
 

TheIntegralTest

Def Improper Integral

For AGR if o f E RTab t b a and
a

lyinSabf exists and to

then the improper integral Sif is defined to be
Sif Lie Sit

Thm9.2.6 IntegralTest

let f t o decreasing on It al's
Then I fck converges Sit let Sit exists

Inthis case
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Su fuss S fit dt E Sn t
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Éfck converges Sif exists

Using A y again if mon then
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letting moos we have
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Egs9.2.7

A Recall Eg3.7.210 absolute Ine o

nett É h teal take Irmergent

Using Limit ComparisonTest I Thu9.2.11

nti EE his I 1 to

It is absolutely convergent

b However RootTest Thu9.2.4doesn'tapply to Ent
infact Intr Up o

1
F th s 1 and

ft Ip I since nth e

both conditions in partial paths don'thold

And the Cor9.2.3 cannotbe applied too

rate I t e



e RatioTest Thm9.2.4 and its Cor9.25 also don't work

fa Intr

no informationÉ ftp pity i t

fromRatiotest

d Ontheotherhand IntegralTest Thu9.2.6 waks fate
Let fits Ip txt

Then flt o and decreasing
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same as b o lis I per
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too if pal

Sitpdt exists if p e

doesn't exist if pal
converges if p 1Altogether
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Thm9.2.8 Raabe'sTest Suppose into An 433

a If I a I and KEIN St

It s t f un k
Note thisconditionallows
din XI 1

then Exn is absolutely convergent

b If I act and KEIN sit

It 21 G task

Note thisconditionallows
din XI 1

then Exa is not absolutely convergent
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This replies Exa is convergent
hence Exu isabsolutely convergent

b 1 11121 E Anak all

n lintel Ch a lx n I I Cn plat since as l
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n until I KIXktil took

it Ixatil 2 E task where C KIXktil
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Hence Elul diverges since It diverges

Exa is not absolutely convergent

Cor9.2.9 Xn O Un 1,33
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Then
go
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If act tha t a with as a s 1 I KEIN sit

n l 19 1 E ai t ne k

M 171 ant task

Thu9.2.8 Exa is not absolutely convergent

Egs9.2.10

a Raabe'sTest faEnte

a alien l Mtl lean the
his n i day big IT Eg

Clearly leg 1 4 1 41 XP p
Thm8.3.13

i a p I p
By Cor9.2.5 to Raabe'sTest or justcall it Raabe'sTest

p 1 It is absolutely convergent
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hence divergent as In 0 ta

However result fa p l cannot be deducedfrom Raabe5 Test



as Fink
Easyto check

YIK FIT chest e and

l n 1 4 1 n l Eth
L e as no

i Both Cor9.2.5 and Car9.2.2 cannotbe applied

But 14 1 I n 14pA I IntoIntl ninth
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nineties t next

4 1 1 K H not CEE in

Raabe'sTest Thu9.2.8 Exn is not absolutely convergent

Remarks Li limiting form of Raabe'sTest Cor9.2.9 doesn'tapply

but Raabe's Test Thu928 applies

Gil IntegralTest a LimitcomparisonTest workfates
example



9.3 Tests for Nouabsolute Convergence

Def9.3.1 Into AnEIN

Then the sequence xn is saidtobe alternating

if ti x 0 a O then

in this case the series I Xn is called an

alternating series

eg If Zn o then Xu fist ta and Xu c Stu are

alternating

expliciteg Zeta o Ixu f istaf i t s it is alternating
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I GisZ
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Pf Consider partial sum
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egs By Thm9.3.1 n É l ft ft
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Note Ein Htt that is divergentby integralTest
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The Dirichlet and Abel Tests

Than9.3.3 Abel's lemma

let Xu yn be sequences in IR and

III si na
Then for me n
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