1. Show that
$$
f(x) = x^{1/3}
$$
, $x \in \mathbb{R}$, is not differentiable at $x = 0$.
\nSolution:
\n
$$
\frac{f(x) - f(0)}{x - 0} = \frac{x^{1/3} - 0}{x - 0} = x^{-\frac{1}{3}}
$$
\n
$$
(\begin{array}{rcl}\n\text{Aim} : & \downarrow \text{im} & \frac{1}{x - 0} \\
\frac{x^2}{2} & \frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} \\
\frac{1}{x - 0} & \frac{1}{x - 0} & \frac{1}{x - 0} & \
$$

2. Let
$$
n \in \mathbb{N}
$$
 and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) := x^n$ for
\n $x > 0$ and $f(x) := 0$ for $x < 0$. For which values of π is f'
\nLentimous at 0 ? For which values of π is f' differentiable
\nat 0 ?
\nSolution:
\n $f'(x) = n x^{n-1} \quad \forall x > 0$
\nSimilarly, $f'(x) = 0$ $\forall x < 0$.
\nWhen $n = 1$, $f'(x) = 1$. $\forall x > 0$
\nSince $\lim_{x \to 0^+} f'(x) = 1$ $\forall x > 0$
\n $\lim_{x \to 0^+} f'(x) = 1 + 0 = \lim_{x \to 0^+} f'(x)$, $f'(x)$ is not continuous.
\nWhen $n = 2$, $f'(x) = 2x$ $\forall x > 0$.
\n $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} 2x = 0$
\n $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} 2x = 0$
\n $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} 0 = 0$
\n $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{x^2 - 0}{x - 0} = \lim_{x \to 0^+} x = 0$
\n $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x - 0} = \lim_{x \to 0^+} \frac{0 - 0}{x - 0} = 0$
\n $\therefore f'(0) = 0 = \lim_{x \to 0^+} f'(x) = 0$
\n $\therefore f'(0) = 0 = \lim_{x \to 0^+} f'(x) = 0$
\n $\therefore f'(0) = 0 = \lim_{x \to 0^+} f'(x) = 0$

lim
\n
$$
\frac{f'(x) - f'(0)}{x-0} = \lim_{x\to 0^{+}} \frac{2x-0}{x-0} = \lim_{x\to 0^{+}} 2 = 2
$$
\n
\n
$$
\lim_{x\to 0^{+}} \frac{f'(x) - f'(0)}{x-0} = \lim_{x\to 0^{+}} \frac{0-0}{x-0} = 0 \neq 2
$$
\n
\n∴ f' is not differentiable at 0
\nWhen n > 3,
\n
$$
\lim_{x\to 0^{+}} f'(x) = \lim_{x\to 0^{+}} n x^{n-1} = 0
$$
\n
\n
$$
\lim_{x\to 0^{+}} f'(x) = \lim_{x\to 0^{+}} 0 = 0
$$
\n
\n
$$
\lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x-0} = \lim_{x\to 0^{+}} \frac{x^{n} - 0}{x-0} = \lim_{x\to 0^{+}} x^{n-1} = 0
$$
\n
\n
$$
\lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x-0} = \lim_{x\to 0^{+}} \frac{0-0}{x-0} = 0
$$
\n
\n∴ f' is continuous at 0
\n
$$
\lim_{x\to 0^{+}} \frac{f'(x) - f'(0)}{x-0} = \lim_{x\to 0^{+}} \frac{n x^{n-1} - 0}{x-0} = \lim_{x\to 0^{+}} n x^{n-2} = 0
$$
\n
\n
$$
\lim_{x\to 0^{+}} \frac{f'(x) - f'(0)}{x-0} = \lim_{x\to 0^{+}} \frac{n x^{n-1} - 0}{x-0} = \lim_{x\to 0^{+}} n x^{n-2} = 0
$$
\n
\n∴ f' is difficult to be

4. If
$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$
 is diff. at $C\in\mathbb{R}$, show that
\n $f'(c) = \lim_{n \to \infty} n(f(c+\frac{1}{n}) - f(c))$
\nGive an counter example for a function whose limit above exists,
\nbut f is not differentiable at C.
\nSolution:
\n $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$ exists since f is diff. at c.
\nConsider the sequence $(\frac{1}{n})$.
\nNote that $\lim_{h \to \infty} \frac{1}{h} = 0$ $k = \frac{1}{n} + 0$ then N.
\nBy the sequential criterion,
\n $f'(c) = \lim_{h \to \infty} \frac{f(c+\frac{1}{n}) - f(c)}{V_n}$
\n $= \lim_{h \to \infty} n\{f(c+\frac{1}{n}) - f(c)\}$
\ncounter example:
\n $f(x) = |x|$
\n $f(x) = \lim_{h \to \infty} n\{f(\frac{1}{n}) - f(c)\} = \lim_{h \to \infty} n\{|\frac{1}{n}| - 0\}$
\n $= \lim_{h \to \infty} n\{f(\frac{1}{n}) - f(c)\} = \lim_{h \to \infty} n\{|\frac{1}{n}| - 0\}$
\n $= \lim_{h \to \infty} n \cdot \frac{1}{n}$
\n $= 1$

If
$$
f: |R \rightarrow |R
$$
 is diff. at $c \in |R$, show that
\n $f'(c) = \lim_{n \to \infty} (n\{f(c+h) - f(c)\})$
\nCounter-example for existence of limit $\divideontimes d \circ f$:
\n $f(x) = |x|$
\n $n((\frac{1}{n}) - 0)$