\$7.3 The Fundamental Theorem

Recall: A function
$$F: [a,b] \rightarrow \mathbb{R}$$
 is called an antiderivative
or a primitive of $f: [a,b] \rightarrow \mathbb{R}$ on $[a,b]$ if
 $F'(x) = f(x)$, $\forall x \in [a,b]$
(One sided derivatives at $x=a \in x=b$)

$$\begin{array}{l} \underline{\text{Thm 7.3.1}} \left(\underline{\text{Fundamental Thenom of Calculus (1st Form})} \right) \\ \\ \text{Suppose} \left[\bullet \quad \underline{\text{f.}} \quad \underline{\text{F}} : [a,b] \rightarrow | R \quad \underline{\text{functions}} \right] \\ \\ \bullet \quad \underline{\text{F}} = \quad \underline{\text{funite set of } [a,b]} \quad (\underline{\text{F}} \text{ fa exceptional set}) \\ \\ \\ \text{such that} \quad (a) \quad \underline{\text{F}} \quad \underline{\text{os cantumous on } [a,b]} \\ \\ \\ (b) \quad \underline{\text{F}}(x) = \quad \underline{\text{fox}} \quad \forall x \in [a,b] \setminus \underline{\text{F}}, \\ \\ \\ (c) \quad \underline{\text{f}} \in R[a,b] \\ \\ \\ \\ \hline \text{Then} \quad \boxed{\int_{a}^{b} \underline{\text{f}} = F(b) - F(a)} \\ \end{array}$$

Then to the case that
$$E = \{a, b\}$$
 two end points only
i.e. $F(x) = f(x), \forall x \in (a, b)$.
(Exercise 7.3, 1 of the Textbook)

For this special case, consider any
$$\varepsilon > 0$$
.
Then $f \in \mathbb{R}[a,b]$ (assumption (c)) \Rightarrow
 $\exists \delta_{\varepsilon} > 0$ such that
 $if \delta = \{[X_{i-1}, X_i], t_i\}_{i=1}^n$ satisfies $||\delta^0|| < \delta_{\varepsilon}$, (any tags t_i)
then $|S(f, \delta) - S_a^b f| < \varepsilon$. (t)

By Mean Value Thm 6.2.4,
$$\exists u_i \in (x_{i-1}, x_i) \text{ s.t.}$$

 $F(x_i) - F(x_{i-1}) = F(u_i)(x_i - x_{i-1})$
 $= f(u_i)(x_i - x_{i-1}), \forall i = 1, ..., n$

since F=f exists on (a,b) (assumption (b) of the special case)

Hence $F(b) - F(a) = \sum_{k=1}^{n} [F(x_{i}) - F(x_{i-1})]$ $= \sum_{k=1}^{n} f(u_{i})(x_{i} - x_{i-1})$ Define the tagged partition $\mathcal{D}_{u} = \langle [x_{i-1}, x_{i}], u_{i} \rangle_{i=1}^{n}$

(same partition with new tags).

Then
$$\|\dot{\mathfrak{S}}_{\mathfrak{u}}\| < \delta_{\mathfrak{E}}$$
 and
 $F(\mathfrak{b}) - F(\mathfrak{a}) = S(\mathfrak{f}, \dot{\mathfrak{S}}_{\mathfrak{u}})$
 $\cdot \quad \left| F(\mathfrak{b}) - F(\mathfrak{a}) - S_{\mathfrak{a}}^{\flat} \mathfrak{f} \right| < \mathfrak{E}, \quad bg(\mathfrak{k})$
Since $\mathfrak{E} > 0$ is arbitrary, $S_{\mathfrak{a}}^{\flat} \mathfrak{f} = F(\mathfrak{b}) - F(\mathfrak{a})$
 $\cdot \times$
Remarks: (i) $\mathfrak{I}\mathfrak{f} = = \emptyset$, then assumption $(\mathfrak{b}) \Rightarrow$ assumption (a).
(ii) One may allow \mathfrak{f} defined on $\mathfrak{I}\mathfrak{a},\mathfrak{b}\mathfrak{I}$ except finite number
of points as one can extend \mathfrak{f} to all $\mathfrak{x} \in \mathfrak{I}\mathfrak{a},\mathfrak{b}\mathfrak{I}$
by setting $\mathfrak{f}(\mathfrak{c}) = 0$ for $\mathfrak{c} \notin domain(\mathfrak{f})$ originally.
(iii) F differentiable on $\mathfrak{I}\mathfrak{a},\mathfrak{b}\mathfrak{I} \neq F' \notin \mathfrak{R}\mathfrak{I}\mathfrak{a},\mathfrak{b}\mathfrak{I}$
 $\cdot :$ assumption (c) is not automatically satisfied even
 $\mathfrak{E} = \emptyset \ \mathfrak{K}$ assumption (b) is satisfied. (Eg. 7.3.2(e))

