eg 8.1,2d)
$$\forall x \in \mathbb{R}$$
, $|F_h(x) - F(x)| \le h < \varepsilon (\Rightarrow h > \frac{1}{\varepsilon})$
Only read to choose $|K(\varepsilon) = [\frac{1}{\varepsilon}] + 1$
which is independent of x and waks for all $X \in \mathbb{R}$.

Remarks: (i) In this case, we say that
(fn) is uniformly convergent on Ao, and denoted by

$$\cdot fn \Rightarrow f$$
 on Ao or
 $\cdot fn(x) \Rightarrow f(x) fn x \in Ao$
(Or in some other books, $fn \Rightarrow f$ uniformly on Ao)

(ii) uniform convergence
$$\implies$$
 pointwise convergence
i.e. "fn \Rightarrow f on Ao" \implies "fn \Rightarrow f on Ao"
(Easy from the definitions)

$$\begin{split} \underbrace{\operatorname{lownund} e.l.s}: & f_n: A \rightarrow R \quad \underline{\operatorname{does} not} \quad \underline{\operatorname{canage} \ uniformly} \quad an A_0 \leq A \text{ to} \\ & S: A_0 \rightarrow R \\ \Leftrightarrow \quad \exists \quad e_{0} > 0 \quad , \\ & (a \text{ subsequence} (Sn_k) \circ f (S_n) \, , and \\ & (a \text{ seg. } X_k \in A_0) \\ & \text{such that} \\ & \left| f_{n_k}(X_k) - f(X_k) \right| \geq \mathcal{E}_0 \, , \forall k = 1, 2, 3 \cdots \\ \end{aligned} \\ e = e_0 > 0 \, , such that \quad \forall \quad k (= K(e_k)) \in \mathbb{N} \, , \\ & \text{the statement} \\ & \exists \quad e_0 > 0 \, , such that \quad \forall \quad k (= K(e_k)) \in \mathbb{N} \, , \\ & \text{the statement} \\ & \exists \quad h > k \, , \quad \text{then } |f_n(x) - f(x_k)| < \mathcal{E}_0 \, , \forall x \in A_0 \, . \\ & \text{doesn't foeld} \, . \\ & i.e. \quad \exists \quad n_k(z_k) \in \mathbb{N} \, s.t \, . \\ & \quad \|f_{n_k}(x) - f(x_k)| < \mathcal{E}_0 \, , \forall x \in A_0 \, . \\ & \text{i.f.} \quad \exists \quad X_k \in A_0 \, s.t \, . \quad \|f_{n_k}(x_k) - f(x_k)| \geq \mathcal{E}_0 \\ & \text{All together} \, , \quad \exists \quad e_0 > 0 \, , (f_{n_k}) \, subseg \quad \& (X_k) \subset A_0 \, s.t \, . \\ & \quad \|f_{n_k}(x_k) - f(x_k)| \geq \mathcal{E}_0 \, . \quad , \\ & \quad & \\ & \left| f_{n_k}(x_k) - f(x_k)| \geq \mathcal{E}_0 \, . \quad , \\ \end{array} \right.$$

Eg 8,1,6

(a)
$$ggll(Z(Q), f_n(x)) = \frac{x}{n}, f(x) = 0$$
 (Ao=IR)
Consider $N_k = k, X_k = k \in \mathbb{R}$. Then
 $|f_{N_k}(x_k) - f(x_k)| = |\frac{X_k}{n_k} - 0| = |\frac{k}{k}| = 1$
.: Choosing $\mathcal{E}_0 = 1$, then Lemma $\mathcal{E}_1(.5) = \int_{\mathcal{D}_1} \frac{1}{2} \int_{\mathcal{D}_2} f$ on IR

(b) egd. (.2 (b)
$$g_{n}(x) = x^{n}$$
, $g(x) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} x < 1 \\ x = 1 \end{pmatrix}$, $A_{0} = (-1, 1)$
Causider $h_{k} = k$, $x_{k} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}^{k} (1x_{k} < 1)$
Then $\left| g_{n_{k}}(x_{k}) - g(x_{k}) \right| = \left| \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix}^{k} \right]^{k} - 0 \right| = \frac{1}{2}$, $\forall k$

Choosing
$$\varepsilon_0 = \frac{1}{2}$$
, Lemma 8.1.5 $\Rightarrow X^n \neq g$ on (-1,1].

