Recall: If
$$\lim_{X \to c} f(x) = A$$

 $\lim_{X \to c} g(x) = B \neq 0$,
then $\lim_{X \to c} \frac{f(x)}{g(x)} = A$.
Question: What can we say about case that $B = 0$?
(1) If $A \neq 0$, then $\lim_{X \to c} \frac{f(x)}{g(x)} = \infty$ (\pm depends on sgn(A)
 $a = \operatorname{sgn}(gw) \text{ war } x = c$)
(1) If $A \neq 0$, then $\lim_{X \to c} \frac{f(x)}{g(x)} = \infty$ (\pm depends on sgn(A)
 $a = \operatorname{sgn}(gw) \text{ war } x = c$)
(including jumping from $\pm \infty$
(2) Indeterminate if $A = 0$: i.e. not axist, $\lim_{X \to c} \frac{f(w)}{g(w)} = \infty$)
 g_{1} .
 $\int f(x) = Lx^{2}, g(x) = x^{2}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = 0$
 $\int f(x) = x^{2}, g(x) = x^{2}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = 0$
 $\int f(x) = x^{2}, g(x) = x^{4}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = \infty$
Symbol for this indeterminate from : $\frac{9}{6}$
Other indeterminate forms:

 ∞/∞ , $0.\infty$, 0° , 1° , ∞° , $\omega-\infty$

eq: 0° denotes indeterminate form of him
$$f(x)$$

with $\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x)$.

and
$$\infty - \infty$$
 denotes indeterminate form of $\lim_{x \to c} (f(x) - g(x))$
with $\lim_{x \to c} f(x) = +\infty = \lim_{x \to c} g(x)$.
 $(\alpha - \infty)$

$$\underbrace{g}_{X \to C} (f(x) - g(x)) \quad \text{with} \quad \lim_{X \to C} f(x) = -\infty$$

$$\lim_{X \to C} (f(x) - g(x)) \quad \text{with} \quad \lim_{X \to C} f(x) = -\infty$$

$$= \lim_{\substack{X \to C}} \log C \xrightarrow{f(X) - g(X)}$$
$$= \lim_{\substack{X \to C}} \log \frac{C^{f(X)}}{C^{g(X)}}$$

and one can consider $\lim_{X\to c} \frac{e^{f(X)}}{e^{g(X)}}$ which is of the

form %

Ist Result
Thm 6.3.1 let •
$$f,g:[a,b] \rightarrow \mathbb{R}$$
 (af(a)=g(a)=0
• $g(x)\neq 0 \quad \forall x \in (a,b)$
If f and g are differentiable at a (1-side limit) with
 $g'(a)\neq 0$, then $\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$ exists and
 $\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$

Remarks: (1) f(a) = g(a) = 0 is necessary !

(ounterexample: f(x) = x + i7, g(x) = zx + 3 on [0, 1]. Then f(0)=17 +0, g(0)=3 +0. (The particular (andiftion not satisfied) S'(0) = 1, $g'(0) = 2 \neq 0$ (Other undittas saterfied) And $\lim_{X \to 0} \frac{f(x)}{g(x)} = \frac{17}{3} + \frac{1}{2} = \frac{f(0)}{g'(0)}$ (2) No need to assume differentiability (a even continuity) in (0,5). (3) The Thin holds for the other end point b with $\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \frac{f'(b)}{g'(b)} \quad \text{provided } f'(b) \notin g'(b) \text{ exist (1-sided)} \\ -f(b) = g(b) = 0 \quad \text{ evist (1-sided)} \\ -f(b) = g(b) = g(b) = 0 \quad \text{ evist (1-sided)} \\ -f(b) = g(b) = g(b) = 0 \quad \text{ evist (1-sided)} \\ -f(b) = g(b) = g(b) = g(b) = g(b) = g(b) \quad \text{ e$ and also interior point CE(a,b) with $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{q'(c)} \quad \text{provided} \quad f'(c) \ge g'(c) = 0$ f(c) = g(c) = 0

