$$
eg 8.1.2d)
$$
 $\forall x \in \mathbb{R}$, $|F_n(x) - F(x)| \le \frac{1}{n} \le \epsilon$ $(\Rightarrow n > \frac{1}{\epsilon})$
\nOnly need to choose $K(\epsilon) = [\frac{1}{\epsilon}] + 1$
\n $with \geq \text{ independent } \circ f \times \text{ and works } fa \text{ all } X \in \mathbb{R}$.

Def.8.1.4 (Uniform Convergence)
A seq. $f_n: A \Rightarrow IR$ converges uniformly on $A_0 \subseteq A$ to a function
$f = A_0 \Rightarrow R$
\therefore $\forall \xi > 0$, $\exists K(\xi) \in \mathbb{N}$ (depends on ξ , but not on $x \in A_0$)
$S. \vdots$ $\therefore \exists \xi \in \mathbb{N} \Rightarrow K(\xi) = f(x) \iff \xi \in \mathbb{N} \Rightarrow f(x) \iff \xi \in \mathbb{N}$

Remarks: (i) In this case, we say that

\n(
$$
Sh
$$
) is uniformly convergent on Ho , and denoted by

\n• $Sn \rightrightarrows f$ on Ao or

\n• $Sn(x) \rightrightarrows f(x)$ for $x \in Ao$

\n($Orin$ same other books, $Sn \rightrightarrows f$ uniformly an Ao)

(i')
$$
u\omega_{\text{f}}\omega_{\text{u}}\omega_{\text{g}}\omega_{\text{u}} \Rightarrow \text{pointwise concque}
$$

\ni e. $u \leftrightarrow u \Rightarrow f \circ u \wedge v' \Rightarrow u' \leftrightarrow f \circ u \wedge v'$
\n $(\text{Eagy from the definitions})$

Lemma 8.1.5:	$f_n: A \rightarrow R$ does not compute uniformly on $A_0 \in A$ to
$f: A_0 \rightarrow R$	
\Leftrightarrow \exists \bullet $\epsilon_0 > 0$,	
\bullet $\epsilon_0 > 0$,	
\bullet $\epsilon_0 > 0$,	
\bullet $\epsilon_0 > 0$,	
\bullet $\epsilon_0 > 0$,	
\therefore α seq . $X_k \in A_0$	
$\frac{1}{3} \int_{n_k} (X_k) - \frac{1}{3} (X_k) \leq \epsilon_0$, $\frac{1}{3} (k = 1, 3, 3, \cdots)$	
$\frac{1}{3} \int_{n_k} (X_k) - \frac{1}{3} (X_k) \leq \epsilon_0$, $\frac{1}{3} (x = 1, 3, 3, \cdots)$	
$\frac{1}{3} \int_{n_k} (X_k) \leq \frac{1}{3} (X_k) \$	

 E_{g} $g_{l,b}$

(a)
$$
egd.l.2(a, f_n(x) = \frac{x}{n}, f(x)=0
$$
 (A₀=R)
Consider $n_k = k, x_k = k \in \mathbb{R}$. Then

$$
|S_{n_k}(x_k) - f(x_k)| = |\frac{x_k}{n_k} - 0| = |\frac{k}{k}| = 1
$$

: Cluosing $\epsilon_0 = 1$, then lemma $8.l.5 \Rightarrow 5n \neq 5$ on R

(b)
$$
\varphi_{\theta}g_{1,2}(b)
$$
 $\varphi_{n}(x)=x^{n}, \varphi(x)=\{\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} x=1 \\ x=1 \end{pmatrix}, A_{0}=(-1,1)\}$
 $\zeta_{n}(x) = \int_{0}^{x} x^{n} \left(\begin{pmatrix} 1 & x \end{pmatrix}, A_{0} = (-1,1)\right)$
 $\zeta_{n}(x) = \int_{0}^{x} \sin(x) dx = \int_{0}^{x} \sin(x) dx = \int_{0}^{x} \sin(x) dx = \int_{0}^{x} \sin(x) dx = \int_{0}^{x} \cos(x) dx = \int_{$

Choosūg
$$
\epsilon_0 = 1/2
$$
, lemuual.Is \Rightarrow $X^n \not\Rightarrow g$ on (-1, 1].