$$\underline{Eg73.^{2}}$$
(a) • $F(x) = \frac{1}{2}x^{2}$, $\forall x \in [a,b]$ is continuous on $[a,b]$,
• $F(x) = x$, $\forall x \in [a,b]$ (i. $E = \phi$)
• $F(x) = x \in \mathcal{R}[a,b]$ (says by $Thm 7.2.7$, $cb \Rightarrow \overline{utganble}$)
 $\therefore \qquad \int_{a}^{b} \times dx = F(b) - F(a) = \frac{1}{2}(b^{2} - a^{2})$.

(b) Suppose Ta, b] is a closed interval s.t. (Arctan
$$X = tan X$$
)
 $G(X) = Arctan X$ is defined on Ta, b] (finitistance Ta, b] (finitistance Ta, b] (finitistance Ta, b) Then $G'(X) = \frac{1}{X^2 + 1}$, $\forall X \in Ta, b$] \mathcal{R} is continuous on Ta, b]
 -1 . (b) satesfield with $E = \emptyset$. (with $f(X) = \frac{1}{X^2 + 1}$)
Hence (a) satesfield automatically.
And Thum 7.2.7 => (C) is also satisfied.
 -1 . $\int_{a}^{b} \frac{dx}{X^2 + 1} = Arctan b - Arctan a$.

(c)
$$A(x) = |x|$$
 for $x \in E = 10, 10$]. etc. (one can do $E x, p^{T}$)
Then
 $A'(x) = \begin{cases} l & , for $x \in (0, 10]$
 $A'(x) = \begin{cases} drean't exist, for $x = 0$
 $-1 & , for $x \in E = 10, 0$)$$$

Roall the signum function $sgn(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$

... A(x) = Agn(x) $\forall x \in F(0, 10] \setminus \{0\}$ $(F=\{0\})$ $i \lor of e$ that Agn(x) is a Step function. Thue 7.2.5 $\Rightarrow Agn(x) \in R[-10, 10]$. $\forall u \lor h$ are degenerated interval $\forall equenerated$ interval $Hence \int_{-10}^{10} Agn(x) dx = A(10) - A(-10) = (0 - 10 = 0)$.

(e) $K(x) = \begin{cases} x^{2} \cos(\frac{1}{x^{2}}), & x \in (0, 1] \\ 0, & x = 0 \end{cases}$ Then $K(x) = \begin{cases} 2x \cos(\frac{1}{x^{2}} + \frac{2}{x}) \sin(\frac{1}{x^{2}}), & x \in (0, 1] \\ 0, & x \neq x = 0 \end{cases}$ (eg 6.1.7(cs)) That is, K differentiable on [0, 1], & flower of on [0, 1].However K' is unbounded and Herefore K' $\notin \mathbb{R}[0, 1],$ assumption (c) doesn't satisfy!

$$\frac{Dof 7.3.3}{F(7.3.3)} : \text{ If } f \in \partial [a, b], \text{ then the function defined by} F(7.2) = \int_{a}^{7} f f a z \in [a, b],$$

is called the indefinite integral of f with basepoint a.
(One may use other point as base point & is still called
indefinite integral (Ex 7.3.6))

$$\frac{\text{Thm}73.4}{\text{F(z)}-F(w)} \text{ If } fe \& [a,b], \text{ then}$$

$$F(z) = S_a^z f \text{ is continuous on [a,b]}$$
and in fact, if $|f(w)| \leq M, \forall x \in [a,b], \text{ then}$

$$(x) \quad |F(z) - F(w)| \leq M|z - w|, \forall z, w \in [a,b].$$

Remarks: (i) Mexids because SERTA, b] => f is bdd. (ii) (*) is called a <u>Lipschitz condition</u>, much stronger than just continuity.

