Since
$$X_k \in t_{a,b}$$
, (X_k) is a bounded seq.
Then Bolzano-Weierstrass Thm (Thm 3.4.8) implies that
 X_k has a convergence subseq $(X_{k_e})_{e=1}^{\infty}$
Let $\lim_{e \to \infty} X_{k_e} = \Xi$.

Since [4,b] is a closed interval ZE [a,b]. By assumption $g_n(z) \rightarrow 0$ as $n \rightarrow \infty$. ⇒ ∃ L>0 s,t, If $l \ge L$, then $0 \le 9n_{k_0}(z) < \frac{\varepsilon_0}{z}$ In particular $0 \leq g_{n_{k_{r}}}(z) < \frac{\varepsilon_{0}}{z}$ For clavity of presentation, denote nk, by N. Then $0 \leq g_N(z) < \frac{\varepsilon_0}{z}$ Now using containity of $g_N(=g_{N_k})$ $\lim_{N \to \infty} g_N(X_{k\ell}) = g_N(z) \qquad (since \lim_{\ell \to \infty} X_{k\ell} = z)$ ⇒ ILI>O St. if l>LI, then $\mathcal{G}_{N}(X_{k_{f}}) < \frac{\varepsilon_{0}}{2}$

Using the assumption that
$$g_n$$
 is decreasing, we have
 $g_n(x_{ke}) \leq g_n(x_{ke}) < \frac{\varepsilon_o}{z}$, $\forall n \geq N = n_{k_{L}}$

In particular, for
$$n = n_{k_e}$$
 with $l \ge \max\{l, L, \}$, we have
 $\mathcal{E}_0 \le \mathcal{G}_{n_{k_e}}(X_{k_e}) \le \frac{\mathcal{E}_0}{z}$

which is a contradiction.
Therefore
$$g_n \Rightarrow 0$$
 (milfann convergence) \bigotimes
Remark: The approach in Textbook requires the fact the t
for any given function $t \mapsto \delta(t) > 0$ on $[a,b]$
 \exists finitely many $t_i \in [a_i,b], i=1, \dots, l$ such that
 $[a_i,b] \subset \bigcup_{x=1}^{l} (t_i - \delta(t_i), t_i + \delta(t_i)).$

This needs the Thru 5.5.5 which is not covered in MATH2000.

(ii) For any open cover of table, table
$$\forall (\alpha_{\lambda}, \beta_{\lambda})$$
,
(where $(\alpha_{\lambda}, \beta_{\lambda})$ are open intervals, could be infinitely many)
thes furite subcover, i.e.
 \exists furitely many λ_{i} , $i=j,-l$ such that
 $[a,b] \subset \bigcup_{i=1}^{n} (\alpha_{\lambda_{i}}, \beta_{\lambda_{i}})$

Detail discussion and proof are skipped.

\$8.3 The Exponential and Logarithmic Functions

The Exponential Function

Thm 8.3.1
$$\exists a \text{ function } E : \mathbb{R} \rightarrow \mathbb{R} \text{ s.t.}$$

(i) $E'(x) = E(x)$, $\forall x \in \mathbb{R}$
(ii) $E(0) = 1$

$$\frac{Pf}{E} = L_{a}t \quad E_{i}(x) = 1+X$$

$$E_{i}(x) = 1+\int_{0}^{x} E_{i} = 1+\int_{0}^{x} (1+x)dt = 1+x+\frac{x^{2}}{2}$$

$$E_{n+1}(x) = 1+\int_{0}^{x} E_{n}, \quad \forall n=1,2,3...$$
Then "Induction" implies for all $n=1,2,3...$

$$E_{n}(x) = 1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!} \quad (Ex!)$$

