Thm 73.14	(Composition them)
Let $1 \cdot f \in \mathbb{R}[a,b]$ with $f([a,b]) \subset [c,d]$,	
• $\varphi: [c,d] \Rightarrow \mathbb{R}$ continuous	
Then $\varphi \circ f \in \mathbb{R}[a,b]$.	

 $('q$ cts" is needed, see ex.7.3.22)

$$
\underline{P}f: \text{let } D = \text{set of discontinuity of } f \text{ on } [a,b].
$$
\n
$$
D_1 = \text{set of disjointivity of } \rho \circ f \text{ on } [a,b].
$$

$$
\begin{array}{l}\n\text{If } u \in [a,b] \cap \cap, \text{ then } f \text{ is continuous at } u, \\
\text{Since } \varphi \text{ is cts, } \varphi \circ f \text{ is also continuous at } u. \\
\therefore \quad u \in [a,b] \setminus D, \\
\end{array}
$$

Therefore
$$
[a,b] \setminus D \subset [a,b] \setminus D_1
$$
,

\nand $\forall a \in D_1 \subset D$.

\nNote $\forall a \in f \in R[a,b]$. $\forall a \in g \in G$ if $\forall a \in g \in G$.

\n $\Rightarrow D \Rightarrow \text{of measure } \text{gr} \circ \cdot$

\n $\Rightarrow \forall \text{E} > 0, \exists \text{ countable collection of open intervals } \{I_k\}_{k=1}^n$

\n $\Rightarrow \forall \text{E} > 0, \exists \text{ countable collection of open intervals } \{I_k\}_{k=1}^n$

$$
\mathbb{D} \subset \bigcup_{k=1}^{\infty} \mathcal{I}_{k} \quad \text{a} \quad \sum_{k=1}^{\infty} \text{logth}(\mathcal{I}_{k}) \leq \epsilon.
$$

Since
$$
D_1 CD
$$
, we have
\n $D_1 C \bigcup_{k=1}^{m} I_k$ as $\sum_{k=1}^{\infty} hupth(I_k) \leq \epsilon$
\n $\therefore D_1$ is also of measure 3^{100} .
\nUsing lobesque's Integrability, aitemian again, we have
\n $4^{100} + \epsilon \mathbb{R}[a,b]$.

 I In this proof, we showed that a subset of a null set is also a hull set

$$
\begin{array}{ll}\n\text{for }73.15 \\
\text{and} \\
\begin{array}{l}\n\int_{a}^{b} f(x) \, dx \text{ if } (6R[a,b]) \\
\text{and} \\
\int_{a}^{b} f(x) \, dx \text{ if } (6R[a,b])\n\end{array}\n\end{array}
$$

$$
Pf: f \in R[a,b] \Rightarrow f \circ b \text{ bounded}
$$
\n
$$
\Rightarrow |f(x)| \leq M \text{ on } [a,b] \text{ for } M > 0.
$$
\n
$$
f([a,b]) \subset [M,M] \text{ and}
$$
\n
$$
| \cdot | \cdot [-M,M] \Rightarrow |R \circ b \text{ continuous.}
$$
\n
$$
By Thm7.3.14, 1f| \in R[a,b]
$$

 $\ddot{}$

$$
Sūi\alpha - |f|(x) S f(x) S |f|(x), \forall x \in [a,b],
$$
\n
$$
T_{nm}f_{1,5}(c) \Rightarrow -S_{\alpha}^{b}f_{1}S S_{\alpha}^{b}f S \leq S_{\alpha}^{b}f_{1},
$$
\n
$$
- - |f|(x) S M + x \in [a,b],
$$
\n
$$
Sūi\alpha | \alpha | \alpha |
$$
\n
$$
- - |f|(x) S M + x \in [a,b],
$$
\n
$$
S_{\alpha}^{b}f_{1}S S_{\alpha}^{b}M = M(b-a) \times
$$

Than F.3.16 (The Product Than) If $f*g \in R[A,b]$, then $fg \in R[A,b]$.

Thm 7.3.17 (Integration by Parts)				
Let	•F, G	be differentiable on [a,b]		
• $f = F', g = G' \in R[a,b]$				
Then	$f G, Fg \in R[a,b]$ and			
$\int_{a}^{b} f G = F G \mid_{a}^{b} - \int_{a}^{b} F g$				
If:	F, G	diff on [a,b]	\Rightarrow F, G	cb on [a,b]
\Rightarrow F, G	\in RTa,b]	(Thm 7.2.7)		
Product Thm 7.3.16	Heur ūuplies			
$f G \in Fg \in R[a,b]$	(Thm 7.2.7)			
And product rule Thus 6.1.3 (c),				
(FG)' = F'G + FG' = 5G + Fg \in R[a,b]				
Fundamental Thm 7.3.1 \Rightarrow				

$$
\int_{a}^{b} (FG)^{2} = FG \Big|_{a}^{b}
$$

$$
\int_{a}^{b} SG + \int_{a}^{b} Fg = FG \Big|_{a}^{b}
$$

$$
\frac{1}{2} \int_{a}^{b} SG + \frac{1}{2} \Big|_{a}^{b} = FG \Big|_{a}^{b}
$$

Then
$$
13.18
$$
 (Taylor's Thm with Roudard (Tadyol Form)

\nSuppose

\n
$$
f: [a,b] \Rightarrow \mathbb{R}
$$
\n
$$
f': [a,b] \Rightarrow \mathbb{R}
$$
\n
$$
f': [a,b] \Rightarrow \mathbb{R}
$$
\n
$$
f'(b) = f(a) + \frac{f(a)}{1!} (b-a) + \cdots + \frac{f^{(h)}(a)}{n!} (b-a) + \mathbb{R}_{n}
$$
\nwhere

\n
$$
\mathbb{R}_{n} = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n} dx
$$
\nand

\n
$$
f(b) = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n} dx
$$
\n
$$
f(x) = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n} dx
$$
\n
$$
f(x) = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n} dx
$$
\n
$$
f(x) = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n} dx
$$
\n
$$
f(x) = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n} dx
$$
\n
$$
f(x) = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n} dx
$$
\n
$$
f(x) = \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n-1} dx
$$
\n
$$
= \frac{f^{(h)}(a)}{n!} (b-a)^{n} + \frac{1}{n!} \int_{\alpha}^{b} f^{(m)}(x) (b-x)^{n-1} dx
$$
\n
$$
= -\frac{f^{(h)}(a)}{n!} (b-a)^{n} + \mathbb{R}_{n-1}
$$
\nExample 2. Show that

\n
$$
\mathbb{R}_{0} = \frac{1}{n!} \int_{\alpha}^{b} f(x) (b-x)^{n} + \mathbb{R}_{n-1}
$$
\n
$$
\vdots
$$
\n<