(c)
$$ggl.l.z(c)$$
 $fln(x) = \frac{x^2 + hx}{n}$, $fl(x) = x$, $A_0 = lR$
Cansider $n_k = k$, $x_k = -R$,
Then $\left| fl_{n_k}(x_k) - fl(x_k) \right| = \left| \frac{(x_k)^2 + n_k x_k}{n_k} - x_k \right|$
 $= \left| \frac{(-k)^2 + k \cdot (-k)}{k} - (-k) \right|$
 $= R \ge l$ ($\rightarrow \infty$)
Chooses $\mathcal{E}_0 = 1$, lemma $\mathcal{E}_{l.S} \Longrightarrow fl_n \neq \mathcal{F}_0$ at IR .

Defalt (Uniform Norm)
If
$$P:A > R$$
 is bounded on A (i.e. $P(A)$ is a bounded subset of R .),
then we define the uniform norm of $P \text{ on } A$ by
 $\|P\|_{A} = Aup i |P(x)| : x \in A i$.
Remark: $\|P\|_{A} \le \iff |P(x)| \le \varepsilon, \forall x \in A$.
Remark: $\|P\|_{A} \le \iff |P(x)| \le \varepsilon, \forall x \in A$.
Lemma Elle: $f_{h} \Rightarrow f$ on $A \iff \|f_{h} - f\|_{A} \Rightarrow 0$.
Ef: (\Rightarrow) $f_{h} \Rightarrow f$ on $A \iff \|f_{h} - f\|_{A} \Rightarrow 0$.
Ef: (\Rightarrow) $f_{h} \Rightarrow f$ on A .
By Def 8.1.4, $\forall \varepsilon > 0$, $\exists K(\xi) \in \mathbb{N}$
 $s.t.$ if $n > K(\xi)$, then
 $|f_{n}(x) - f(x)| < \xi, \forall x \in A$
 $\therefore \forall \varepsilon > 0, \exists N(\varepsilon) = K(\xi) \in \mathbb{N}$ $s.t.$ if $n > N(\varepsilon)$
 $||f_{h} - f||_{A} \le \xi - \varepsilon$ (by remark above)
i.e. $||f_{h} - f||_{A} \Rightarrow 0$ as $n \Rightarrow \infty$.
 (\Leftarrow) If $||f_{h} - f||_{A} \Rightarrow 0$. Then $\forall \varepsilon > 0, \exists K(\varepsilon) \in \mathbb{N}$ s.t.
if $n > K(\varepsilon)$, $||f_{h} - f||_{A} < \varepsilon$.

- $\implies |f_{\mathcal{N}}(x) f(x)| < \mathcal{E}, \forall x \in \mathcal{A}.$
 - $\therefore f_n \Rightarrow f \text{ on } A$. X

<u>Eq.8.1.9</u>

(a) eg. (1.2 (a), $f_n(x) = \frac{x}{n}$ on \mathbb{R} , f(x) = 0, on \mathbb{R} . $S_n(x) - f(x) = \frac{x}{n}$ is unbounded, $\|f_n - f\|_{\mathbb{R}}$ is not defined. However, if one consider only on the interval $A = \overline{to}, 1\overline{J}$. Then $S_n(x) - f(x) = \frac{x}{n}$ is bounded on $\overline{to}, 1\overline{J}$, and $\|f_n - f\|_{\overline{to}, 1\overline{J}} = \sup \{|f_n| = x \in \overline{to}, 1\overline{J}\}$ $= \frac{1}{n} (-> 0 \text{ as } n > 63)$ $\therefore S_n|_{\overline{to}, 1\overline{J}} \Rightarrow 0 \text{ on } \overline{to}, 1\overline{J}$