$$Pf: By f(a)=g(a)=0, & g(x)=0 \quad \forall x \in (a,b)$$

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \left(\frac{f(x) - f(a)}{x - a}\right) \left(\frac{g(x) - g(a)}{x - a}\right), \quad \forall x \in (a, b)$$

$$\therefore \quad \lim_{X \to a^+} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)} \quad \text{as} \quad f'(g) = \lim_{X \to a^+} \frac{f(x) - f(a)}{x - a}, \quad \int_{x \to a^+} \frac{g(x) - g(a)}{x - a} \neq 0$$

$$\frac{g(g)}{x - a} = \lim_{X \to a^+} \frac{g(x) - g(a)}{x - a} \neq 0 \quad \text{(interview)} \quad \text{(intervie$$

$$\begin{array}{l} Thm 6.3.2 \ (\underline{Cauchy Mean Value Thenem}) \\ \text{Let} & \cdot & f,g: (a,b] \rightarrow (\mathbb{R} \ cartinuous \ (a < b)) \\ & \cdot & f,g \ differentiable \ on \ (a,b) \\ & \cdot & g'(x) \neq 0 \ , \ \forall \ x \in (a,b) \\ \end{array}$$

$$\begin{array}{l} Then \ \exists \ c \in (a,b) \ s,t. \qquad \frac{f(b) - f(a)}{g(b) - f(a)} = \frac{f'(c)}{g'(c)} \\ \end{array}$$

<u>Remarks</u>: (1) One may tempted to think of the following wrong proof: $MVT \Rightarrow \exists c st. f(b) - f(a) = f'(c)(b-a)$ and g(b) - f(a) = g'(c)(b-a)

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f(c)}{g'(c)}$$

The middle is that the "c" given by the MVT depends
on the functions f & g. Careful notations should be
$$\exists c_s s.t. f(b) - f(a) = f(c_s)(b-a)$$

 $e \exists c_g s.t. g(b) - g(a) = g(c_g)(b-a).$
But $(f may not equal c_g.$

(3) Clearly, if gixs=x, Cauchy MUT reduces to MVT.

$$Pf\left(of (auclug MVT)\right).$$
Since $g'(x) \neq 0$, $\forall x \in (a,b)$, we have $g(b) \neq g(a)$.
Otherwise the function $g(x) - g(a)$ satisfies $i \frac{g(b) - g(a) = 0}{g(a) - g(a) = 0}$
and Rolle's Thus $\Rightarrow \exists c \in (a,b) \ s,t. \ g'(c) = (g(x) - g(a))'/_{x=c} = 0$
contradiction.

Hence we can define

$$R(x) = \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)) - (f(x) - f(a)), \forall x \in [a, b].$$

(learly, h is continuous on [a,b] & differentiable on (a,b)
(by the assumption on f & g). Moreover,

$$f(b) = \frac{f(b) - f(a)}{g(b) - g(a)} (g(b) - g(a)) - (f(b) - f(a)) = 0$$

$$f(a) = \frac{f(b) - f(a)}{g(b) - g(a)} (g(a) - g(a)) - (f(a) - f(a)) = 0$$

$$\therefore \text{ Rolle's Thm} \Rightarrow \exists c \in (a,b) \text{ s.t.}$$

$$0 = \Re(c) = \frac{f(b) - f(a)}{g(b) - g(a)} g'(c) - f'(c)$$
Since $g'(c) \neq 0$, we have $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)} \overset{\times}{\underset{g(b)}{x}}$

L'Hospital's Rule I

Remarks: (1) No need to assume f'(a), g'(a) exist as in Thom 6.3.3 (& Thun 6.3.5), but need differentiable in (a,b)

$$\frac{\text{Thm} 6.3.3}{\text{Let}} \left(\frac{L' \text{Hospital } S \text{ Rule } I}{2} \right)$$

$$\text{Let} \quad -\omega \leq a < b \leq \infty$$

$$\cdot \quad f, g \quad \text{differentiable} \quad \text{on} \quad (a,b) \quad (\underline{NO} \text{ assumption at end pts.})$$

$$\cdot \quad g'(x) \neq 0, \quad \forall x \in (a,b)$$

$$\cdot \quad \lim_{x \Rightarrow a^{+}} f(x) = 0 = \lim_{x \Rightarrow a^{+}} g(x)$$

$$(a) \quad \text{If} \quad \lim_{x \Rightarrow a^{+}} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}, \quad \text{then} \quad \lim_{x \Rightarrow a^{+}} \frac{f(x)}{g(x)} = L$$

$$(b) \quad \text{If} \quad \lim_{x \Rightarrow a^{+}} \frac{f'(x)}{g'(x)} = L \in \{-\infty,\infty\}, \quad \text{then} \quad \lim_{x \Rightarrow a^{+}} \frac{f(x)}{g(x)} = L$$

