Power Series

$$
Def 9.4.7 Tf f_n(x) = a_n(x-c), \text{ as } c \in \mathbb{R}, \forall n=0,1,2...
$$

then
$$
\sum f_n(x) = \sum a_n(x-c)
$$

is called a power series around x = c.

Remarks: **.** *Power* series usually starts with
$$
n=0
$$
 (instead of $n=1$):

$$
\sum a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots
$$

\n- \n
$$
\sum a_{u}x^{n}
$$
 may not defined over all of R:\n
	\n- (i) $\sum_{v=0}^{\infty} n! x^{v}$ converges only $\frac{1}{2}a \times 0$, $(\overline{\epsilon}x!)$
	\n- (ii) $\sum_{v=0}^{\infty} x^{v}$ converges $\frac{1}{2}a \times |x| < 1$, (geometric series)
	\n- (iii) $\sum_{v=0}^{\infty} \frac{x^{v}}{n!}$ converges $\forall x \in \mathbb{R}$, (exponudial function)
	\n\n\nHow 0 then ω a need to determine the set on which $\sum a_{u}x^{n}$ converges.

\n
\n

In the following, we consider the case that $c = c$ This is no loss of generality as the frauslation $y = x-c$ redues $\sum a_n (x-c)^n$ to $\sum a_n y^n$.

Recall: (2053.9.10 x Tum 3.9.11)
\nFu (Xu) a bounded seq., Jüuit supern of (Xu):
\nJuüraup Xu = uif { vER :
$$
U \times K
$$
 fa füüley many n }
\n= uif { vER: $X_{u} \le U$ sufiaeutly large n }

And (i) If
$$
D > \text{limitup } X_n
$$
, then

\n
$$
X_n \leq D \quad \text{for sufficiently large } n
$$
\n
$$
\therefore \quad \exists \quad K^{(p)} \in [N \text{ s.t. } \exists \text{ } N \geq K(D) \text{ , then } X_n \leq D
$$
\n
$$
\therefore \quad \text{if } N \leq \text{limitup } X_n \text{ , then } \exists \text{ } \frac{\text{infinitely many } n \in N}{\text{if } N \leq X_n \text{ .}
$$

20.59.4.8	Let 0.5 and	Let 0.5																																										
-----------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	-----------

$$
\frac{\text{Thm9.4.9 (Caudy-Hadamard Thuorem)}}{\text{If } R \text{ is the radius of a\n
$$
\sum a_{n}x^{n} \geq a_{n}x^{n}
$$
\n
$$
\sum a_{n}x^{n} \geq a_{n}x^{n} \geq a_{n}x^{n} \geq a_{n}x^{n}
$$
\n
$$
\sum a_{n}x^{n} \geq a_{n}x^{
$$
$$

Number:
$$
3
$$
 No conclusion $f(x) = R$ is

\n
$$
\begin{array}{lll}\n\text{(i)} & \sum x^{n} & \sum p = \text{Liussup}(a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{19} - a_{11} - a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{10} - a_{11} - a_{12} - a_{13} - a_{10} - a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{11} - a_{12} - a_{13} - a_{14} - a_{15} - a_{16} - a_{17} - a_{18} - a_{19} - a_{11} - a_{12} - a_{13} - a_{10} - a_{11} - a_{12} - a_{13} - a_{12} - a_{13} - a_{14}
$$

(i)
$$
\sum \frac{1}{n}x^{n}
$$
 = $\int e = \sqrt{2\pi} \arctan \left(\frac{1}{n}\right)^{\frac{1}{n}} = \sqrt{2\pi} \arctan \left(\frac{1}{n}\right)^{\frac{1}{n}} = 1$ (Ex!)
\n $\Rightarrow R = \frac{1}{P} = 1$
\n $\int x = 1 = \sum \frac{1}{n}x^{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$ is divergent
\n $\int x = -1 = \sum \frac{1}{n}x^{n} = 1 - \frac{1}{2} + \frac{1}{3} - \cdots$ is convergent.

(iii')
$$
\sum \frac{1}{n^{2}} x^{n}
$$
 = $\beta = \lim_{n \to \infty} |a_{n}|^{\frac{1}{n}} = \lim_{n \to \infty} (f(x^{n}))$
\n $\Rightarrow R = \frac{1}{\beta} = 1$ (Ex!)
\n $\begin{cases} x = 1 = \sum \frac{1}{n^{2}} x^{n} = 1 + \frac{1}{2^{2}} + \frac{1}{5^{2}} + \cdots \text{ is } \text{Convergent.} \\ x = -1 = \sum \frac{1}{n^{2}} x^{n} = 1 - \frac{1}{2^{2}} + \frac{1}{5^{2}} - \cdots \text{ is } \text{Convergent.} \end{cases}$

Ranks: (i) If
$$
\frac{du}{du} \left| \frac{du}{du} \right|
$$
 exists, then radius of $(\frac{du}{du} \left| \frac{du}{du} \right|)$.

