Then 8.2.6 (Dinis Theorem)

\nLet
$$
\cdot
$$
 S_n : $[a,b] \rightarrow \mathbb{R}$ be a monotone seq. of continuous

\nEquations

\n \cdot $S_n \rightarrow S$ on $[a,b]$ (pointwise convergence)

\n \cdot $S_n \rightarrow S$ on $[a,b]$ (pointwise convergence)

\n \cdot $S_n \rightarrow S$ on $[a,b]$ (uniform convergence)

\nRemark: \cdot \cdot <

Since
$$
X_k \in [a,b]
$$
, (X_k) is a bounded seq.
Then Bokguno-Weierstrass Thm (Thm3.4.8) implies that
 X_k has a convergence subsog $(X_{k_\ell})_{\ell=1}^{\infty}$
Let $\lim_{\ell \to \infty} X_{k_\ell} = \epsilon$.

Since $[a,b]$ is a closed interval $z \in [a,b]$. By assumption $g_n(z) \to 0$ as $n \to \infty$. $Q_{\mathsf{N}_{\kappa_{\mathsf{J}}}}(z) \rightarrow 0$ as $l\rightarrow\infty$. \Rightarrow \exists L>0 s, t, π $l > L$, then $0 \leq \theta_{n_{k,l}}(z) < \frac{\epsilon_0}{2}$ In particular $0 \leq \theta_{n_{k_{\text{L}}}}(z) < \frac{\epsilon_{o}}{z}$ Fu clarity of presentation, denote $n_{k_{L}}$ by N. Then $0 \leq \mathcal{G}_{\mathcal{N}}(z) \leq \frac{\varepsilon_{0}}{z}$ Now using continuity of $g_N(=\mathcal{G}_{n_{k_1}})$ $\lim_{\theta \to \infty} \mathcal{G}_N(x_{k_\ell}) = \mathcal{G}_N(\epsilon) \qquad \text{(since } \lim_{\theta \to \infty} x_{k_\ell} = \epsilon \text{)}$ \Rightarrow \exists $L_1 > 0$ 5 t. if $l > L_1$, then $g_{N}(x_{k_{l}}) < \frac{\epsilon_{0}}{2}$

$$
U_{\text{divig}} \text{ the assumption that } g_n \text{ is denlasing, we have}
$$
\n
$$
g_n(x_{k}) \leq g_n(x_{k}) < \frac{\varepsilon_6}{2} \quad \forall \, n > N = n_{k}
$$

In particular, for
$$
n = n_{k_{\ell}}
$$
 with $l \ge max\{l, l, l\}$ we have
 $\mathcal{E}_{0} \le \mathcal{G}_{n_{k_{\ell}}}(X_{k_{\ell}}) \le \frac{\varepsilon_{0}}{2}$

which is a contradiction.

\nThus,
$$
g_n \Rightarrow 0
$$
 (uniform convergence) $\underset{\text{for all } n \in \mathbb{Z}}{\text{Number: The approach in [extbook regions, the fact factor 0}$

\nSo, any given function $x \mapsto \delta(x) > 0$ on [a,b]

\nThus, $g_n(x) = \underset{\text{for all } n \in \mathbb{Z}}{\text{Number of terms of } n}$.

\nThus, $g_n(x) = \underset{\text{for all } n \in \mathbb{Z}}{\text{Number of terms of } n}$.

\nThus, $g_n(x) = \underset{\text{for all } n \in \mathbb{Z}}{\text{Number of terms of } n}$.

This needs the Thur5.5.5 which is notcovered in MATH2050

These two proofs use different versions of the fact that
$$
(a,b)
$$
, a closed a bounded integral, is compact e
(i) Any sequence in (a,b) has a subsequence converges to some point in $[a,b]$.

(i) For any open core of
$$
(a,b)
$$
, (a,b) , (a,b) ,

\n(where (a, b) are open intervals, could be injectively many)

\nthe (a, b) are open intervals, could be injectively many)

\nthe (a, b) are also (a, b) .

\nThus, (a, b) is $a \in (a, b)$.

\nThus, $(a, b) \subset \bigcup_{i=1}^{b} (a, a_i, b_i)$.

Detail discussion and proof are skipped.

