MATH2060 Solution 5

March 5, 2022

7.2 Q1

It follows directly from Cauchy Criterion 7.2.1. (Let $\eta = \frac{1}{n}$ for $n \in \mathbb{N}$.)

7.2 Q3

Define the set $A = \{\frac{1}{k} : k \in \mathbb{N}\}$ and let $n \in \mathbb{N}$. Suppose $\dot{\mathcal{P}}_n = \{([0, \frac{1}{n+1}], \frac{1}{n+1})\} \cup \{([\frac{i}{n+1}, \frac{i+1}{n+1}], t_i)\}_{i=1}^n$ with $t_i \notin A$. Suppose $\dot{\mathcal{Q}}_n = \{([\frac{i}{n+1}, \frac{i+1}{n+1}], t_i)\}_{i=0}^n$ with $t_i \notin A$. Note that $||\dot{\mathcal{P}}_n|| = ||\dot{\mathcal{Q}}_n|| = \frac{1}{n+1} < \frac{1}{n}$. Also, we have

$$S(H; \dot{\mathcal{P}}_n) = H(\frac{1}{n+1})(\frac{1}{n+1} - 0) + \sum_{i=1}^n H(t_i)(\frac{i+1}{n+1} - \frac{i}{n+1}) = \frac{n+1}{n+1} + 0 = 1.$$
$$S(H; \dot{\mathcal{Q}}_n) = \sum_{i=0}^n H(t_i)(\frac{i+1}{n+1} - \frac{i}{n+1}) = 0.$$

Let $\epsilon_0 = \frac{1}{2}$. Then we have $|S(H; \dot{\mathcal{P}}_n) - S(H; \dot{\mathcal{Q}}_n)| = 1 > \epsilon_0$. By Q1, *H* is not integrable.

7.2 Q6

Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

For any internal I, there exist $x_1 \in I \cap \mathbb{Q}$ and $x_2 \in I \setminus \mathbb{Q}$. Hence f is not constant in I and thus f cannot be a step function.

7.2 Q7

Let $f : [a, b] \to \mathbb{R}$ and $S(f; \dot{\mathcal{P}})$ be a Riemann sum of f with the tagged partition $\dot{\mathcal{P}} = \{[x_{i-1}, x_i], t_i\}_{i=1}^n$. Then we can define the function $\phi : [a, b] \to \mathbb{R}$ by

$$\phi(x) = \begin{cases} f(t_i) & x \in [x_{i-1}, x_i), i < n \\ f(t_n) & x \in [x_{n-1}, x_n] \end{cases}$$

Then ϕ is a step function with

$$\int_{a}^{b} \phi = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) = S(f; \dot{\mathcal{P}})$$

7.2 Q13

Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & x = 0\\ \frac{1}{x} & x > 0 \end{cases}$$

For any $c \in (0,1)$, since f is continuous on [c,1], we have $f \in \mathcal{R}[c,1]$. However, since f is not bounded on [0,1], it follows that $f \notin \mathcal{R}[0,1]$.

7.2 Q16

Denote the maximum of f on [a, b] by M and the minimum of f on [a, b] by m. Then we have

$$m(b-a) = \int_a^b m \le \int_a^b f \le \int_a^b M = M(b-a).$$

Since f is continuous on [a, b], and $m \leq \frac{\int_a^b f}{b-a} \leq M$, by Intermediate Value Theorem, there exists some $c \in [a, b]$ such that $f(c) = \frac{\int_a^b f}{b-a}$.