Consider a closed interval EA, AJ. (A=0)
Then for
$$x \in EA, AJ$$
 and $m > n > 2A$, we have
 $\left| E_{m}(x) - E_{n}(x) \right| = \left| \frac{x^{n+1}}{(n+1)!} + \dots + \frac{x^{m}}{m!} \right|$
 $\leq \frac{A^{n+1}}{(n+1)!} + \dots + \frac{A^{m}}{m!}$ (since $|x| \leq A$)
 $\leq \frac{A^{n+1}}{(n+1)!} \left(1 + \frac{A}{n+2} + \dots + \frac{A^{m-n-1}}{m(m-1)\cdots(n+2)} \right)$

$$\leq \frac{A^{n+1}}{(n+1)!} \left(\left(+ \frac{A}{n} + \dots + \frac{A^{m-n-1}}{n^{m-n-1}} \right) \right)$$

$$\leq \frac{A^{n+1}}{(n+1)!} \left[\left[+ \frac{1}{2} + \dots + \left(\frac{1}{2} \right)^{m-n-1} \right] \left(Sin(p + n) > 2A \right) \right]$$

$$\leq \frac{2A^{n+1}}{(n+1)!}$$

Taking sup over [-A, A], we have
$$\forall m > n > zA$$

 $|| E_m - E_n ||_{EA, A]} \leq \frac{zA^{n+1}}{(n+1)!} \longrightarrow 0$ as $n \to \infty$

Cauchy Criterion for Uniform Convergence (Thur 8.1.10) implies

$$E_n(x)$$
 converges uniformly to some function on EA,AJ
Since A>0 is arbitrary, we canclude that
 $E_n(x)$ converges for all xER (not nocessary uniform on R)
It is because, $\forall x \in \mathbb{R}$, we can find an A>0 s.t.
 $x \in E-A, AJ$. Then the uniform convergence on EA,AJ
implies $E_n(x)$ converges.
Denote the (pointainer) lunit by
 $E(x) \stackrel{denote}{=} \lim_{n \to \infty} E_n(x)$, $\forall x \in \mathbb{R}$.
Note that $E_n(x) = 1 + \int_{\infty}^{x} E_{n-1}$
 $\Rightarrow E_n(0) = 1$, $\forall n = z, 3, \cdots$ ($E_1(0) = 1$ in clear)
House $E(0) = \lim_{n \to \infty} E_n(0) = 1$.

Also by Fundamental Thru of Calculus (2nd Form) Thu: F.3.5
and
$$E_{n}(x) = 1 + \int_{0}^{x} E_{n-1}$$
,
we have $E_{n}(x) = E_{n-1}(x)$
 $\vdots \forall A > 0$, $E_{n}'|_{EA,A]} = E_{n-1}|_{EA,A]} \Longrightarrow E|_{EA,A]}$ (Mirfum)
Then by Thru 8.2.3, together with $E_{n+1}|_{EA,A]}$ ($0 \rightarrow E(0)$)
we have $E|_{EA,A]}$ is differentiable and
 $(E|_{EA,A]})' = E|_{EA,A]}$

Since A>O is arbitrary, this implies E(x) exists $\forall x \in \mathbb{R}$ and $E(x) = E(x) \implies x$

Cord.3.2 The function
$$E$$
 that derivative of every order and $E^{(n)}(x) = E(x)$, $\forall x \in \mathbb{R}$.

Pf = Easy by induction.

 $Pf: From E_{n}(x) = 1 + x + \frac{x^{2}}{z!} + \dots + \frac{x^{n}}{n!} , we have$ $m > n \implies E_{m}(x) > E_{n}(x) , \forall x > 0$ Letting $m \Rightarrow \infty$, and take n > 1, we have $E(x) \ge E_{n}(x) > E_{i}(x) = 1 + x , \forall x > 0$

$$\frac{\text{Thm 8.3.4}}{(\texttt{X})} : E = |\mathbb{R} \to \mathbb{R} \text{ is the unique function satisfying}}$$

$$(\texttt{X}) \left\{ \begin{array}{l} E(x) = E(x), \ \forall x \in \mathbb{R} \\ E(0) = 1 \end{array} \right\}$$

Pf: Suppose that
$$E_1 \le E_2$$
 satisfy (\bigstar) .
Let $F = E_1 - E_2$.
Then F is differentiable and
 $\int F' = E'_1 - E'_2 = E_1 - E_2 = F$
 $F(0) = E_1(0) - E_2(0) = D$
Moreover, induction => F has derivatives of every other
and $F'' = F$, $\forall n = 1, 2, 3, \cdots$