\n(Ex 9.4.5)

\n(ii) If one can choose $0 < c < 1$ independent of $\chi \in (-R,R)$,

\nHow one get uniform convergence.

$$
\begin{array}{ll}\n\text{Thm9.4.10:} & \text{Let}_{1} \cdot R = \text{radius of } \text{convergence of } \Sigma a_{\alpha} \times^{n} \\
& \text{[a,b]} \subset (-R,R) \text{ le a closed and bounded interval.} \\
\text{Then } \Sigma a_{\alpha} \times^{n} \text{converges uniformly on } [a,b].\n\end{array}
$$

Reluark	• $R = +\infty$ included, and the two need the assumption that
1	$[a, b]$ is bounded.
• $R = 0$ is excluded as $(-0, 0) = \emptyset$.	
1	$[a, b]$ is bounded as $(-0, 0) = \emptyset$.
2	$[a, b]$ and $(-0, 0) = \emptyset$.
3	$[a, b]$ and $[a, b]$ and $[a, b]$ and $[a, b]$.
4	$-cR < a$ and $b < cR$. (Note: depends only on a, b)
5	$[a, a]$ argument in the proof of $[a, a]$ but $[a, a]$ and $[a, a]$.
6	$[a, a]$ and $[a, a]$ and $[a, a]$.
7	$[a, a]$ and $[a, a]$.
8	$[a, a]$ and $[a, a]$.
9	$\bigcap_{n=k}^{\infty} a_n x^n$ and $[a, a]$.
10	$\bigcap_{n=k}^{\infty} a_n x^n$ and $[a, a]$.
2	$\bigcap_{n=k}^{\infty} a_n x^n$ and $[a, a]$.

Thm9.4.11

- . The luint of power series is continuous on the interval of convergence.
- A power series can be integrated term-by-term over any closed and bounded interval contained in the interval of convergence.

$PI: V \times E(-R,R)$	choose a closed 4 bounded interval $[a,b]$
$S.t. X \in [a, b] \subset (-R, R)$	Then an $[a, b]$
$Z a_n X^n$	converges uniformly
$TMu.9.4.2 \Rightarrow \sum_{n=1}^{\infty} a_n X^n$ is continuous an $[a, b]$ and hence at x	
$Su(n) \times E(-R,R)$ is arbitrary, $\sum_{n=0}^{\infty} a_n X^n$ is continuous on $(-R,R)$	

ta any closed and bounded urtserval La_rb] CC-R, R. $\sum a_n x^n$ converges uniformly on $[a,b]$ (Thu, 9.4.10) and hence The $9.4.3 \Rightarrow$ $\int_{a}^{b} \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \int_{a}^{b} a_n x^n$

Thm.9.4.12 (Diffenexitation Then.)

\nA power series can be differentiated term-by-term within the
\ninternal of convergence. In fact, if R = radius of convergence of
$$
5a x^n
$$

\nand $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $fa \leq |x| \leq R$,

\nHow the radius of convergence of $\sum_{n=0}^{\infty} \vee a_n x^n = R$,

\nand $f(x) = \sum_{n=1}^{\infty} \vee a_n x^{n-1}$, $fx \leq |x| \leq R$

\nand $f(x) = \sum_{n=1}^{\infty} \vee a_n x^{n-1}$, $fx \leq |x| \leq R$

\nIf: Since $n^{\frac{1}{n}} \rightarrow 1$, the seq . ([n+1) $a_{n+1} | \stackrel{f_{n+1}}{\rightarrow} a$ bounded

\n \therefore (unbounded)

\n**Example** of convergence of $\sum n a_n x^n = 0$

\n(bounded)

\n**Example** of convergence of $\sum n a_n x^n = 0$

\n(bounded)

\n**Example** of $\sum n a_n x^n = \text{linear}(n+1) a_{n+1} | \stackrel{f_{n+1}}{\rightarrow} a_n x^{n-1}$

$$
= \lim_{u \to 0} \lim_{\eta \to 0} (na_{u})^{\frac{1}{n}} = \lim_{u \to 0} \left(\lim_{u \to 0} \frac{1}{u} \right)
$$

= $\lim_{u \to 0} \frac{1}{u} \lim_{u \to 0} (a_{u})^{\frac{1}{n}} \times (s \text{ into } u^{\frac{1}{n}} \to 1)$
= R

Then

\nFigure 1:
$$
Radius
$$
 of $Quivergence$ of $\sum n a_n x^n$

\nFor 1 and $\sum a_n x^n$ converges.

\nFor 1 and $\sum a_n x^n$ converges.