Ef: For any
$$\alpha, \beta$$
 such that $\alpha < \alpha < \beta < \beta$,
Rolle's implies $g(\beta) \neq g(\alpha)$ since $g(\alpha) \neq 0$ $\forall x \in (a, b)$.
Further none, Cauchy Mean Value Than
 $\Rightarrow \exists u \in (\alpha, \beta)$ such that
 $\frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f(\alpha)}{g(\alpha)}$.
(ince the state $f(\alpha) = 1 \in \mathbb{R}$
 $x > a_{1} - g(x) = 1 \in \mathbb{R}$
 $x > a_{1} - g(x) = 1 \in \mathbb{R}$
 $1 - sided limit$
 $\Rightarrow \forall \epsilon > 0, \exists \delta > 0 \ s, f.$ $\left| \frac{f(x)}{g(x)} - L \right| < \epsilon, \forall x \in (a, a + \delta)$
 $(a + \delta < b)$
If $\alpha < \alpha < \beta < \alpha + \delta$, then the u in (k) satisfies
 $\alpha < u < \alpha + \delta$.
Hence $L - \epsilon < \frac{f(\alpha)}{g(\alpha)} < L + \epsilon$
 $\Rightarrow L - \epsilon < \frac{f(\alpha)}{g(\alpha)} < L + \epsilon$ (by (k))
Lething $\alpha > \alpha + \alpha$ and using $\lim_{x > \alpha +} f(x) = 0 - \lim_{x > \alpha +} g(\alpha)$,
we have $\forall \beta$ with $\alpha < \beta < \alpha + \delta$, $L - \epsilon < \frac{f(\beta)}{g(\beta)} \leq L + \epsilon$

Now,
$$\forall \epsilon' > 0$$
, we can choose $\epsilon > 0$ s.t. $\epsilon < \epsilon'$.
Then $\left| \frac{f(\beta)}{g(\beta)} - L \right| \le \epsilon < \epsilon'$, $\forall \beta \in (a, a + \delta)$.

In other words,
$$\forall \epsilon' > 0$$
, $\exists \delta > 0$ st.
 $\left| \frac{f(\epsilon)}{g(\epsilon)} - L \right| < \epsilon'$, $\forall \beta \in (\alpha, \alpha + \delta)$.
 $\lim_{x \to \alpha^+} \frac{f(x)}{g(x)} = L$.

Care (b)
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L$$
, $L = \pm \infty$.

If L=to, then
$$\forall M > 0$$
, $\exists \delta > 0$ such that
 $\frac{f(x)}{g'(x)} > M$, $\forall x \in (a, a+\delta)$.

Hence for
$$\alpha < \alpha < \beta < \alpha + \delta$$
,

$$M < \frac{f(\alpha)}{g'(\alpha)} = \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)},$$

Letting
$$d \Rightarrow a^{+} \& ualling \lim_{x \Rightarrow a^{+}} f(x) = 0 = \lim_{x \Rightarrow a^{+}} g(x),$$

we have $M \leq \frac{f(\beta)}{g(\beta)}, \forall a < \beta < a + \delta.$

Suice M>0 is arbitrary, we have
$$\lim_{X \Rightarrow a+} \frac{f(x)}{g(x)} = +\infty = L$$
.
Similarly for L=-60 (check!)
Notes: (1) The cases of $\lim_{X \to 200}$ are in fact included in
 $x \Rightarrow a_{+} \in x \Rightarrow b^{-}$.
(2) The case of $\lim_{X \Rightarrow b^{-}}$ can be proved similarly.
(3) Then, follow inneediately, the case of $\lim_{X \to c}$.
(1) this case, only need to assume $g'(x) \neq 0$ for $x \neq c, x \in (a, b)$)
see eq.(b) in eg. 6.3.4

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{zx}$$
?
 $\sum_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{x \to 0} \frac{\sin x}{zx}$?