$$\begin{split} & \text{If} \quad -M \leq f(x) \leq M , \ \forall x \in [a,b], \\ & \text{Thm F.I.5 (C)} \Rightarrow \quad -M(z-w) \leq S_w^2 \leq M(z-w) \\ & \quad \cdot \cdot \quad \left(F(z)-F(w)\right) = \left|S_w^2 \leq M(z-w) = M(z-w)\right| \\ & \quad (Sin(w \ w \leq z)) \\ & \quad (Sin(w \ w \leq z)) \\ & \quad (Iearly, \ \text{te case} \ z \leq w \ \text{folloos} \ \text{invadiately} \ \text{too} - \text{ } \end{split}$$

$$\frac{Thm 7.35}{Fundamental Theorem of Calculus (2nd Form)}$$
Let $f \in R(a,b]$ and continuous at c.
Then $F(z) = \int_{a}^{z} f$ is differentiable at $z = c$ and $F(c) = f(c)$.

Pf We'll prove only for the night-hand dorivative

$$\lim_{h \to 0^+} \frac{F(c+h) - F(c)}{h} = f(c)$$

Therefore, we assume $C \in Ta, b$). Since f is continuous at C, $\forall E > 0$, $\exists \eta_E > 0$ s.t. if $(\forall) | f(x) - f(c)| < E$, $\forall x \in Tc, C + \eta_E$). (consider only right side) Let $h \in (0, \eta_{\varepsilon})$, then Additivity Thm 7.2.5 (Cor 7.2.10) $\Rightarrow f \in R[a, C+h]$, $R[a, C] \in R[C, C+h]$ and

$$\int_{a}^{cth} f = \int_{a}^{c} f + \int_{c}^{cth} f$$

 $ie. F(cth) - F(c) = \int_{c}^{cth} f$

By (\bigstar) f(c)- $\varepsilon < f(x) < f(c) + \varepsilon$, $\forall x \in [c, (+\eta_{\varepsilon})]$ we have

$$(f(C) - \varepsilon) \mathfrak{h} \leq \int_{C}^{Cth} f \leq (f(C) + \varepsilon) \mathfrak{h},$$

which implies $f(c) - \varepsilon \leq \frac{F(c+\theta_{1}) - F(c)}{\theta_{1}} \leq f(c) + \varepsilon$ $\Rightarrow \left| \frac{F(c+\theta_{1}) - F(c)}{\theta_{1}} - f(c) \right| \leq \varepsilon, \quad \forall \theta_{1} \in (0, \gamma_{1}\varepsilon)$ $\text{If proves that} \quad \lim_{\theta_{1} \to 0^{+}} \frac{F(c+\theta_{1}) - F(c)}{\theta_{1}} = f(c)$ $\overset{()}{\underset{\theta_{1} \to 0^{+}}{\underset{\theta_{2} \to 0^{+}}{\overset{()}{\underset{\theta_{1} \to 0^{+}}{\overset{()}{\underset{\theta_{2} \to 0^{+}}{\overset{()}{\underset{\theta_{1} \to 0^{+}}}{\overset{()}{\underset{\theta_{1} \to 0^{+}}{\overset{()}{\underset{\theta_{1} \to 0^{+}}{\overset{()}{\underset{\theta_{1} \to 0^{+}}{\overset{()}{\underset{\theta_{1} \to 0^{+}}{\overset{()}{\underset{\theta_{1} \to$

$$\frac{T_{hm} 7.3.6}{F(x) = \int_{a}^{x} f(x) = \int_{a}^{x} f(x)$$

One can see that F'(0) doesn't exist ("f cts at c" is a and F' is not an auticluivative of f(x) = sgn(x).