(c)
$$
\omega_{0}g.l.2
$$
 (c) $\hat{u}_{n}(x) = \frac{x^{2}+nx}{n}$, $\hat{u}_{1}(x)=x$, $A_{0}=IR$
\n
$$
Carsider \quad n_{k}=k, \quad x_{k}=-R,
$$
\n
$$
Than \quad |\theta_{n_{k}}(x_{k})-\hat{u}_{1}(x_{k})| = \left|\frac{(\mu_{k})^{2}+n_{k}x_{k}}{n_{k}}-x_{k}\right|
$$
\n
$$
= \left|\frac{(-k)^{2}+k\cdot(-k)}{k}-(-k)\right|
$$
\n
$$
= R \ge 1 \qquad (-\infty)
$$
\n
$$
Chas_{0} \quad \xi_{0}=1, \quad \text{lemma } g.l.S \implies \quad \theta_{n_{0}} \nRightarrow R \quad \text{on } IR.
$$

Qf.81.7 (Uniform Norm)
1.7 $\varphi: A \rightarrow R$ is bounded and (i.e. $\theta(A)$) is a bounded subset of F.)
1.8 $\varphi: A \rightarrow R$ is bounded and (i.e. $\theta(A)$) is a bounded subset of F.)
1.9 $ \varphi _A = \text{sup} \{\varphi(x) : x \in A\}$
1.9 $ \varphi _A \leq \xi \iff \varphi(x) \leq \xi, \forall x \in A$
1.1 $ \varphi _A \leq \xi \iff \varphi(x) \leq \xi, \forall x \in A$
2.1 (\Rightarrow) $5_n \Rightarrow \xi$ on A
3.1 $ \varphi _A \leq \xi$ on A
4.1 (\Rightarrow) $5_n \Rightarrow \xi$ on A
5.1 $-\xi$ in $ \xi(x) \leq \xi(x)$ is the following equation.
5.1 $-\xi$ in $ \xi(x) - \xi(x) < \xi$, $ \xi(x) \in A$
1. $ \xi(x) - \xi _A \Rightarrow 0$ as $n \Rightarrow \infty$
1. $ \xi(x) - \xi _A \Rightarrow 0$ as $n \Rightarrow \infty$
1. $ \xi(x) - \xi(x) < \xi$ is the following equation.

$$
|\mathcal{F}_{n}(x)-\mathcal{F}(x)|<\mathcal{E}, \forall x\in A
$$

 \therefore \Rightarrow f an A \therefore $\not\approx$

 $Eq. 8.1.9$

(a) $eg\ell(1.201), \xi_{n}(x) = \frac{x}{n}$ on $\mathbb{R}, \xi(x) = 0, \text{on } \mathbb{R}.$ $S_{n}(x)-f(x)=\frac{x}{n}$ is unbounded, $||f_{n}-f||_{R}$ is not defined. However, if one consider only on the interval $A=Co/J$. Then $f_{n}(x) - f(x) = \frac{x}{n}$ is bounded on $[0,1]$, and $||f_{n}-f||_{[0,1]} = \sup \{|\xi| > x \in [0,1]\}\$ $=\frac{1}{n}$ (\rightarrow 0 as n \rightarrow 60) \therefore $S_{n}|_{[0,1]} \Rightarrow 0$ on $[0,1]$

(in fact $S_n \ncong f$ on any bound of subset, but \ncong on unbounded subset)

 (b) eg $g(1,2(b))$, consider only on $[0,1] \subseteq A_0$. Then $g_n(x) = x^0$, $g(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$

$$
||g_{n}-g||_{[0,1]} = \text{sup} \{ |g(x) - g(x)| : x \in [0,1] \}
$$

= $\text{sup} \{ |x^{n}-g(x)| = \frac{x^{n}}{0}, \frac{0 \le x < 1}{x - 1} \}$
= 1 $(\text{sum } x^{n} > 1 \text{ as } x \to 1^{-})$
= 1 $(\text{sum } x^{n} > 1 \text{ as } x \to 1^{-})$