However,
$$f(x) = sin x$$
 diff.
 $g(x) = -2x$ diff.
 $g(x) = -2x$ diff.
 $g(x) = -2 \neq 0 \quad \forall x \in \mathbb{R}$.
L'Hospital's Rule I (even the earlier Thub 63.1) =)
 $\lim_{x \to 0} \frac{slin x}{2x} = \lim_{x \to 0} \frac{(\omega x)}{2} = \frac{1}{2}$ has a limit.
Hence L'Hospital's Rule I again =)
 $\lim_{x \to 0+\infty} \frac{1-(\omega x)}{x^2} = \lim_{x \to 0+\infty} \frac{suix}{2x}$
Since $(f(\omega x)) = sin x$ exists a $(x^2) = 2x \neq 0, \forall x > 0$

And
$$\lim_{X \to 0^-} \frac{1-(0)X}{X^2} = \lim_{X \to 0^-} \frac{\lim_{X \to 0^-} X}{ZX}$$

Since lei
$$\frac{\lambda \dot{u} \times}{x \Rightarrow 0} = \frac{1}{2x} = \frac{1}{2}$$
 exist, the 2 1-sided limits equal
and hence

$$\lim_{X \to 0} \frac{1 - \cos X}{X^2} = \lim_{X \to 0} \frac{x \cos X}{z x} = \frac{1}{z}$$

(c)
$$\lim_{x \to 0} \frac{e^{x}}{x} = \lim_{x \to 0} \frac{e^{x}}{1} = 1$$
. (check conditions!)

As
$$\tilde{u}(b)$$
, this existence of limit implies

$$\lim_{X \to 0} \left(\frac{e^{X} - |-X|}{X^{2}} \right) = \lim_{X \to 0} \frac{e^{X} - |}{X} = 1 \quad (\text{chock conditions!})$$

(d)
$$\lim_{X \to 1} \frac{\ln X}{X-1}$$
 (defines for $X > 0$)

$$= \lim_{X \to 1} \frac{1}{1}$$

$$= 1$$
($\lim_{X \to 1} \frac{1}{1}$) ($\lim_{X \to$

$$Thm 6.3.5 \left(\frac{L'Hogital \leq Rule I}{Hogital \leq Rule I} \right)$$
Let $-\infty \leq \alpha < b \leq \infty$
 f, g differentiable on (a,b) (ND assumption at end pts.)
 $g'(x) \neq 0$, $\forall x \in (a,b)$
 $\lim_{x \to a^{+}} g(x) = \pm \infty$
(a) If $\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$, then $\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = L$
(b) If $\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \{-\infty,\infty\}$, then $\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = L$
 $Pf: Only fn'' \lim_{x \to a^{+}} g(x) = \pm \infty''$.
 $\lim_{x \to a^{+}} g(x) = -\infty''$ is similar.

As before,
$$\forall d, p \in (a, b)$$
 with $a < d < p < b$, we have
• $g(\beta) \neq g(\alpha)$ and
• $\frac{f(p) - f(\alpha)}{g(p) - f(\alpha)} = \frac{f(\alpha)}{g(\alpha)}$ for some $u \in (d, \beta)$
 $g(p) - f(\alpha) = \frac{f(\alpha)}{g(\alpha)}$ for some $u \in (d, \beta)$
 $\underline{Gae}(a): L \in \mathbb{R}$.
subcase L>O
By this $\frac{f(x)}{g(x)} = L$, $\forall E > 0$ ($\varepsilon < \frac{L}{2}$), $\exists \delta > 0$ such that
 $0 < L - \varepsilon < \frac{f(\alpha)}{g(\alpha)} < L + \varepsilon$, $\forall u \in (a, q + \delta)$ ($\varepsilon < + \delta < b$)
 $\Rightarrow L - \varepsilon < \frac{f(p) - f(\alpha)}{g(p) - g(\alpha)} < L + \varepsilon$, $\forall a < d < p < a + \delta$.
As this $g(k) = +\infty$, $\exists c \in (a, a + \delta)$ such that
 $g(x) > 0$, $\forall x \in (a, c)$ ($c(a, a + \delta)$)
Then for any $a < d < c$, we have
 $L - \varepsilon < \frac{f(c) - f(\alpha)}{g(c) - g(\alpha)} < L + \varepsilon$ (by taking $p = c$)
Using again, this $g(x) = +6\sigma$, we have
 $\lim_{x > a + f(x) = t < 0} \lim_{x > a + f(x) = t < 0} \lim_{x > a + f(x) = t < 0} \lim_{x > a + f(x) = t < 0} u$

