1. Show that
$$f(x) = x^{1/3}$$
, $x \in IR$, is not differentiable at
 $x = 0$.
Solution:

$$\frac{f(x) - f(0)}{x - 0} = \frac{x^{1/3} - 0}{x - 0} = x^{-\frac{1}{3}}$$
([aim: $\lim_{x \to 0} x^{-\frac{1}{3}}$ does not exist.
Proof: Suppose that $\lim_{x \to 0} x^{-\frac{1}{3}}$ exists and equal to $M \in IR$.
Then $\lim_{x \to 0} x^{-\frac{1}{3}} = M$.
By def., $\forall \epsilon > 0, \exists \delta > 0$ s.t. when $0 < x < \delta$, $|x^{-\frac{1}{3}} - M| < \epsilon$. (*)
 $\forall L > 0, x^{-\frac{1}{3}} > L$ when $0 < x < L^{-\frac{1}{3}}$.
If $L > M + 2, x^{-\frac{1}{3}} > L > M + 2$.
 $(x - |x^{-\frac{1}{3}} - M| = x^{-\frac{1}{3}} - M > \epsilon$ when $0 < x < L^{-\frac{1}{3}}$.
 $\exists \forall \delta > 0, |x^{-\frac{1}{3}} - M| > \epsilon$ for some $0 < x < \delta$
 $|By choosing 0 < x < min f \delta, L^{-\frac{3}{3}} |$

2. Let
$$n \in \mathbb{N}$$
 and let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := x^n$ for
 $x \ge 0$ and $f(x) := 0$ for $x < 0$. For which values of n is f'
(ontinuous at 0 ? For which values of n is f' differentiable
at 0 ?
Solution:
At each $x = a \ge 0$, $f(x) = x^n$ $\forall x \in (a - \frac{a}{2}, a + \frac{a}{2})$
 $\therefore f'(x) = n x^{n-1} \quad \forall x \ge 0$
Similarly, $f'(x) = 0 \quad \forall x < 0$.
When $n = 1$, $f'(x) = 1$. $\forall x \ge 0$
Since $\lim_{x \to 0^+} f'(x) = 1 \neq 0 = \lim_{x \to 0^+} f'(x)$, $f'(x)$ is not continuous.
When $n = 2$, $f'(x) = 2x \quad \forall x \ge 0$.
 $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} 2x = 0$
 $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} 2x = 0$
 $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{x^2 - 0}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0}$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{x^2 - 0}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0}$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{x^2 - 0}{x = 0} = 0$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{x^2 - 0}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0} = 0$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0} = 0$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0} = 0$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0} = 0$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0} = 0$
 $\lim_{x \to 0^+} \frac{f(x) - f(x)}{x = 0} = \lim_{x \to 0^+} \frac{1}{x = 0} = 0$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{2x - 0}{x - 0} = \lim_{x \to 0^+} 2 = 2$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{0 - 0}{x - 0} = 0 \neq 2$$

$$\therefore f' \text{ is not differentiable at 0}$$
when $n \ge 3$,
$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} nx^{n-1} = 0$$

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^n - 0}{x - 0} = \lim_{x \to 0^+} x^{n-1} = 0$$

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{0 - 0}{x - 0} = 0$$

$$\lim_{x \to 0^+} \frac{f'(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{0 - 0}{x - 0} = 0$$

$$\therefore f' \text{ is continuous at } 0.$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{nx^{n-1} - 0}{x - 0} = \lim_{x \to 0^+} nx^{n-2} = 0$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{nx^{n-1} - 0}{x - 0} = \lim_{x \to 0^+} nx^{n-2} = 0$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{nx^{n-1} - 0}{x - 0} = \lim_{x \to 0^+} nx^{n-2} = 0$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{nx^{n-1} - 0}{x - 0} = \lim_{x \to 0^+} nx^{n-2} = 0$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{0 - 0}{x - 0} = 0$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{0 - 0}{x - 0} = 0$$

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{0 - 0}{x - 0} = 0$$

3. Determine where $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 2x + x $ is differentiable and find
the derivative.
Solution :
Rewrite $g(x) = \begin{cases} 2x + x = 3x, x \ge 0\\ 2x - x = x, x < 0 \end{cases}$
g is differentiable on $x > 0$ since $g(x) = 3x \forall x > 0$.
$\Rightarrow g'(x) = 3 \forall x > 0.$
g is differentiable on $x < 0$ since $g(x) = x \forall x < 0$
$\Rightarrow g'(x) = 1 \forall x < 0$
It is left to check whether g is differentiable at 0.
$\lim_{x \to 0^+} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0^+} \frac{3x - 0}{x - 0} = 3$
$\lim_{x \to 0^{-}} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x - 0}{x - 0} = 1 \neq 3$
is not differentiable at 0.

4. If
$$f: \mathbb{R} \to \mathbb{R}$$
 is diff. at $C\in\mathbb{R}$, show that
 $f'(c) = \lim_{n \to \infty} n(f(c+\frac{1}{n}) - f(c))$
(rive on counter-example for a function whose limit above exists,
but f is not differentiable at C.
Solution:
 $f'(c) = \lim_{n \to 0} \frac{f(c+h) - f(c)}{h}$ exists since f is diff. at c.
(prisider the sequence $(\frac{1}{n})$).
Note that $\lim_{n \to \infty} \frac{1}{n} = 0 \quad k \quad \frac{1}{n} \neq 0 \quad \forall n \in \mathbb{N}$.
By the sequential criterion,
 $f'(c) = \lim_{n \to \infty} \frac{f(c+\frac{1}{n}) - f(c)}{\sqrt{n}}$
 $= \lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
(ounter - example:
 $f(x) = [x]$
 $f = \lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$
 $\int f(c) = \lim_{n \to \infty} n \int f(c+\frac{1}{n}) - f(c) f$

Tf f:
$$|R \rightarrow |R$$
 is diff. at celR, show that
 $f'(c) = \lim_{n \to \infty} \left(n \{ f(c+h) - f(c) \} \right)$
Counter-example for existence of limit $\neq diff.$
 $f(x) = |x|$
 $n(1+1-0)$