Napier’s Constant

Theorem 1. Let
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Then
1. a, < b, for anyn > 1.
2. a, and b, are convergent.

3. lim a, = lim b,
n—oo n—oo

Proof. 1. For any positive integer n > 1, by binomial theorem we have
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2. We show that a,, and b,, are bounded and monotonic.




Boundedness: For any n > 1, we have

1<a, < b,
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Thus a,, and b,, are bounded.
Monotonicity: The monotonicity of b, is obvious. We prove that a,
is strictly increasing. For any n > 1, we have
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Thus a,, are b, are strictly increasing.

Alternative proof for monotonicity of a,,: Recall that the arithmetic-
geometric mean inequality says that for any positive real numbers
x1,To, ..., T, not all equal, we have
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We have proved that both a, and b, are bounded and monotonic.
Therefore a,, are b, are convergent by monotone convergence theorem.

. Since a,, < b, for any n > 1, we have

lim a, < lim b,.
n—oo n—oo

On the other hand, for a fixed m > 1, define a sequence ¢, (which
depends on m) by
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Then for any n > m, we have a,, > ¢, which implies that

lim a, > lim ¢,
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Observe that m is arbitrary and thus

lim a,, > lim b,, = lim b,.
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Therefore

lim a, = lim b,.
n—oo n—oo