Therefore,
$$\exists 0 < c_1 < c$$
 such that

$$0 < \frac{g(c)}{g(\alpha)} < 1, \quad \forall \alpha \in (\alpha, c_1) (c(\alpha, c))$$
(Both $g(\alpha) \ge g(c) > 0$ from above) (Mittake in)

$$\vdots \qquad \frac{g(\alpha) - g(c)}{g(\alpha)} = 1 - \frac{g(c)}{g(\alpha)} > 0, \quad \forall \alpha \in (\alpha, c_1)$$
Therefore $L - \varepsilon < \frac{f(c) - f(\alpha)}{g(c) - g(\alpha)} < L + \varepsilon$,

$$\Rightarrow (L - \varepsilon) (1 - \frac{g(c)}{g(\alpha)}) < \frac{f(c) - f(\alpha)}{g(c) - g(\alpha)} \cdot (1 - \frac{g(c)}{g(\alpha)}) < (L + \varepsilon) (1 - \frac{g(c)}{g(\alpha)})$$
i.e. $(L - \varepsilon)(1 - \frac{g(c)}{g(\alpha)}) < \frac{f(\alpha)}{g(\alpha)} - \frac{f(c)}{g(\alpha)} < (L + \varepsilon) (1 - \frac{g(c)}{g(\alpha)})$

which is

$$(L-\varepsilon)(I-\frac{g(c)}{g(\alpha)})+\frac{f(c)}{g(\alpha)}<\frac{f(\alpha)}{g(\alpha)}<(L+\varepsilon)\left(I-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}, \forall \alpha \in (a,c)$$

Using
$$\lim_{x \to a+} g(x) = t\infty$$
 again, $\exists c_2 \in (a, c_1)$ such that
 $0 < \frac{g(c)}{g(a)} < \eta$ and $0 < \frac{|f(c)|}{g(a)} < \eta$, $\forall a \in (q, c_2)$
where $\eta = \min\{1, \epsilon, \frac{\epsilon}{L+1}\} > 0$.

Then
$$\frac{f(\alpha)}{g(\alpha)} < (L+\varepsilon) + \eta < L+\varepsilon \leq \sin(\varepsilon) + \varepsilon < \varepsilon > 0$$

and
$$\frac{f(\kappa)}{g(\kappa)} > (l-\varepsilon)(l-\eta) - \eta$$

= $(l-\varepsilon) - [(l-\varepsilon) + 1]\eta$
> $(l-\varepsilon) - (l+1-\varepsilon) \cdot \frac{\varepsilon}{l+1}$ $(\eta \leq \frac{\varepsilon}{l+1})$
= $l-\varepsilon - \varepsilon + \frac{\varepsilon^2}{l+1}$

We've proved that, $\forall \geq \geq > \circ$ (same as $\forall \geq > \circ$) ($\geq < L$) $\exists C_2 \in (0, C_1)$ such that $L-2 \geq \leq \frac{f(\alpha)}{g(\alpha)} < L+2 \geq \int \forall \alpha \in (0, C_2)$. (C_2 can be unitten as $\alpha + \delta$) \vdots , $\lim_{X \to \alpha t} \frac{f(X)}{g(X)} = L$.

The proof of the subcases that L=0 and L<0 are similar (with careful consideration of "sign" in the inequalities!)

(Pf of (b): next lecture)