(in fact Sn = f on any bounded subset, but 73 on unbounded subset)

(b) eg. 8.1.2(b), consider only on $[0,1] \leq A_0$. Then $g_n(x) = x^n$, $g(x) = \begin{cases} 0, & 0 \leq x \leq 1 \\ 1, & x = 1 \end{cases}$.

$$\begin{split} \|g_{n}-g\|_{[0,1]} &= \sup\{|g(x)-g(x)|: x \in [0,1]\} \\ &= \sup\{|x^{n}-g(x)|=\{x^{n}, 0 \le x \le 1 \\ 0, x = 1 \\ \end{bmatrix} \\ &= 1 \quad (sin(x^{n}) \ge 1 \text{ as } x \ge 1^{-}) \\ \|g_{n}-g\|_{[0,1]} \neq 0, \quad \vdots \quad g_{n} \not\equiv g \quad \text{on } [0,1]. \end{split}$$

(C)
$$ggl(1,2(c))$$
, $h_n(x) = \frac{x+nx}{n}$, $h(x)=x$ on \mathbb{R}
But $h_n(x) - h(x) = \frac{x^2}{n}$ is not bounded on \mathbb{R} .
 $\therefore ||f_{1n} - f_{1}||_{\mathbb{R}}$ doesn't define
But $h_n(x) - h(x) = \frac{x^2}{n}$ is bounded on $IO, 8I$, and
 $||f_{1n} - f_{1}||_{IO, 8I} = \sup_{n} \frac{1}{n} \frac{|x^2|}{n}$, $x \in [0, 8I] = \frac{64}{n}$
 $\rightarrow 0$ as $n \neq \infty$
 $\therefore h_n \Rightarrow h \text{ on } [0, 8]$ (but not on \mathbb{R})

$$(d) \quad \text{ggl.1.2}(d) \quad \text{Fn}(X) = \frac{1}{n} \text{sin}(n(X+1)), \quad \text{F}(X) = 0 \quad \text{m } \mathbb{R}, \\ |F_n(X) - F(X)| \leq \frac{1}{n}, \quad \forall X \in \mathbb{R} \\ \Rightarrow \quad ||F_n - F||_{\mathbb{R}} \leq \frac{1}{n} \qquad (\text{in } \text{fact } ||F_n - F|| = \frac{1}{n} (F_X !)) \\ \Rightarrow \quad 0 \quad \text{as } n \Rightarrow \infty \\ \therefore \quad F_n \Rightarrow F \quad \text{on } \mathbb{R}.$$

(e) A = [0,1], $G_n(x) = x^n(1-x)$. Clearly $G_n(x) \rightarrow 0 \quad \forall x \in [0,1]$ (EX!) \therefore G_n converges <u>pointwisely</u> to G(x) = 0 on A = [0,1]. To see whether G_n converges <u>uniformly</u> to G on [0,1], we calculate $\|G_n - G_n\|_{[0,1]}$:

$$\begin{aligned} \forall x \in [0, 1], \quad [G_{n}(x) - G_{n}(x)] &= x^{n}((1-x) \ge 0 \\ \text{which is } 0 \quad \text{at } x = 0, 1 \\ \text{Far interiar max} : \quad X \neq 0, 1 \\ 0 &= (x^{n}((1-x))) = nx^{n-1}((1-x) - x^{n}) \\ &= x^{n-1}((n - (n+1)x)) \\ &= x^{n-1}((n - (n+1)x)) \\ &= x^{n}(n+1) \\ \text{(alg cuttcal pt, touce 'maximum')} \\ \text{aucl } \|G_{n} - G_{n}\|_{[0,1]} = (\frac{n}{n+1})^{n}(1 - \frac{n}{n+1}) \\ &= \frac{1}{(1 + \frac{1}{n})^{n}} \cdot \frac{1}{n+1} \end{aligned}$$

