Ch 8 <u>Sequences of Functions</u>

§8.1 <u>Pointwise and Uniform Convergence</u>

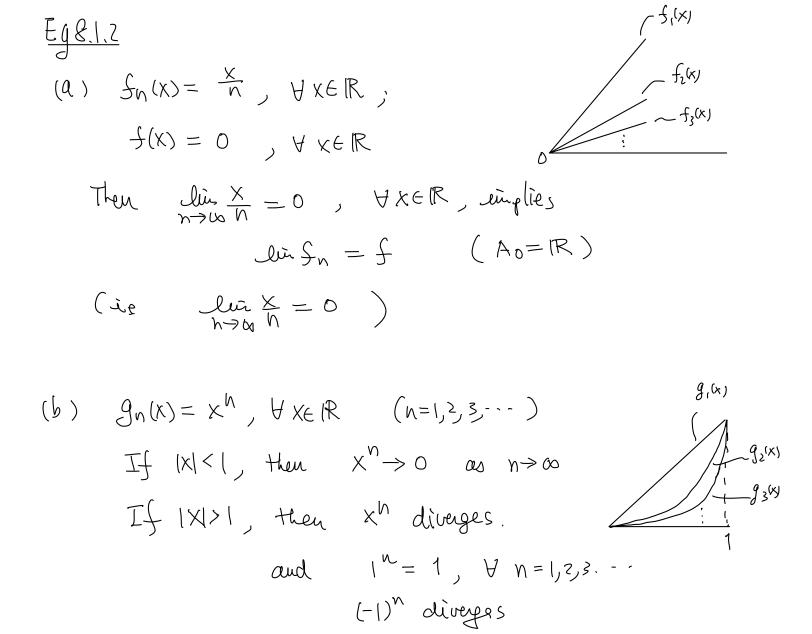
Def: Let
$$A \subseteq \mathbb{R}$$
 be a set.
If $\forall n \in \mathbb{N} = \{1, 2, 3, \dots, 5\}$, there is a function
 $f_n: A \Rightarrow \mathbb{R}$
Then (f_n) is called a sequence of functions on A (to \mathbb{R}).
Romark: If (f_n) is a seq. of functions on A, then
 $\forall x \in A$, $(f_n(x))$ is a sequence of numbers in \mathbb{R} .
Def 8.1.1 (Pointwise Convegence)
let, (f_n) be a sequence of functions on $A \subseteq \mathbb{R}$,
 $l \circ f: A_0 \Rightarrow \mathbb{R}$, where $A_0 \subseteq A$
We say that the sequence (f_n) converges on A_0 to f
 $igned f_{n \neq 0}$ is called the limit on A_0 of the sequence (f_n) .
In this case, f is called the limit on A_0 of the sequence (f_n) .
 (f_n) is said to be (invergent on A_0, or
 (f_n) (inverges pointurise on A_0.

Remarks (i) Usually, we choose

$$A_{o} = \{ x \in A : (f_{n}(x)) \text{ converges } \}$$
(ii) Symbols:

$$\begin{cases} \bullet f = \lim_{x \to \infty} f_{n} \text{ an } A_{o}, \text{ or } (f = \lim_{x \to \infty} (f_{n})) \\ \bullet f_{n} \to f \text{ on } A_{o} \end{cases}$$

$$or \qquad \begin{cases} \bullet f(x) = \lim_{x \to \infty} f_{n}(x) \text{ for } x \in A_{o}, \text{ or } \\ \bullet f_{n}(x) \to f(x) \text{ for } x \in A_{o} \end{cases}$$



$$\begin{array}{ccc} \therefore & A_0 = \left\{ x \in |R: -| < \chi \leq | \right\} \\ \text{and} & \chi^N \longrightarrow \mathcal{G}(\chi) = \left\{ \begin{array}{c} 0 & , & -| < \chi < | \\ 1 & , & \chi = | \end{array} \right. \\ \left(\int discontinuous at \chi = () \right) \end{array} \right.$$

(c) Let
$$f_{n}(x) = \frac{x^{2} + nx}{n}$$
, $\forall x \in \mathbb{R}$ and (see Textbook)
 $f_{n}(x) = x$, $\forall x \in \mathbb{R}$
Then $\forall x \in \mathbb{R}$, $\lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} \left(\frac{x^{2}}{n} + x\right) = x = f_{n}(x)$
(.'. $A_{0} = \mathbb{R}$)

$$|F_{n}(X) - F(X)| = \frac{1}{n} |A\bar{m}(n(X+1))| \leq \frac{1}{n} \rightarrow 0 \quad \text{as } n \neq \infty$$

$$\therefore F_{n} \rightarrow F \quad \text{on } \mathbb{R} \quad (i.e. A_{0} = \mathbb{R})$$

Lemma d.1.3 A seq.
$$f_n: A \rightarrow \mathbb{R}$$
 converges to $f: A_0 \rightarrow \mathbb{R}$ $(A_0 \leq A)$
if and only if $\forall E > 0$ and $\forall X \in A_0$,
 $\exists K(E,X) \in \mathbb{N}$ s.t. $|f_n(X) - f(X)| < E$, $\forall n \geq K(E,X)$.

eg 8.1.26) Fu
$$|x| < 1$$
, $|g_n(x) - g(x)| = |x^n| = |x|^n < \varepsilon$
Suppose $\varepsilon < 1$, then $n \ln |x| < \log \varepsilon$
(note both $\log \varepsilon$, $\log |x| < 0$) \Rightarrow $n > \frac{\log |\varepsilon|}{\log |x|}$
 \therefore One need to choose $K(\varepsilon, x) = \begin{bmatrix} \log |\varepsilon| \\ \log |x| \end{bmatrix} + 1$
which depends an x , and
 $K(\varepsilon, x) \to + \infty$ as $|x| \to 1$.
 \therefore Can't choose $K(\varepsilon)$ that works $\forall x \in (-1, 1]$