Hence
$$F^{(n)}(0) = F(0) = 0$$
, $\forall n = 1, 2, 3, \cdots$

We have
$$f_{\alpha} \times > 0$$

$$F(X) = F(0) + F(0) \times + \cdots + \frac{F^{(n-1)}(0)}{(n-1)!} \times + \frac{F^{(n)}(C_n)}{n!} \times^n$$

$$= \frac{F(C_n)}{n!} \times^n \quad f_{\alpha} \text{ some } C_n \in [0, X].$$

Since F is cts on
$$[0, x]$$
, F is bdd on $[0, x]$.
 $\therefore \exists K > 0 (depends on x) such that$
 $|F(Cn)| \leq K \quad (\forall n=1,2,...)$
 $\Rightarrow \quad |F(x)| \leq K \quad \frac{x^n}{n!}$

Since
$$\lim_{n \to \infty} \frac{x^n}{n!} = 0$$
, letting $n \to \infty$, we have $|F(x)| = 0$.
 $\therefore F(x) = 0$, $\forall x > 0$
Similarly for $x < 0$, we also have $F(x) = 0$, $\forall x < 0$.
All Logether $F(x) = 0$.
i.e. $E_1(x) = E_2(x)$
 \therefore The function E is unique.

$$\begin{array}{l} \underline{Def 8.3.5} & \text{The Unique function } E=IR \rightarrow IR \text{ such that} \\ & \left\{ \begin{array}{l} E'(x) = E(x), \ \forall x \in \mathbb{R} & ----(i), \\ & E(o) = I & ----(i), \end{array} \right. \\ & E(o) = I & ----(i), \end{array} \\ \hline e^{x} \text{ called the exponential function and is denoted by} \\ & e^{x} \text{ or } exp(x) \end{array} \\ \hline \text{The number } e=E(I) \text{ is called the Euler's number}. \end{array}$$

Thm 83.6Exponential function E satisfies•
$$E(x) \neq 0$$
, $\forall x \in \mathbb{R}$ — (iii)• $E(x + y) = E(x)E(y)$ $\forall x, y \in \mathbb{R}$ — (iv)• $E(r) = e^{r}$, $\forall r \in \mathbb{R}$,— (v)

Remarks:
$$(i^{v})$$
 justifies the use of notation $e^{x} = E(x)$:
 $e^{x+y} = e^{x} e^{y}$, $\forall x, y \in \mathbb{R}$
• In (v) , "RHS" means the rational power of the number e

As E has divinative of all order, Taylor's Thm 6.4.1
(base at X=d) implies
$$\forall n=1,2,3,\cdots$$

 $E(0) = E(a) + \frac{E(a)}{1!}(0-a) + \cdots + \frac{E^{(n+1)}}{(n-1)!}(0-a)^n$
 $+ \frac{E^{(n)}(Ca)}{n!}(0-a)^n$
 $fa some Cn \in Ta.$
 $\Rightarrow 1 = E(a) + E(a)(-a) + \frac{E(a)}{n!}(a)^2 + \cdots + \frac{E(a)}{(n-1)!}(-a)^n$
 $+ \frac{E(Ca)}{n!}(-a)^n$
 $sin(a E(0)=1, and E^{(a)}=E \forall k=1,2\cdots$
By $E(a)=0, I = \frac{E(Ca)}{n!}(-a)^n$
 $\Rightarrow I \leq \frac{K(a)n}{n!}, \forall n=1,2\cdots$
 $(-\Rightarrow 0 ao n \Rightarrow 0)$
which is impossible. $\therefore E(a) \neq 0, \forall d \in \mathbb{R}.$
Pf: (iv) Fix y and consider the ratio
 $G(a) = \frac{E(a+1)}{E(a)} = a = f(a) = f(a) = f(a) = f(a) = f(a)$
 $G(a) = \frac{E(a+1)}{E(a)} = a = f(a) = f(a) = f(a) = f(a) = f(a)$
 $G(a) = \frac{E(a+1)}{E(a)} = f(a) = f(a$

$$G'(x) = \frac{E'(x+y)}{E(y)} \quad (by Chain rule)$$
$$= \frac{E(x+y)}{E(y)} = G(x) \quad (by (i))$$

By Thm 8.3.4,
$$G(X) = E(X)$$
, $\forall X \in \mathbb{R}$
 $\therefore \quad E(X+Y) = E(X)E(Y) \quad \forall X, Y \in \mathbb{R}$.