Note that
$$\lim_{n \to \infty} (1+\frac{1}{n})^n = e$$
, we have
 $\|G_n - G\|_{[0,1]} \rightarrow 0$ as $n \rightarrow \infty$
 \therefore Gn converges uniformly to G on $[0,1]$.

$$\begin{array}{l} \underline{\text{Thm 8.1.10}} \left(\underline{\text{Cauchy Criterion fn Uniform Convergence}} \right) \\ \text{let fn be a seq: of bounded functions on A. Then} \\ \\ \underline{\text{fn converges uniformly to a bounded function f on A}} \\ \\ \\ \hline \forall \mathbb{E} > 0, \exists H(\mathbb{E}) \in \mathbb{N} \text{ s.f. } \forall m, n \neq H(\mathbb{E}), \\ \\ \\ \\ \underline{\text{llfm}} - \underline{f_n \|_A} < \mathbb{E}. \end{array}$$

(
$$\Leftarrow$$
) Conversely, if $\forall E>0$, $\exists H(E)>0$ s.t.
 $\forall m, n > H(E)$, $||f_m - f_n||_A < E$.
Then $\forall x \in A$, $|f_m(x) - f_n(x)| \leq ||f_m - f_n||_A < E$ (\bigstar)
 $\Rightarrow (f_n(x))$ is a Cauchy sequence.
By completeness of R ($\exists hu, 3.5.5$), $f_n(x)$ is convergent.
Since the limit objects on X, we denote it by
 $f(x) \stackrel{det}{=} \lim_{n \to \infty} f_n(x)$.
($f(x)$ is the pointurise lemit of $f_n(x)$)

Then letting $m \to \infty$ in (\star) , we have $|f(x) - f_n(x)| \leq \varepsilon$, $\forall x \in A$.

ie. 42>0, ∃H(E) ∈ M s.t. if N>H(E), |f(x)-fn(x)| ≤ E, ∀ x ∈ A.

Suice E>O is arbitrary, this shows that for converges uniformly to f on A. X

\$8.2 Interchange of Limits

(c)
$$\int_{n}^{2} x$$
, $0 \le x \le \frac{1}{n}$
 $\int_{n}^{2} (x - \frac{2}{n})$, $\int_{n}^{1} \le x \le \frac{2}{n}$ (well-defined
 $at x = \frac{1}{n}$ and
 $x = \frac{2}{n}$
($n \ge z$) 0 , $\frac{2}{n} \le x \le 1$

It is easy to prove

$$\lim_{n \to \infty} f_n(x) = 0$$
, $\forall x \in [0,1]$
 $\therefore \quad f_n \to 0$ pointurisely
 $a_n = \frac{1}{n}$
As f_n is ct_n , f_n is Riemann integrable
and $\int_0^1 f_n = 1$, $\forall n \ge 2$.
 $\therefore \qquad \lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 \lim_{n \to \infty} f_n$.
 $\therefore \qquad \operatorname{Integral of pointurise limit $\neq \lim_{n \to \infty} f \text{ integrals}$.$

(d) Let $f_{n}(x) = znxe^{-nx^{2}}$, $x \in [0,1]$. Then $\int_{0}^{1} f_{n} = \int_{0}^{1} znxe^{-nx^{2}} dx$ $= \int_{0}^{1} (-e^{-nx^{2}})' dx$ $= -e^{-nx^{2}} \int_{0}^{1} = 1 - e^{-nx^{2}}$ $\therefore \qquad \lim_{n \to \infty} \int_{0}^{1} f_{n} = 1$

But
$$\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} 2n \times e^{-n \times 2} = 0 \quad \forall \times \in [0, 1]$$

 $\therefore \quad \int_{0}^{1} \lim_{n \to \infty} \lim_{n \to \infty} n = 0 \neq \lim_{n \to \infty} \int_{0}^{1} \lim_{n \to \infty} \int_{0}^{1} \lim_{n \to \infty} \frac{1}{n}$

$$\begin{array}{l} \hline \text{Interchange of Limit and Continuity} \\ \hline \hline \text{Ihm 8.2.2} \quad \text{Lot} \quad & \text{Sn} = A \Rightarrow IR \text{ seg of containing functions}} \\ & \quad & f = A \Rightarrow R \\ & \quad & f = A \\ & \quad & f = A$$