§ 83 The Exponential and Logarithmic Functions

The Exponential Function

$$
\frac{\text{Thus } 3.1}{\text{(i)} } \exists \alpha \text{ function } E: \mathbb{R} \to \mathbb{R} \text{ s.t.}
$$
\n
$$
\text{(i)} \in (x) = E(x) , \forall x \in \mathbb{R}
$$
\n
$$
\text{(ii)} \in (0) = 1
$$

$$
\underline{Pf} = |dx \quad E_{1}(x) = 1 + x
$$
\n
$$
E_{2}(x) = 1 + \int_{0}^{x} E_{1} = 1 + \int_{0}^{x} (1 + x)dx = 1 + x + \frac{x^{2}}{2}
$$
\n
$$
\vdots
$$
\n
$$
E_{n+1}(x) = 1 + \int_{0}^{x} E_{n} \qquad y \qquad n = 1, 2, 3 \cdots
$$
\n
$$
\text{Then} \quad \text{Induction}^{\prime\prime} \quad \text{implies} \quad \text{fa all} \quad n = 1, 2, 3, \cdots
$$
\n
$$
E_{n}(x) = 1 + x + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} \qquad (Ex \setminus x)
$$

Consider a closed interval
$$
EA, AJ
$$
. $(A > 0)$
\nThen $\{u \colon X \in \neg A, AJ \text{ and } m > n > zA\}$, we have
\n $|\overline{L}_m(x) - \overline{L}_n(x)| = |\frac{x^{n+1}}{(n+1)!} + \cdots + \frac{x^m}{m!}|$
\n $\leq \frac{A^{n+1}}{(n+1)!} + \cdots + \frac{A^{m}}{m!}$ (since $|x| \leq A$)
\n $\leq \frac{A^{n+1}}{(n+1)!} \left(1 + \frac{A}{n+2} + \cdots + \frac{A^{m-n-1}}{m(m-1)\cdots(m+z)}\right)$

$$
\leq \frac{A^{n+1}}{(n+1)!} \left(1 + \frac{A}{n} + \cdots + \frac{A^{m-n-1}}{n^{m-n-1}}\right)
$$
\n
$$
\leq \frac{A^{n+1}}{(n+1)!} \left[1 + \frac{1}{2} + \cdots + \left(\frac{1}{2}\right)^{m-n-1}\right] \quad \text{(since } n > 2A\text{)}
$$
\n
$$
\leq \frac{2 A^{n+1}}{(n+1)!}
$$

Taking sup. over
$$
[-A, A]
$$
, we have $H \times n > 2A$

$$
\|F_{m} - E_{n}\|_{[A, A]} \leq \frac{2A^{n+1}}{(n+1)!} \longrightarrow 0 \text{ as } n \to \infty
$$

Cauluy (rituion fa lluifauu Conugueu (Thm.8.1.10) implies
\n
$$
E_n(x)
$$
 conveges uniformly to some function on EAAI
\nSüue A>0 as ability to some further
\n $E_n(x)$ comveys -fa all xER (not noassay uniform on R)
\n $E_n(x)$ comveys -fa all xER (not noassay uniform on R)
\n $XE[-A,A]$. Then the uniform comergence on EAAJ
\n W gives $E_n(x)$ conveges.
\n $E_n(x)$ conveges.
\n $E(x) \stackrel{deuwte}{=} \frac{Q_n}{n \ge 0} E_n(x)$, $W \in \mathbb{R}$.
\nNote that $E_n(x) = 1 + \int_0^x E_{n-1}$
\n $\Rightarrow E_n(0) = 1$, $\forall n=2,3,...$ ($E_n(0)=1$ is clear)
\n $E(0) = \frac{Q_n}{n \ge 0} E_n(0) = 1$.

Also by Fundamental Thm of Calculus (2nd Form) Thus 7m+3.5
\nand En (x) = 1 +
$$
\int_{0}^{x} E_{n-1}
$$

\nwe have $E_{n}(x) = E_{n-1}(x)$
\n \therefore 1A>0
\n \therefore 1A=0
\

Sure $Ax0$ is arbitrary, this implies $E'(x)$ exists $y \times \in \mathbb{R}$ and $E(x) = E(x)$ $\frac{1}{x}$

$$
\frac{Gr43.2}{\pm} The function \pm \text{ has divivative of } \frac{w}{2}
$$

Pf = Easy by induction.