<u>P</u>{:(V) By (iv) E(NX) = E((h-1)X + X) = E((n-1)X)E(X) $= \left(E((n-z)x)E(x) \right) E(x)$ $--- = E(0) E(x)^{n} = E(x)^{n}, \quad \forall n = 1, 2, 3 \cdots$ Clearly, it also holds for $n=0 : E(0,x) = (E(x,x))^{\circ} = 1$, $\forall x$ Putting $X = \frac{1}{n}$, we have $\rho = f(I) = E(n \cdot f) = [E(f)]^n$ $=: E(t_n) = e^{t_n}$ as n-root of the number e. FR MEZ, Case (1) M≥0 Then $E(\frac{w}{m}) = (E(\frac{v}{n}))^m = (e_{\frac{w}{n}})^m = e_{\frac{w}{n}}$ (ase(2), m < 0)Then -M > 0 and $I = E(0) = E\left(\frac{M}{N} + \frac{C-M}{N}\right) = E\left(\frac{M}{N}\right) E\left(\frac{C-M}{N}\right)$

$$E\left(\frac{m}{n}\right) = \frac{1}{E\left(\frac{c-m}{n}\right)} = \frac{1}{e^{\frac{c-m}{n}}}$$

$$State -m > 0$$

$$= e^{\frac{m}{n}}$$

$$\frac{Thm \mathcal{R}.3.7}{\bullet} = \text{Exponential function } E \text{ is structly inversing on } \mathbb{R} \text{ and}$$

$$e = (\mathbb{R}) = \langle y \in \mathbb{R} = y > 0 \rangle.$$
Fourther
$$e = \lim_{X \to -\infty} \mathbb{E}(X) = 0$$

$$e = \lim_{X \to +\infty} \mathbb{E}(X) = +\infty$$

Ef: E differentiable on
$$\mathbb{R} \Rightarrow \mathbb{E}$$
 cartinuous on \mathbb{R} .
It's proved in (iii's in Thrus.3.6 that $\mathbb{E}(x) \neq 0$, $\forall x \in \mathbb{R}$.
∴ $\mathbb{E}(0) = 1 \Rightarrow \mathbb{E}(x) > 0$, $\forall x \in \mathbb{R}$.
Otherwise, intermediate value then $\Rightarrow \mathbb{E}(x_0) = 0$ for sine x_0
which is a contradiction.
Hence $\mathbb{E}(x) = \mathbb{E}(x) > 0$ $\forall x \in \mathbb{R}$
which implies \mathbb{E} is structly increasing.
By $\mathbb{C}_0 \times \mathbb{R}$.
 $\Rightarrow \lim_{x \Rightarrow foo} \mathbb{E}(x) = +\infty$.

Using (iv), if
$$X < 0$$
, then $E(x) = \frac{1}{E(x)}$
... line $E(x) = \sqrt{1 + \frac{1}{E(x)}} = 0$.
Finally, with continuity of E and the values of the
limits, intermediate value them implies
 $\forall y > 0$, $\exists x \in \mathbb{R}$ s.t. $y = E(x)$.
Therefore $E(\mathbb{R}) = \frac{1}{2} \oplus \mathbb{R} : \frac{1}{2} > 0$.
 $f(x) = \frac{1}{2} \oplus \frac{1}{2$

