Q.1
\nSuppose that f and g are continuous on [a,b], differentiable
\non (a,b), that c \in [a,b] and that g(x) \ne 0 for x \in [a,b],
\n
$$
x+c
$$
 . Let A = $\lim_{x\to c} f$ and B = $\lim_{x\to c} g$. If B=0, and if
\n $\lim_{x\to c} \frac{f(x)}{g(x)}$ exists in IR, show that we must have A=0.
\nSolution:
\nNote that for x $\in (a,b)$, $x \ne c$, $f(x) = \frac{f(x)}{g(x)}$. g(x).
\n $\lim_{x\to c} g(x)$ exists. $\&$ is equal to g(c) since g is continuous at c.
\nBy assumption, $\lim_{x\to c} \frac{f(x)}{g(x)}$ exists.
\nTherefore, A = $\lim_{x\to c} f(x)$
\n= $\lim_{x\to c} \frac{f(x)}{g(x)}$. $\lim_{x\to c} g(x)$
\n= $\left(\lim_{x\to c} \frac{f(x)}{g(x)}\right) \left(\lim_{x\to c} g(x)\right)$
\n= 0 since B = $\lim_{x\to c} g(x) = 0$

$$
\mathbf{Q.2}
$$

In addition to the suppositions of the preceding exercise, let $g(x)$ >0 for $x \in [a, b]$, $x + c$. If $A > 0$ and $B = 0$, prove that we must have $lim_{n\to\infty}$ $\chi \rightarrow c$ glx) $= \infty$. If $A < 0$ and $B = 0$, prove that we must have $lim_{n \to \infty} f(x)$ $x \mapsto c$ $q(x)$ $z - \infty$. Solution : By def. of limit , te, >0,78, >0 Sit. 11-1×⁷ - Ake, as 04×-4<8, - ① \forall ez>0,7 $\{2>0 \text{ s.t. } |g(x)-0| < \epsilon_{z}$ as $0<|x-c| < \epsilon_{z} - \varnothing$ When $A > 0$ $\underline{\smash[b]{\hspace{2pt}} k}$ $\underline{\hspace{2pt}} B = D$: Choose $\epsilon_1 = \frac{A}{2} > 0$. By \mathbb{D} , when $0<|x-c|<\delta_1$, $(\delta_1$ is fixed for the choice $\xi \geq \frac{A}{2}$) $-\frac{A}{2}$ < $f(x) - A < \frac{A}{2}$ \Rightarrow $f(x) > \frac{A}{2}$ 3 Moreover, by Θ & assumption, $0 < g(x) < \epsilon_{\mathbf{z}}$ as $0 < |x-\mathbf{c}| < \mathcal{S}_{\mathbf{z}}$. Θ Given M > 0, we can choose $0 < \varepsilon \leq \frac{A}{2M}$, so that $\frac{A}{2\varepsilon_2} > M$. For this particular ϵ_{z} we can fix a δ_{z} so that Θ holds.

Let
$$
\int = \min\{\delta_1, \delta_2\}
$$
. Then if $0 < |x - c| < \delta$, then both 3 & 4 & 4

When $A < 0$ Δ $\overline{B} = D$:
Choose $\ell_1 = -\frac{A}{2} > 0$
By 0, when $0 < x - c < \delta_1$, (δ_1) is fixed for the choice $\ell = -\frac{A}{2}$
$\frac{A}{2} < f(x) - A < -\frac{A}{\lambda}$
Moreover, by 0, ℓ as $0 < x < \ell_2$ as $0 < x - c < \delta_2$. Θ
Moreover, by 0, ℓ as $0 < \ell \le \frac{A}{2M}$, so that $\frac{A}{2\ell_2} < M$.
Given $M < 0$, we can choose $0 < \ell_2 < \frac{A}{2M}$, so that $\frac{A}{2\ell_2} < M$.
For this partif ℓ_1 ℓ_2 , M can fix a δ_2 so that Θ holds.
Let $\delta = \min\{\delta_1, \delta_2\}$. Then if $0 < x - c < \delta$, then both $\Theta - \delta_1 \oplus \Theta$ holds.
Then $\frac{f(x)}{g(x)} < \frac{A}{\ell_2} < M$. Hence, $\lim_{x \to c} \frac{f(x)}{g(x)} = -\infty$ by $\delta_1 e$.

91×1

Q.3
\nTry to use L'Hôpital's Rule to find the limit of
$$
\frac{tonx}{stcx}
$$
 as
\n $x \rightarrow \frac{\pi}{2}$. Then evaluate directly by changing to sines and cosines.
\nSolution:
\n $(msder - f(x) = tan x , x \in [0, \frac{\pi}{2})$, which are differentiable.
\n $g(x) = secx , x \in [0, \frac{\pi}{2})$
\n $\lim_{x \to \frac{\pi}{2}} secx = +\infty$, $\lim_{x \to \frac{\pi}{2}} tanx = +\infty$
\nLet $L = \lim_{x \to \frac{\pi}{2}} \frac{f(x)}{g(x)}$.
\n $L = \lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{2}} \frac{sec^2x}{secx tanx} = \lim_{x \to \frac{\pi}{2}} \frac{secx}{tanx} = \frac{1}{L}$
\n $\therefore L^2 = 1 \Rightarrow L = 1$ Since $secx$, $tanx > 0$ on $(0, \frac{\pi}{L})$
\nDirect calculation:
\n $\lim_{x \to \frac{\pi}{2}} tanx = \lim_{x \to \frac{\pi}{2}} \frac{sinx}{cosx} = cosx = \lim_{x \to \frac{\pi}{2}} sinx = sin \frac{\pi}{2} = 1$.