$$
Cors33 \quad \text{If } x>0 \text{, then } E(x)>1+x
$$

From $E_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$, we have Pf : $m > n \Rightarrow E_m(x) > E_n(x)$, $\forall x > 0$ Letting $m \rightarrow \infty$, and take $n > 1$, we have $E(x) \ge E_n(x) > E_n(x) = 1+x,$ $\forall x > 0$ ╳

$$
\frac{\text{Thm} 8.34: E=R\Rightarrow R \text{ is the unique function satisfying}}{(\star)\left\{\begin{array}{l}\text{F}(x)=F(x), \forall x\in R \\
E(0)=1\end{array}\right.}
$$

$$
Pf: Suppose that E_1 \times E_2 satisfy (*)
$$
\n
$$
let F = E_1 - E_2
$$
\n
$$
Then F is differentiable and
$$
\n
$$
F' = E_1' - E_2' = E_1 - E_2 = F
$$
\n
$$
F(0) = E_1(0) - E_2(0) = 0
$$
\n
$$
Mneor, induction \implies F \text{ has }divialies of every not
$$
\n
$$
and F^{(n)} = F, \forall n=1,2,3,...
$$

Heucl
$$
F^{(4)}(0) = F(0) = 0, \forall n=1,3,3,...
$$

Applying Taylor's Thm 6.4.1 to
$$
F|_{[0,x]}
$$
 $f(x>0)$
or $F|_{[x,0]}$ $f(x>0)$

We have
$$
f_{c} \times > 0
$$

\n
$$
\begin{aligned}\n&F(x) = F(0) + F(0) \times + \cdots + \frac{F^{(n-1)}}{(n-1)!} \times + \frac{F^{(n)}(C_n)}{n!} \times^N \\
&= \frac{F(C_n)}{n!} \times^N \\
&f_{c} \quad \text{some} \quad C_n \in [0, X].\n\end{aligned}
$$

Since F is cth on [0,x], F is bdd on [0,x].	
∴ $\exists K > o$ (depends on x) such that	
F(cu) ≤ K	(4n=1,2,...
⇒ F(x) ≤ K $\frac{x^n}{n!}$	

Since
$$
\lim_{n \to \infty} \frac{x^n}{n!} = 0
$$
,
 $\lim_{n \to \infty} \frac{x^n}{n!} = 0$, $\lim_{n \to \infty} \frac{x^n}{n!} = 0$, $\lim_{n \to \infty} \frac{x^n}{n!} = 0$, $\lim_{n \to \infty} \frac{x^{n+1}}{n!} = 0$, $\lim_{n \to \infty} \frac{x^{n+1}}{n!} = 0$.
\nAll together $F(x) = 0$.
\nWe have $F(x) = 0$, $\lim_{n \to \infty} \frac{x^{n+1}}{n!} = 0$.
\nWe have $F(x) = 0$, $\lim_{n \to \infty} \frac{x^{n+1}}{n!} = 0$.

Def 8.3.5 The University function
$$
E=R \rightarrow IR
$$
 such that

\n
$$
\begin{aligned}\n&\begin{aligned
$$

$$
\begin{array}{ll}\n\text{Thm 83.6} & \text{Exponential function} & \text{E} & \text{satisfies} \\
\bullet \text{E}(x) \neq 0, \quad \forall \quad x \in \mathbb{R} \quad \text{--- } (\ddot{w}) \\
\bullet \text{E}(x+y) = \text{E}(x) \text{E}(y) \quad \forall \quad x, y \in \mathbb{R} \quad \text{--- } (\ddot{w}) \\
\bullet \text{E}(r) = e^r, \quad \forall \quad r \in \mathbb{Q}, \quad \text{--- } (v)\n\end{array}
$$

Remarks: (i'V) justifies the use of notation
$$
e^{X} = E(x)
$$
:

\n
$$
e^{X+y} = e^{x} e^{y} \qquad \forall x,y \in \mathbb{R}
$$
\n• In (V), "RHS" means the rational power of the number c

$$
\begin{aligned}\n\mathbf{Pf}: \text{iii)} \quad \text{Suppose} \quad \text{on the contrary that} \quad \mathbf{F}(\alpha) = 0 \quad \text{for some} \quad \alpha \in \mathbb{R} \,, \\
\text{Since} \quad \mathbf{E}(\alpha) = 1 \,, \quad \alpha \neq 0 \,. \\
\text{Let} \quad \mathbf{J}_{\alpha} = \text{closed interval } [\mathbf{J}_{\alpha} \mathbf{J}_{\alpha} \mathbf{J}_{\alpha}] \text{ depends on the } \text{sign of } \mathbf{d} \,. \\
\text{and} \quad \mathbf{K} > \mathbf{0} \text{ such that} \quad |\mathbf{E}(\mathbf{X})| \leq K \,, \forall \quad \mathbf{X} \in \mathbf{J}_{\alpha} \,. \n\end{aligned}
$$