Note: By definition

$$\begin{cases}
(L \circ E)(x) = x, \quad \forall x \in \mathbb{R} \quad (E \colon \mathbb{R} \Rightarrow \{y > 0\} = E(\mathbb{R})) \\
(E \circ L)(y) = y, \quad \forall y > 0
\end{cases}$$
i.e. $ln e^{x} = x, \quad e^{lny} = y$
($\alpha \quad log e^{x} = x, \quad e^{log y} = y$)

$$\begin{cases}
(\alpha \quad log e^{x} = x, \quad e^{log y} = y)
\end{cases}$$

Thus 3.9 • The logarithm L:
$$\{x > 0\} \Rightarrow \mathbb{R}$$
 is a strictly increasing
function with domain $\{x \in \mathbb{R} : x > 0\}$ and $L\{x > 0\}\} = \mathbb{R}$.
• $L'(x) = \frac{1}{x}, \forall x > 0$ (vii)
• $L(xy) = L(x) + L(y), \forall x > 0, y > 0$ (viii)
• $L(1) = 0$ & $L(e) = 1$ (ix)
• $L(x^{+}) = rL(x), \forall x > 0$ and reG (x)
• $L(x^{+}) = rL(x), \forall x > 0$ and reG (x)
• $L(x^{+}) = rL(x), \forall x > 0$ and reG (x)
• $L(x^{+}) = rL(x) = -\infty$ & $\lim_{x \to +\infty} L(x) = +\infty$ (xi)

Pf: All are easy from the definition. (Ex!)

Note that in property
$$(X)$$
, $L(X^{t}) = rL(X)$ actually works
for irrational number $\alpha = L(X^{\alpha}) = \alpha L(X)$.
However, X^{α} is not yet definited in the Textbook
for $\alpha \notin \mathbb{Q}$.

Power Functions

Defd. 3.10 If
$$d \in \mathbb{R}$$
 and $x > 0$, then
 $\chi^{\alpha} \stackrel{\text{def}}{=} e^{\alpha \ln x} = E(\alpha L(x))$
The function $x \mapsto x^{\alpha}$ for $x > 0$ is called the
power function with exponent α .

Note: If
$$d = r \in \mathbb{Q}$$
, then fax>0
 $E(dL(X)) = E(rL(X)) = E(L(X^{-1}))$ (by property (X))
 $= X^{r}$
 \therefore Def 8.3.10 is consistent with previous definition fare G.

$$\frac{\text{Thm 8.3.11}}{(a) \int^{a} = 1}, \quad (b) \quad x^{a} > 0, \quad (c) \quad (xy)^{a} = x^{a} y^{a}, \quad (d) \quad (\frac{x}{y})^{d} = \frac{x^{d}}{y^{a}}$$

$$Pf : (\text{Eary Ex!})$$

$$\frac{\text{Thm} 8.3.12}{(\alpha) X^{\alpha+\beta} = X^{\alpha} X^{\beta}} = (b)(X^{\alpha})^{\beta} = x^{\alpha\beta} = (X^{\beta})^{\alpha},$$
(a) $X^{\alpha+\beta} = X^{\alpha} X^{\beta},$
(b) $(X^{\alpha})^{\beta} = x^{\alpha\beta} = (X^{\beta})^{\alpha},$
(c) $X^{-\alpha} = \frac{1}{X^{\alpha}},$
(d) If $d < \beta$, then $X^{\alpha} < X^{\beta}$ for $X > 1$

Pf : (Easy EX!)

$$\frac{\text{Thm} 8.3.3}{\text{X} \mapsto X^{\alpha}} \text{ is } \frac{\text{continuous}}{\text{continuous}} \text{ and } \frac{\text{differentiable}}{\text{differentiable}} \text{ on } (0, \infty), \text{ and} \\ D X^{\alpha} = dX^{\alpha-1} \\ \frac{Pf}{P}: \text{ Chain rule} \Rightarrow X^{\alpha} \text{ is differentiable} \text{ a hence cartinuous} \\ and D X^{\alpha} = D(E(\alpha L(X))) = E(\alpha L(X)) D(\alpha L(X)) \\ = E(\alpha L(X)) \cdot \alpha D(L(X)) \\ = \alpha X^{\alpha} \cdot \frac{1}{X} = \alpha X^{\alpha-1} \cdot X^{\alpha} \\ \end{array}$$

The Function loga (logarithm of x to the base a)

$$\frac{Def 8.3.14}{\log_{a}(x)} \quad \frac{dof}{dof} \quad \frac{\ln x}{\ln a} \quad fa \ x > 0.$$