Now if CEA, then $\forall x \in A$ $|f(x) - f(c)| \leq |f(x) - f_{H}(x)| + |f_{H}(x) - f_{H}(c)| + |f_{H}(c) - f(c)|$ $\leq ||f_{H} - f_{H}|_{A} + |f_{H}(x) - f_{H}(c)| + ||f_{H} - f_{H}|_{A}$ $\leq \frac{2E}{2} + |f_{H}(x) - f_{H}(c)|$

Since
$$f_H$$
 is continuous, $\exists \delta_{\mathcal{E}}(c) > 0$ such that
if $|X-C| < \delta_{\mathcal{E}}$, then $|f_H(x) - f_H(c)| < \mathcal{E}_3$.

Therefore, we have proved that

$$\forall E > 0, \exists \delta_{E}(E) > 0 \text{ S.H.}$$

 $if |X-C| < \delta_{E},$
 $|f(X) - f(C)| < \frac{ZE}{3} + \frac{E}{3} = E$
 \therefore Since CEA is arbitrary, f is cartinations on A X

Interchange of Limit and Derivative

Then
$$\exists$$
 differentiable $f: I > R$
such that $\begin{cases} a < b & finite numbers, \\ (a, b], (a, b], (a, b), (a, b) \end{cases}$
 $f = a & bounded interval $\begin{pmatrix} a < b & finite numbers, \\ (a, b], (a, b), (a, b) \end{pmatrix}$
 $f = f = f \\ f =$$

Remark: Suice Shi is not assumed to be containons, Shi may not integrable and hence the Fundamental Thm of Calculus may not applicable.

$$f_{m}(x) - f_{n}(x) = f_{m}(x_{0}) - f_{n}(x_{0}) + (f_{m}(y) - f_{n}(y_{0}))(x - x_{0})$$

$$\Rightarrow |f_{m}(x) - f_{n}(x_{0})| \leq |f_{m}(x_{0}) - f_{n}(x_{0})| + |f_{m}(y) - f_{n}(y_{0})|(x - x_{0})| \leq |f_{m}(x_{0}) - f_{n}(x_{0})| + ||f_{m} - f_{n}||_{I} (b - a),$$

where a<b are the endpts of I.

Taking sup over
$$x \in I$$
, we have
 $\|f_m - f_n\|_{I} \leq |f_m(x_0) - f_n(x_0)| + \|f_m - f_n'\|_{I} (b-a) - (*)$
Since $f'_n \Rightarrow 9$,

Calledy criterion for uniform convergence (Thur 8.1.10) implies

$$\forall \epsilon > 0$$
, $\exists H_1 = H(\frac{\epsilon}{z(b-a)}) \in \mathbb{N}$ such that
 $\|f_m - f_n\|_{\mathbb{I}} < \frac{\epsilon}{z(b-a)}$, $\forall m, n \geq \mathbb{H}$,

Since
$$(f_n(x_0))$$
 converges,
Cauchy criterian for convergence of sequence (Thm3.5.5) implies.
 $\forall E \ge 0$, $\exists H_2 = H(\frac{E}{2}) \in \mathbb{N}$ such that
 $|f_m(x_0) - f_n(x_0)| < \frac{E}{2}$, $\forall m, n \ge H_2$

Hence Using
$$(\not K|_1)$$
,
 $\forall E > 0$, $\exists H = \max\{H_1, H_2 \leq E|N\}$ such that
 $\|f_m - f_n\|_{L} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)}(b-a) = \varepsilon$

Then Cauchy Criterian for uniform convegence again implies
$$f_m \Rightarrow f$$
 for some function $f: I \Rightarrow \mathbb{R}$ (conveges uniformly to some f)

Next, we need to show that f is differentiable and S' = g. (To be called next time)