C)
$$
gl(1.2 (c) \quad f_{n}(x) = \frac{x^{2}+nx}{n}, f_{n}(x)=x
$$
 on R
\nBut $f_{n}(x)-f_{n}(x) = \frac{x^{2}}{n}$ is not bounded on R.
\n \therefore $||f_{n}-f_{n}||_{R}$ *desn't define*
\nBut $f_{n}(x)-f_{n}(x) = \frac{x^{2}}{n}$ is bounded on $[0,8]$, and
\n $||f_{n}-f_{n}||_{L^{0},R_{1}} = \sup \{|\frac{x^{2}}{n}|, x \in [0,8]\} = \frac{64}{n}$
\n $\Rightarrow 0$ as $n \Rightarrow \infty$
\n \therefore $f_{n} \Rightarrow f_{n} \text{ on } [0,8]$ *(but not on R)*

 $\left(\right)$

(d)
$$
ug\{1.2(d, F_{n}(x) = \frac{1}{n}ain(n(x+1)), F(x) = 0 \text{ m } \mathbb{R}\}
$$

\n $|F_{n}(x)-F(x)| \le \frac{1}{n}, \quad \forall x \in \mathbb{R}$
\n $\Rightarrow \|F_{n}-F\|_{\mathbb{R}} \le \frac{1}{n} \quad (\text{in fact } ||F_{n}-F|| = \frac{1}{n} (Ex))$
\n $\Rightarrow 0 \text{ as } n \Rightarrow \infty$
\n $\therefore F_{n} \Rightarrow F \text{ on } \mathbb{R}$

(e)
$$
A = [0,1]
$$
, $G_n(x) = x^n(1-x)$.

\nClearly, $G_n(x) \to 0$ $\forall x \in [0,1]$ $(\exists x!)$

\nFor the complex point $\forall n$ is a $G(x) = 0$ and $A = [0,1]$.

\nTo see whether G_n converges uniformly to G on $[0,1]$, we calculate $||G_n - G||_{[0,1]}$:

$$
W \times F[0,1] \qquad |G_{1n}(x) - G(x)| = X^{n(1-x)} \ge 0
$$
\n
$$
W \times F[0,1] \qquad |G_{1n}(x) - G(x)| = X^{n(1-x)} \ge 0
$$
\n
$$
F_{\alpha}
$$
\n<

Note that
$$
\lim_{n\to\infty} (1+\frac{1}{a})^n=0
$$
, we have
\n $||G_n-G||_{[0,1]} \to 0$ as $n\to\infty$
\n $\therefore G_n$ converges uniformly to G on [0,1].

$$
Pf: (\Rightarrow) f_n \text{ converges uniformly to } f \text{ on } A \text{ (both } f_1, f \text{ add})
$$
\n
$$
\Rightarrow \|f_n - f\|_A \Rightarrow \circ \text{ (lemma } g_1, g_1)
$$
\n
$$
\Rightarrow \|f_n - f\|_A \Rightarrow \circ \text{ (lemma } g_1, g_1)
$$
\n
$$
\therefore \forall g > 0, \exists K(g_1) \in M \text{ s.t.}
$$
\n
$$
\therefore \forall n \ge K(g_2) \in M \text{ s.t.}
$$
\n
$$
\therefore \forall n \ge K(g_2) \text{ then } \|f_n - f\|_A < f_2
$$
\n
$$
\Rightarrow \text{lim } x \ge K(g_1) \text{ then } \|f_n - f\|_A < f_2
$$
\n
$$
\Rightarrow \|f_m - f_m\|_A = \text{sup}\{ |f_m(x) - f_m(x)| : x \in A \}
$$
\n
$$
\le \text{sup} \{ |f_m(x) - f(x)| + |f_m(x) - f(x)| : x \in A \}
$$
\n
$$
\le \text{sup} \{ |f_m(x) - f(x)| : x \in A \}
$$
\n
$$
+ \text{sup} \{ |f_m(x) - f(x)| : x \in A \}
$$
\n
$$
= \|f_m - f\|_A + \|f_n - f\|_A < \frac{e}{2} + \frac{e}{2} = \epsilon
$$

Then letting $w\rightarrow\infty$ in (\star) , we have $|\mathcal{S}(x) - \mathcal{S}_n(x)| \leq \varepsilon$, $\forall x \in A$.

ie VEZO, EHIEDEN St. $i\delta$ $n \geq H(\epsilon)$, $|S(x) - S_n(x)| \leq \epsilon$, $\forall x \in A$.

