(ase(b)) L = ±60. (of Thm 6.3.5) subline L=+00 $\lim_{X \to at} \frac{f'(x)}{q'(x)} = +\infty \quad \text{implies that}$ $\forall M > 1, \exists \delta > 0 \text{ s.t.} \frac{f(u)}{q'(u)} > M$ and hence $\frac{f(\beta) - f(\alpha)}{q(\beta) - q(\alpha)} > M$, $\forall \alpha < \alpha < \beta < \alpha + \delta$ As in case (a), lin g(x) = too implies $\exists c \& c_1 \in (q, q + \delta)$ such that • $a < c_1 < c < a + 5$ • g(a) > 0, $\forall d \in (a, c]$ • $0 < \frac{g(c)}{g(a)} < \frac{1}{2}$, $\forall d \in (a, c_1)$ • $0 \leq \frac{|f(c)|}{g(d)} < \frac{1}{2}$, $\forall a \in (a, c_1)$ Letting $\beta = C$, we have $\frac{f(c) - f(\alpha)}{q(c) - q(\alpha)} > M, \quad \forall a \in (a, c)$ $\frac{f\alpha \quad \alpha \in (\alpha, C_{1})}{\frac{g(\alpha)}{g(\alpha)}} > M\left(1 - \frac{g(c)}{g(\alpha)}\right) > \frac{1}{2}M, \quad \forall \alpha \in (\alpha, C_{1})$ And hence for x E (a, Ci)

$$\Rightarrow \frac{f(\alpha)}{g(\alpha)} > \frac{1}{2}M + \frac{f(c)}{g(\alpha)} > \frac{1}{2}M - \frac{1}{2}$$
$$= \frac{1}{2}(M - 1), \qquad \forall \alpha \in (\alpha, c_1)$$

 \bigotimes

Since M>1 is arbitrary, this shows that

$$\lim_{X \to a^+} \frac{f(x)}{g(x)} = +\infty$$

Subcare of "L=-00" is similar.

$$\underbrace{\begin{array}{c} \underline{g} 6.3.6}\\ (a) \\ x \neq \infty \end{array}}_{x \neq \infty} \underbrace{\begin{array}{c} \underline{l} u x}\\ \chi \end{array}$$

•
$$f(x) = l_{11} \times l_{10} douivative f'(x) = \frac{1}{x} on (0, \infty)$$

• $g(x) = \chi$ has duibative $g(x) = 1 \neq 0$ on $(0, \infty)$

•
$$\lim_{X \to \infty} g(x) = +\infty$$

• $\lim_{X \to \infty} \frac{f'(x)}{g'(x)} = \lim_{X \to \infty} \frac{1}{x} = 0$
 \therefore L'Hospital Rule II \Rightarrow $\lim_{X \to \infty} \frac{\ln x}{x} = 0$.
Manally, one subply write $\lim_{X \to \infty} \frac{\ln x}{x} = \lim_{X \to \infty} \frac{1}{x} = 0$

(b)
$$\lim_{X \to \infty} e^{-X} x^2 = \lim_{X \to \infty} \frac{x^2}{e^X}$$

 $\cdot (x^2)' = zx$, $\forall x$
 $\cdot (e^X)' = e^X \pm 0 \quad \forall x$
 $\cdot e^X \rightarrow +\infty \quad a_0 \quad x \rightarrow +\infty$
But $\lim_{X \to \infty} \frac{2x}{e^X}$ still indeterminate.
So we need to start when $\lim_{X \to \infty} \frac{2x}{e^X}$ first:
 $\cdot (2x)' = z$, $\forall x$
 $\cdot (e^X)' = e^X \pm 0$, $\forall x$
 $\cdot (e^X)' = e^X \pm 0$, $\forall x$
 $\cdot e^X \rightarrow +\infty \quad a_0 \quad x \rightarrow +\infty$
 $\cdot \lim_{X \to \infty} \frac{2}{e^X} = 0$ (exists)

:. L'Hospital Rule $\Rightarrow \lim_{X \to \infty} \frac{2x}{e^X} = 0$ (exists) And capplying L'Hospital Rule again, $\lim_{X \to \infty} \frac{x^2}{e^X} = 0$. (We usually just write

$$\lim_{X \to \infty} e^{-X} x^2 = \lim_{X \to \infty} \frac{X^2}{e^{X}} = \lim_{X \to \infty} \frac{2X}{e^{X}} = \lim_{X \to \infty} \frac{2}{e^{X}} = 0$$

