaraski

closure of B̊w.
we have Bw =

∐
w′≤w B̊w′ .

In particular B =
∐

w∈W B̊w is a cellular decomposition of B and B̊w ∼= Cl(w).
Back to G = GL2 case, W = S2 = {1, s}. B̊s ≃ C. B̊1 ≃ pt.
Also B =

∐
u∈W B̊u where B̊u = B−uB+/B+ is of codimension l(u). Let Bu be the Zaraski closure of

B̊u. We have the Birkhoff decomposition Bu =
∐

u′≥u B̊u
′ .

Remark In the special case when G is a reductive group. We have B− = ẇ0B
+ẇ0

−1 = ẇ0B
+ẇ0, so

B̊u = B−uB+/B+ = ẇ0B
+ẇ0uB

+/B+ = ẇ0
˚Bw0u.

Here dimB = l(w0), dim ˚Bw0u = l(w0)− l(u). So B̊u is of codim l(u).
u′ ≥ u⇔ w0u

′ ≤ w0u implies that the closure relation on B̊u and ˚Bw0u are decided by each other.

Definition 2

♣

The open Richardson variety
˚Bu,w = B̊u ∩ B̊w

And the closed Richardson variety
Bu,w = Bu ∩ Bw

Remark In the cohomology ring H∗(B), we have the basis given by [Bw0w] = [Bw]. And the multiplication is
given by

[Bu] ∪ [Bw] = [Bu,w].

Here the key feature of Richardson variety is that it is the intersection of B+-orbits with B−-orbits. (and
Lie(B+) + Lie(B−) = Lie(G)) and such intersection is a transversal intersection

Proposition 1

♠Let u,w ∈W . The following are equivalent: (1) ˚Bu,w ̸= ∅; (2) Bu,w ̸= ∅; (3) u ⩽ w.

Proof (1)⇒ (2): Obvious since Bu,w ⊃ ˚Bu,w.
(2)⇒ (3):Bu,w is closed in B as Bu and Bw is closed. Also Bu,w is stable under the action of T as Bu

and Bw is. If Bu,w ̸= ∅, then it contains a T -fixed point (limit of T∞ of a point). The T -fixed point in B are
{v ·B+;w ∈W}/(This can be proved from Bruhat decomposition).

[Passing to T -fixed point is a common trick in geometric representation theory as T -fixed points are often
discrete and admit combinatorial description].

Suppose v ·B+ ∈ ˚Bu,w is a fixed point. Then v ·B+ ∈ Bw so B̊v = B+v ·B+/B+ ⊆ Bw and v ≤ w.
Also v ·B+ ∈ Bu, so B̊v = B−v ·B+/B+ ⊆ Bu and v ≥ w. Therefore, u ≤ v ≤ w and u ≤ w.
(3)⇒ (1): There is a simple proof by studying the root subgroups, e.g.Kumar’s book[2]. We won’t follow

this proof. Instead, we will give a structural description of ˚Bu,w when u ≤ w. We will follow [1] and [3]. ■
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Before that, we come back to the G = GL2 case. Here W = S2, {(v, w); v ≤ w} = {(1, s), (1, 1), (s, s)}.

B̊1,1 = B̊1 ∩ B̊1 = B+ = [1 : 0] ∈ P1

B̊s,s = B̊s ∩ B̊s = sB+ = [0 : 1] ∈ P1

B̊1,s = B̊1 ∩ B̊s = U− ·B+ ∩B+sB+ = {y(a) ·B+ : a ̸= 0}

Deodhar decomposition
Let w = si1 · · · sin be a reduced expression for w. Then u ≤ w ⇔ ∃ a subexpression u = ti1 · · · tin ,

where ti ∈ {1, si}. But this subexpression is not unique in general.
Deodhar’s idea: Fix a reduced expression: w = si1 · · · sin , for any point in B̊u,w we obtain a certain

subexpression for u. This leads to a decomposition of B̊u,w.
Recall we have an isomorphism (case u = 1)

yi1(R)× · · · × yin(R) −→ B̊1,w(R)

(y1 (a1) , · · · , yin (an)) −→ p

Here, from the point p, we not only get the element (1, w), but we get the sequence (a1, · · · , an). This is
not the Deodhar’s construction, but it illustrates the idea.

Consider B × B with the diagonal action of G. Then we have

G\
(
G/B+ ×G/B+

)
←→ B+\G/B+ ←→W.

Definition 3 (Relative position (a reformulation of the Bruhat decomposition))

♣

We write B1
w→ B2 if (B1, B2) is in the G-orbit of (B+, w ·B+). (B1, B2) is in a relative position w.r.t

w.

If w = vv′ with l(w) = l(v) + l(v′) then we have an isomorphism.

B+vB+ ×B+
B+v‘B+ ∼= B+wB+

In other words, for any B1, B2 with B1
w→ B2, ∃!B3, s.t.B1

v→ B3
v′→ B2.

Particularly, B ∈ B̊w, where we have B+ w→ B.

Definition 4 (Reduction map)

♣We set πw
v (B) be the unique element with B+ v→ πw

v (B)
v′→ B. πw

v is called the reduction map.

Now let w = si1 · · · sin , set w(k) = si1 · · · sik . For any subexpression v = ti1 · · · tin , set v(k) = ti1 · · · tik .

Definition 5 (Deodhar Component)

♣
B̊v,w =

{
B ∈ B̊v,w;πw

w(k)
(B) ∈ B−v(k) ·B+ ∀k

}
By definition, for any fixed reduced expression w.
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B̊v,w =
∐

v subexpression of v in w

B̊v,w

This is called Deodhar decomposition.
Remark Deodhar’s motivation is a geometric interpretation of Kazhdan-Lusztig’s R-polynomial, i.e.

Ru,w(q) = #B̊v,w (Fq) =
∑

Deodhar decomposition
(q − 1)∗q∗∗

∗means to some power. From the following theorem you will see that the above formula holds for abitrary field
K and so ∗ = J0

u and ∗∗ = J−
u .

Theorem 1 (Deodhar)

♡

(1)B̊v,w ̸= ∅ iff u is a distinguished expression of w.
(2) If u is a distinguished subexpression of w, then B̊v,w ≃ (K×)

#J0
u×K#J−

u , where J0
u, J

−
u are certain

subsets of {1, 2, · · · , n}

Theorem 2 (Marsh-Rietsch)

♡

(1)B̊v,w ∩ B≥0 ̸= ∅ iff u is a positive subexpression of w.
(2)If u is a positive subexpresion of w, then

B̊v,w ∩ B≥0
∼= (R>0)

l(w)−l(u)

as cells. (|J◦
u| = l(w)− l(u).)

We will define distinguished expression and positive subexpression as follows

Definition 6

♣

Set J+/0/−
v = {k : v(k−1) < / = / > v(k)}.

We say that v is distinguished in w if

v(k) ≤ v(k−1)sik , ∀k

i.e.,if v(k−1) · sik < v(k−1) then tik = sik . (When it may go down, it will go down).
We say that v is positive in w if

v(k−1) < v(k−1)sik , ∀k

(it is distinguished, and never goes down, as v(k) ∈ {v(k−1), v(k−1)sik} ≥ v(k−1)).

Example 2 G = GL4,W = S4 =< (12), (23), (34) >=< s1, s2, s3 >.

w = w0 = s3s2s1s3s2s3, v = s2s3

The subexpressions of v are
1. 1111s2s3

2. 1s2111s3

3. 1s21s311

4. s3s21s3s21

Then 1. is distinguished and positive, 2.,3.&4. are not distinguished.
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