Since E>0 is arbitrary, this shows that for conveyes uniformly to f on A .

58.2 Interchange of Limits

Eg(8.2)
\n(a)
$$
(E_g e^{1.2\psi})
$$
 $g_n(x) = x^n$ on [0,1]
\n $g_n(x) \rightarrow g(x) = \begin{cases} 0, 0 \le x \le 1 \\ 1, x = 1 \end{cases}$ *pointwise*
\n \therefore $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \\ \n\frac{1}{x^2} & \text{if } 0 \le x \le 1 \end{cases}$
\n $\begin{cases} \n\frac{1}{x^2} & \text$

(C)
\n
$$
S_{n}(x) =\begin{cases}\n n^{2}x & , & 0 \leq x \leq \frac{1}{n} \\
-n^{2}(x-\frac{2}{n}) & , & \frac{1}{n} \leq x \leq \frac{2}{n} \\
0 & , & \frac{2}{n} \leq x \leq 1\n\end{cases}
$$
\n(well-defined
\n $x=\frac{2}{n}$ and $x=\frac{2}{n}$

If
$$
\omega
$$
 easy to prove

\n
$$
\lim_{n \to \infty} \frac{1}{s_n(x)} = 0, \forall x \in [0,1]
$$
\n
$$
\therefore \frac{1}{n} \Rightarrow 0 \text{ pointwisely}
$$
\n
$$
\therefore \frac{1}{n} \Rightarrow 0 \text{ pointwisely}
$$
\n
$$
\therefore \frac{1}{n} \Rightarrow 0 \text{ pointwisely}
$$
\n
$$
\therefore \frac{1}{s_n} \Rightarrow \frac{
$$

 (d) Let $\pi_n(x) = znx e^{-ny^2}$, $x \in [0,1]$. Then S_{0}^{\perp} $\theta_{h} = S_{0}^{\perp}$ $z n x e^{-nx^{2}} dx$ $=$ $\int_{0}^{1} (-e^{-nx^{2}})^{1} dx$ = $-e^{-nx^{2}}\Big|_{n}^{1} = 1 - e^{-nx^{2}}$ $\therefore \lim_{n \to \infty} \int_0^1 \varphi_n = 1$

But
$$
\lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} 2n \times e^{-nx^{2}} = 0
$$
 $\forall x \in [0, 1]$
\n
$$
\int_{0}^{1} \lim_{n \to \infty} f_{n} = 0 \neq \lim_{n \to \infty} \int_{0}^{1} f_{n} \qquad (Ex.)
$$

Now if CEA, then $\forall x \in A$ $|f(x)-f(c)| \le |f(x)-f_H(x)| + |f_H(x)-f_H(c)| + |f_H(c)-f(c)|$ $\leq ||f_H - f||_A + |f_H(x) - f_H(c)| + ||f_H - f||_A$ $< \frac{2E}{3} + |f_{H}(x) - f_{H}(c)|$

$$
Sūnc_{2} f_{H} \stackrel{\sim}{\omega} contūuaw, $\exists \delta_{\epsilon} c >> 0$ such that
\n $\delta_{H} |X-C| < \delta_{\epsilon}$, then $|f_{H}(x) - f_{H}(c)| < \xi_{3}$.
$$

Therefore, we have proved that

\n
$$
4E>0, \pm \delta e^{(c)} > 0 \text{ s.t.}
$$
\n
$$
\frac{d}{dx} |x-c| < \delta \epsilon
$$
\n
$$
|f(x)-f(c)| < \frac{2\epsilon}{3} + \frac{\epsilon}{3} = \epsilon
$$
\n
$$
\frac{1}{3} \cdot \frac{1
$$