(c)
$$\lim_{X \to 0+} \frac{\lim_{X \to 0} \chi}{\lim_{X \to 0+}} = \lim_{X \to 0+} \frac{(\lim_{X \to 0} \chi)'}{(\lim_{X \to 0})'}$$

$$= \lim_{X \to 0+} \frac{\frac{\cos \chi}{\sin \chi}}{\frac{1}{\chi}} = \lim_{X \to 0^+} \frac{\cos \chi \cdot \frac{\chi}{\sin \chi}}{\sin \chi}$$

$$= 1 \qquad \left(\begin{array}{cc} \alpha_{x} & \lim_{x \to 0^{+}} \frac{x}{x + x} = 1 = \lim_{x \to 0^{+}} \alpha_{x} \end{array} \right)$$

(d) It is easy to see
$$\lim_{x \to \infty} \frac{X - \sin x}{x + \sin x} = \lim_{x \to \infty} \frac{1 - \frac{\sin x}{x}}{1 + \frac{\sin x}{x}} = 1$$
.

However,
$$\lim_{X \to \infty} \frac{(x - \sin x)'}{(x + \sin x)'} = \lim_{X \to \infty} \frac{1 - \cos x}{1 + \cos x}$$
 doesn't exist.
 \therefore The condition " $\lim_{X \to \alpha +} \frac{f(x)}{g(x)}$ exists " is necessary
for L'Hospital Rule.

Further examples (other indoterminate forms)

$$\frac{99.63.7}{(4)} (4) (40 - 100 \text{ form})$$

$$\frac{1}{2} \frac{1}{2} \frac{$$

(c)
$$(0^{\circ} frun)$$

 $\lim_{X \to 0^{+}} \chi^{X}$
 $= \lim_{X \to 0^{+}} e^{\chi lux}$
 $= e^{\frac{lux}{X \to 0^{+}}} (fransforms to 0.(-\infty) forms with(n))$
 $= e^{\circ} = 1$
(d) $(1^{\circ} form)$
 $\lim_{X \to 0^{\circ}} (1 + \frac{1}{X})^{X}$ $\chi \in (1, \infty)$
 $= \lim_{X \to \infty} e^{\chi ln(1 + \frac{1}{X})}$ $\chi \in (1, \infty)$
 $= \lim_{X \to \infty} e^{\chi ln(1 + \frac{1}{X})}$ $(\infty \cdot 0 form)$
 $= \lim_{X \to \infty} \frac{ln(1 + \frac{1}{X})}{\frac{1}{X}}$ $(fransform to \frac{0}{0} form)$
 $= \lim_{X \to \infty} \frac{(1 + \frac{1}{X})(-\frac{1}{X^{2}})}{(-\frac{1}{X^{2}})}$ $(1/1 + \log i f \log n)$
 $= \lim_{X \to \infty} \frac{1}{(1 + \frac{1}{X})} (1 + \frac{1}{X^{2}})$ $(1/1 + \log i f \log n)$
 $= \lim_{X \to \infty} \frac{1}{(1 + \frac{1}{X})} (1 + \frac{1}{X^{2}})$ $(1/1 + \log i f \log n)$
 $= \lim_{X \to \infty} \frac{1}{(1 + \frac{1}{X})} (1 + \frac{1}{X^{2}})$ $(1/1 + \log i f \log n)$
 $= \lim_{X \to \infty} \frac{1}{(1 + \frac{1}{X})} (1 + \frac{1}{X^{2}})$ $(1/1 + \log i f \log n)$
 $= \lim_{X \to \infty} \frac{1}{(1 + \frac{1}{X})} (1 + \frac{1}{X^{2}})$ $(1/1 + \log i f \log n)$
 $= \lim_{X \to \infty} \frac{1}{(1 + \frac{1}{X})} (1 + \frac{1}{X^{2}})$ $(1/1 + \log i f \log n)$
 $= \lim_{X \to \infty} \frac{1}{(1 + \frac{1}{X})} (1 + \log i \log n)$ $(\log 1 + \log i \log n)$

And hence $\lim_{x \to \infty} (1+\frac{1}{x})^x = e^{\lim_{x \to \infty} x \ln(1+\frac{1}{x})} = e$

(e)
$$(\infty^{\circ} \text{ form})$$

 $\lim_{X \to 0^{+}} (1 + \frac{1}{X})^{X} (XE(0, \infty)) (\text{limit of the other end})$
 $= e^{\lim_{X \to 0^{+}} X \ln(1 + \frac{1}{X})} (\text{transform to } 0.04 \text{ form})$
 $= e^{\lim_{X \to 0^{+}} \frac{1}{1 + \frac{1}{X}}} (L' \text{Hospital as before})$
 $= e^{\circ} = 1$. (limit exists, calculation justified)