As E has dividing the of all order, Taylor's Thus 6.4.
\nCase at x= d) implies
$$
4n=1333...
$$

\n
$$
E(0) = E(a) + \frac{E(a)}{1!}(0-a) + \cdots + \frac{E^{(n+1)}}{(n-1)!}(0-a)^{n-1} + \frac{E^{(n+1)}}{n!}(0-a)^{n-1} + \cdots + \frac{E^{(n+1)}}{n!}(0-a)^{n-1} + \cdots + \frac{E^{(n+1)}}{n!}(0-a)^{n-1} + \cdots + \frac{E^{(n+1)}}{n!}(0-a)^{n-1} + \frac{E(a)}{n!}(0-a)^{n-1} + \cdots + \frac{E(a)}{n!}(
$$

$$
G'(x) = \frac{E'(x+y)}{E(y)} \quad (by Chain rule)
$$

$$
= \frac{E(x+y)}{E(y)} = G(x) \quad (by (i))
$$

$$
\begin{array}{ll}\n\text{By Thm 8.3.4} & \text{G(x)} = \text{E(x)}\\
\text{E(x+y)} = \text{E(x)E(y)} & \text{B(x)F(R)}\n\end{array}
$$

 $Pf: (V)$ B_{11} (iv) $E(nx) = E((n-1)x+x) = E((n-1)x)E(x)$ $= (E((n-z)x)E(x))E(x)$ $- - = E(0) E(x)^n = E(x)^n$, $\forall n = 1, 2, 3...$ Clearly, it also holds for $n=0$: $E(o\gg)=(E(x))^{o}=1$, $\forall x$ Puttag $x=\frac{1}{n}$, we have $P = E(I) = E(n \cdot \frac{L}{n}) = [E(\frac{L}{n})]^n$ $E(\frac{1}{n}) = e^{\frac{1}{n}}$ as n-root of the number e . Fu $m \in \mathbb{Z}$, $G_{\text{QQ}}(1)$ $M \ge 0$ Then $E(\frac{m}{n}) = (E(\frac{1}{n}))^{m} = (e^{\frac{1}{n}})^{m} = e^{\frac{m}{n}}$ $Case(2)$, $m < 0$ Then $-m>0$ and $I=E(0)=E(\frac{m}{n}+\frac{(-m)}{n})=E(\frac{m}{n})E(\frac{(-m)}{n})$

$$
\therefore \quad \overline{E}(\frac{M}{n}) = \frac{1}{\overline{E}(\frac{CM}{n})} = \frac{1}{e^{\frac{CM}{n}}}
$$
\n
$$
= e^{\frac{M}{n}}
$$
\n
$$
\frac{M}{n} = \frac{1}{e^{\frac{CM}{n}}}
$$
\n
$$
\frac{1}{e^{\frac{M}{n}}}
$$
\n
$$
\frac{1}{e^{\frac{M}{n}}}
$$
\n
$$
\frac{1}{e^{\frac{M}{n}}}
$$
\n
$$
\frac{1}{e^{\frac{M}{n}}}
$$

$$
\begin{array}{c}\n\times x \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{Im } 8.3.7 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{Exponential function} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{E in the image: } x \text{ is a linearly independent,} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{F. } (R) = \{y \in R : y > 0\} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{F. } (V_1) \\
\hline\n\end{array}
$$

\n
$$
E
$$
: E differentiable an $\mathbb{R} \Rightarrow E$ contains an \mathbb{R} .
\n E 's pmed \bar{u}_1 (iii) in $\mathbb{R} \times 3.6$ $\mathbb{R} \times 10, \mathbb{R} \times$