Interchange of Limit and Derivative

Time23 let	I be a bounded interval	(a,b,c)	(a,b)	
• $f_{n}:I \Rightarrow \mathbb{R}$	sg	q	(aq, b, g, b, g, a, b)	
• $f_{n}:I \Rightarrow \mathbb{R}$	sg	sf	$(qa, b, g, a, b, g, a, b)$	
• $f_{n}:I \Rightarrow \mathbb{R}$	(a, b)	(aq, b)	(aq, b)	
• $f_{n}:I \Rightarrow \mathbb{R}$	(a, b)	(aq, b)	(aq, b)	
• $f_{n}:I \Rightarrow \mathbb{R}$	(a, b)	(a, b)		
• $f_{n} \Rightarrow g$	$g_{n}:I$	(a, b)	(a, b)	(aa, b)
• $f_{n} \Rightarrow g$	$g_{n}:I$	(a, b)	(a, b)	(aa, b)
• $f_{n} \Rightarrow g$	$g_{n}:I$	(a, b)	(a, b)	(a, b)
• $f_{n} \Rightarrow g$	$g_{n}:I$	(a, b)	(a, b)	(a, b)
• $f_{n} \Rightarrow g$	$g_{n}:I$	(a, b)		

Remark: Since 5' is not assumed to be continuous, 5' may not integrable and fouce the Fundamental Thm of Calculus may not applicable.

Pf: let
$$
m,n \in \mathbb{N}
$$
, $\frac{1}{3}m \& \frac{1}{3}m$ exist
\n $\Rightarrow 5m-5n$ is differentiable
\nMean Value Thus $\Rightarrow \frac{1}{4} \times \in I$, then
\n $(\frac{1}{3}m-\frac{1}{3}m) (x) - (\frac{1}{3}m-\frac{1}{3}m) (x_0) = (\frac{1}{3}m-\frac{1}{3}m) (y) (x-x_0)$
\n $\Rightarrow 5m-5n$ is $\forall x \in I$, then $\frac{1}{3}m \times \frac{1}{3}m$ (y) $(x-x_0)$
\n $\Rightarrow 5m-5n$ is differentiable
\n $(\frac{1}{3}m-\frac{1}{3}m) (y) (x-x_0)$
\n $\Rightarrow 3m-\frac{1}{3}m$ is differentiable
\n $(\frac{1}{3}m-\frac{1}{3}m) (y) (x-x_0)$

$$
\int_{m}(x) - f_{n}(x) = f_{m}(x_{0}) - f_{n}(x_{0}) + (f_{m}(y) - f_{n}(y_{0})) (x - x_{0})
$$
\n
$$
\Rightarrow |f_{m}(x) - f_{n}(x)| \le |f_{m}(x_{0}) - f_{n}(x_{0})| + |f_{m}(y) - f_{n}(y)| (x - x_{0})|
$$
\n
$$
\le |f_{m}(x_{0}) - f_{n}(x_{0})| + ||f_{m} - f_{n}||_{\mathcal{I}} (b - a) ,
$$
\nwhere $a < b$ are the eudpts of I.

Taking *sup* over
$$
x \in I
$$
, we have
\n $||\hat{f}_m - \hat{f}_n||_I \leq |f_m(x_0) - f_n(x_0)| + ||\hat{f}_m' - \hat{f}_n'||_I (b-a) \t- (*)$
\n $\int \tilde{u} \cdot (b-a) \cdot \hat{f}_n \cdot dy = 9$,

Cauchy criterion for uniform convergence (Thus 8.1.10) implies

\n
$$
\forall \epsilon > 0, \exists H_i = H(\frac{\epsilon}{z(\epsilon - a)}) \in N \text{ such that}
$$
\n
$$
\|f_m' - f_m'\|_{\mathcal{I}} < \frac{\epsilon}{z(\epsilon - a)}, \forall m, n \geq H_i
$$

Since
$$
(f_n(x_0))
$$
 converges,

\nCauchy critical for the *Convergence* of sequence (times 55) implies.

\n $\forall \xi > 0$, \exists $|f_2 = H(\frac{\xi}{\xi}) \in N$ such that

\n $|f_m(x_0) - f_n(x_0)| < \frac{\xi}{2}$, \forall $m, n \geq H_2$

Hewe uauag
$$
(\kappa_1)
$$

\n $\forall \epsilon > 0, \exists H = max\{H_1, H_2 \} \in IN$ such that
\n $||f_m - f_n||_{\mathcal{I}} < \frac{\epsilon}{2} + \frac{\epsilon}{2(b-a)} (b-a) = \epsilon$

Then Cauchy Criterionfu uniformconvergence again replies fm I f fa same function f ^I IR converges uniformly to some f

Next, we need to show that f is differentiable and $f' = g$. (To be cart d next time)