(b) Let
$$f_{i} = Thomae's function
$$\begin{array}{c} N = U_{i} = 2^{-1} \\ N = U_{i} = 2^{-1} \\ h(x) = \begin{cases} t_{i} \\ t_{i} \\ t_{i} \end{cases}, \quad if \quad x = \frac{M}{n} \in To, 1 \\ x = 0 \\ t_{i} \\ t_{i} \end{cases} \quad x = 0 \\ t_{i} \\ x \in To, 1 \\ x = 0 \\ t_{i} \\ x \in To, 1 \\ x$$$$

Then by Eg7.1.7, one concludes that

$$H(x) = \int_{0}^{x} t_{1} \equiv 0$$
, $\forall x \in \overline{t_{0}}, \Box$

$$\Rightarrow$$
 H(x) = 0 exists $\forall x \in [0, 1]$
However, H(x) \neq $f_{(x)}$, \forall rational $x \in [0, 1]$.

$$\frac{Thm 7.3.8}{L} (\underline{Substitution Theorem})$$

$$let \cdot f: I \rightarrow IR \underline{cta}, \quad (I = \hat{u} terval)$$

$$\cdot \varphi : Ed, \beta J \rightarrow R \quad st. \quad \varphi(ts) \underline{srids} \notin \underline{cta} \quad \forall x \in [\alpha, \beta], \quad (i.e. \ \varphi \text{ has a cartinuous derivative})$$

$$\cdot \varphi([\alpha, \beta]) \subset I \quad ([\alpha, \beta] \xrightarrow{\varphi} I \xrightarrow{f} R) \quad (f(\alpha, \beta) \xrightarrow{f} f(\varphi(ts)) \varphi(ts) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx$$

Notes: (i)
$$\pm x \times in$$
 the family are during variables, just using theme
for convenient in practice:
thinking of change of variables $x = \varphi(\pm)$
In fact, the famile can be written as
 $\int_{a}^{\beta} (f \circ \varphi) \cdot \varphi' = \int_{\varphi(a)}^{\varphi(\beta)} f$

(ii) The famula fields for $P(\beta) \leq P(d)$ as we defined before.

<u>Pf of Thm 73.8</u> - Ex 7.3.17 (Easy application of Fundamental Thrm & Chain rule)

Lebesque's Integrability Criterion

<u>Remarks</u>: (i) "null set" may means "empty set" for some people. So "set of measure zero" is used more often. (ii's Def(a) means Z can be covered by a set of <u>arbitrary</u> <u>small</u> total length. (Kond of "length of Z = 0", but it is difficult to define "length" of arbitrary sets in IR.)

Eg F3.11
$$\mathbb{Q}_{1}$$
 = set of national numbers in Eq.13 is a null set.
(set of measure zero)
Pf: \mathbb{Q}_{1} is countable and can be written as
 $\mathbb{Q}_{1} = \{r_{1}, r_{2}, r_{3}, \cdots, \}$
Griven $\varepsilon > 0$, define open intervals
 $J_{k} = (r_{k} - \frac{\varepsilon}{2^{k+1}}, r_{k} + \frac{\varepsilon}{2^{k+1}})$, $k=1,2,\cdots$
Clearly $r_{k} \in J_{k}$ and \mathcal{Q}_{ugth} of $J_{k} = \frac{\varepsilon}{2^{k}}$.
 $\mathbb{Q}_{1} \subset \bigcup J_{k}$ and $\sum_{k=1}^{\infty} length of J_{k} = \frac{\varepsilon}{2^{k}}$.
Since $\varepsilon > 0$ is arbitrary, \mathbb{Q}_{1} is a null set.
(From the proof, it is clear that it doesn't use the fact
that r_{k} are rational. Hence, the proof can be used to
prove that:
Every countable set is a null set (set of measure zero)

("courtable infinite" can be proved similarly, "countable finite" are included by dropping the tail of the infinite series)

$$\frac{\text{Thm 7.3.12} (\text{Lebesque's Integrability Griterion})}{A \underline{bounded} \text{function } f: [a,b] \rightarrow |R is \underline{Riemann integrable}} \\ \text{if and only if it is \underline{Continuous almost everywhere} on [a,b]}$$

(c)
$$(eg F.1,4(d))$$

 $G(x) = \{ \frac{1}{0} , \frac{1}{2} x = \frac{1}{1} (n = 1, 2, ...)$
is bounded, and
 $f = \{ 1, \frac{1}{2}, \frac{1}{3}, ... \}$
 $g = \{ 1, \frac{1}$

(d) (Eg 7.2.2(b), not integrable)
Dirichlet function
$$f(x) = \begin{cases} 1, & y \\ 0, & y \\ \end{cases} \times invational, x \in [0, 1].$$