Using (iv), if x<0, then
$$
E(x) = \frac{1}{E(x)}
$$

\n \therefore $Lia = E(x) = \frac{Lia}{N+1}$ or $\frac{1}{E(N)} = 0$.
\nFinally, with (indinality of E and He values of the
\n Lia is, U is not a unique than $ü$ gives
\n $\forall y>0$, $\exists x \in \mathbb{R}$ s.1, $y = E(x)$.
\nTherefore $E(R) = \{y \in \mathbb{R} : y > 0\}$.
\n \therefore graph of E(x) = exp(x) = e^x
\n \therefore graph of E(x) = exp(x) = e^x
\n \therefore graph of E(x) = exp(x) = e^x
\n \therefore $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by x
\n $\frac{log x}{1}$ by y
\n $\frac{log x}{1}$ by z
\n $\frac{log x}{1}$ by z

of research articles in mathematics

Note: By definition

\n
$$
\begin{cases}\n(LoE)(x) = x, \quad Hx \in \mathbb{R} \quad (\text{E} \cdot \mathbb{R} \rightarrow \{y > o\} = E(\mathbb{R})) \\
(EoL)(y) = y, \quad Hy > o\n\end{cases}
$$
\ni.e. $\ln e^{x} = x, \quad e^{\ln y} = 0$

\n(o. $\log e^{x} = x, \quad e^{\log y} = 9$)

\nThus, 8.3 • The logarithm $\lfloor x \cdot \frac{2}{x} \cdot \frac{1}{x} \cdot \$

function with dynamic
$$
3 \times \in \mathbb{R} : x > 0
$$
 and $L(3 \times 0)$ = R.

\n- $$
L'(x) = \frac{1}{x}
$$
, $\forall x > 0$
\n- $L(x) = \frac{1}{x}$, $\forall x > 0$
\n- $L(x \mid y) = L(x) + L(y)$, $\forall x > 0$, $y > 0$
\n

$$
\bullet \quad L(Xy) = L(X) + L(y) \quad, \quad \forall x > 0, \quad y > 0
$$

•
$$
L(I) = 0
$$
 $L(e) = 1$ (x)

\n- $$
L(X^{\mathsf{r}}) = rL(x)
$$
, $\forall x > 0$ and $r \in \mathbb{Q}$.
\n- $L(X^{\mathsf{r}}) = rL(x)$, $\forall x > 0$ and $r \in \mathbb{Q}$.
\n- $L(X) = -\infty$ as $L(X) = +\infty$.
\n

$$
\underline{P}f
$$
: All are easy from the definition . ($\overline{E} \times \underline{l}$)

Note that in property (x),
$$
L(x^h) = rL(x)
$$
 actually works
for irrational number $\alpha = L(x^{\alpha}) = \alpha L(x)$.
However, x^{α} is not yet designated in the Textbook
for $\alpha \notin \mathbb{Q}$.

Power Functions

Let
$$
l.3.10
$$
 If $d \in \mathbb{R}$ and $x > 0$, then
\n $x^{\alpha} \stackrel{def}{=} e^{\alpha l_{n}x} = E(\alpha l_{n})$
\nThe function $x \mapsto x^{\alpha}$ for $x > 0$ is called the
\npower function with exponential α .

Note: If
$$
d = r \in \mathbb{Q}
$$
, then $-\xi a \times v$

\n
$$
E(d(L(x)) = E(rL(x)) = E(L(x^r)) \quad (by property (x))
$$
\n
$$
= x^r
$$
\n
$$
\therefore \text{ Def.8.3.10} \text{ is consistent with previous definition for } r \in \mathbb{G}.
$$

$$
\frac{\text{Thm8.3.11}}{(a) \int_{\alpha}^{\alpha} dx} = 1, \quad (b) \times_{\alpha}^{\alpha} > 0, \quad (c) \times_{\alpha}^{\alpha} = 1, \quad (d) \times_{\alpha}^{\alpha} > 0
$$
\n
$$
\frac{\text{Tr}(x)}{\text{Tr}(x)} = \frac{1}{x} \times_{\alpha}^{\alpha} \frac{1}{x} \times \frac{1}{x}
$$

$$
\overline{\mathbb{C}} f : (\overline{\text{Cay}} \, \, \text{Exl.})
$$

Thus,
$$
x \in (0, \infty)
$$
, then

\n
$$
(a) x^{\alpha+\beta} = x^{\alpha} x^{\beta} \qquad (b) (x^{\alpha})^{\beta} = x^{\alpha+\beta} = (x^{\beta})^{\alpha}
$$
\n
$$
(c) x^{-\alpha} = \frac{1}{x^{\alpha}}, \qquad (d) \text{ If } \alpha < \beta, \text{ then } x^{\alpha} < x^{\beta} \text{ for } x > 1
$$
\n
$$
\text{If } x \in (\text{Equation E(X, 1))}
$$

 $\sim 10^{-10}$

The Function loga (logarithm of x to the base a)