Now
$$
W \times E(P,R)
$$
, choose $0 < R$ such that $|x| < a$.
\nThen \cdot [Eq, a] is closed and bounded,
\n \cdot [Eq, a] $\subset (-R,R)$ and
\n \cdot $0 \in [-q, a]$ $\subset x$, $\geq a_n x^n$ converges at $x = 0$.
\nUsing $T \times A + 10$, $T \times B = 2a_1 x^n$ converges at $x = 0$.
\n $\frac{1}{2} \times 2a_1 x^{n-1} = \frac{1}{2} (a_n x^{n-1})$ converges uniquely on $\subset 4, 4$.
\nwe have $\left(\sum_{n=0}^{6} a_n x^n\right)' = \sum_{n=0}^{6} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}$ on $\subset 4, 4$.
\nNote $X \in C(R,R)$ is arbitrary, we have
\n $\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} \times a_n x^{n-1}$, $\forall x \in C(R,R)$
\nSince $X \in C(R,R)$ is arbitrary, we have
\n $\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} \times a_n x^{n-1}$, $\forall x \in C(R,R)$
\n $\frac{1}{2} \times 2^{n-1} \times 2^{n-1}$
\n $\frac{1}{2} \times 2^{n-1} \times 2^{n-1}$
\nbut $\left(\sum_{n=0}^{6} x^n\right)' = \sum_{n=1}^{\infty} \frac{1}{n} x^{n-1}$ converges at $x = -1$

Repeated application of Thu 9.4.12 => VKEIN, $\widetilde{\left(\begin{smallmatrix} \cdot & \cdot \\ 0 & \cdot \end{smallmatrix}\right)}$ $\left(\sum_{n=0}^{\infty} a_n x^n\right)^{\binom{k}{k}} = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$

Thm 9.4.13 (Uniqueness Thm)	
If $\sum a_n x^n$ a $\sum b_n x^n$ caused to the same function f	
on an integral $(-r, r)$, $r>0$, then	
$a_n = b_n$, $\forall n \in \mathbb{N}$	
$(\text{In fact } a_n = b_n = \frac{1}{n!} f^{(n)}(0)$	
$\text{PF} \colon \text{By reward (i', 0, f, Thm 9.4, 12, 14k) } f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k} \quad \forall x \in (-r, r)$.	
$\Rightarrow f^{(k)}(0) = \frac{k!}{(k-k)!} a_k \quad (0^{n-k} = 0 \text{ for } n > k)$	
$\Rightarrow a_k = \frac{1}{k!} f^{(k)}(0)$	
Same fa b_k .	\gg

Taylor Series
\nLet f has divivatives of all orders at a point
$$
CE
$$
,
\nthen one can few a power series
\n
$$
\sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} (x-c)^n
$$

 $\overline{\mathbb{X}}$

Note that , no convergence yet (unless x=c)
(Even it converges, it may not equal f (Ex. 9.4.12)

Let we say that
$$
\zeta(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n
$$
 is the Taylor expansion of f at C if $\exists R > 0$ such that
$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n
$$
 converges to f(x) on $(c-R, c+R)$, and
$$
\frac{f^{(n)}(c)}{n!} \text{ are called Taylor coefficients.}
$$

 $(i.e.$ The remaider $R_n(x)$ in Taglor's Thus \longrightarrow 0 on (c-8, c+R)) Remark: By Uniqueness Than 9.4.13, if Taylor expansion exists, it is unique.

Eg 9.4.14
\n(a)
$$
f(x) = \arctan x
$$
 $x \in \mathbb{R}$,
\n $f'(x) = \int_{-1}^{(n)} \arctan x$ $\frac{1}{2} \int_{-1}^{n} \arctan x$ $\frac{1}{2} \int_{$

the remainder Rn (x) satisfies $R_{1}(x) = \frac{|\int^{x_{1}}(c_{1})|}{(x+1)!}$ ht
1 fa Sane C₁ between X 20 $\leq \frac{|\chi|^{n+1}}{(n+1)!} \to 0$

$$
\therefore \qquad \text{sin} \chi = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \qquad \text{if } x \in \mathbb{R}
$$
\n
$$
\text{sin } Hx = \text{Equation (a)} \qquad \text{or} \qquad \text{sin } x \text{ at } x = 0
$$

Then application of Differentiation. Thus 9.4.12, we have

\n
$$
\omega_0 \times = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \times^{2n} \times \text{KER}
$$
\nSo the Taylor expansion of $\omega_0 \times \text{at } \times = 0$.

(b)
$$
g(x) = e^x
$$
, $x \in \mathbb{R}$
\nThen $g^{(n)}(x) = e^x$, $\forall x \in \mathbb{R} \implies g^{(n)}(0) = 1$.
\nBy Taylor's Thm 6.9.1, the remainder satisfies
\n $|R_n(x)| \le \frac{e^C}{(n+1)!} |x|^{n+1}$ for some C between x a o.
\n $\le \frac{e^{x/1} |x|^{n+1}}{(n+1)!} \implies 0$ as $n \to \infty$.
\n $\therefore e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$, $\forall x \in \mathbb{R}$
\n $\therefore e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$, $\forall x \in \mathbb{R}$

Furthermore, by $e^{X}=e^{c}e^{x-c}=e^{c}\sum_{n=n}^{\infty}\frac{1}{n!}(x-c)^{n}$, we see that $e^{x} = \sum_{n=0}^{\infty} \frac{e^{c}}{n!} (x-c)^{n}$ is the Taylor expansion of e^x at $x=C$.

Rsmark: This implies the radius of convergence
$$
z + \infty
$$

\n(says at $c=0$). Of course, we can divide it few
\ncalculating $(\frac{1}{n!})^{\frac{1}{n}} \to 0$ as $n \to +\infty$.