Roll	If $\lim_{x\to c} 5(x) = A$
lim $9(x) = B + 0$	
then $\lim_{x\to c} \frac{1}{9(x)} = \frac{A}{B}$	
Quættm	What can we say about the case that $B = 0$?
(1) If $A + 0$, then $\lim_{x\to c} \frac{5(x)}{9(x)} = \infty$ (\pm depends on 9 π A)	
(2) Indeterminate π $A = 0$: i.e. not exist, $\frac{1}{3}$ ($\frac{1}{3}$)	
(3) $\frac{1}{3}$ <math< td=""></math<>	

 $\frac{a}{2}$ $\left(\frac{a}{2} \right)$ 0.00 , 0^{0} , 1^{00} , 0^{0} , $\omega - \infty$

eg: O^o duvotes inductanuñate funr of
$$
lim_{x\to c} f(x)
$$

with $lim_{x\to c} f(x) = 0 =lim_{x\to c} g(x)$.

and
$$
\infty - \infty
$$
 denotes indeterminate sum of $\lim_{x \to c} (f(x) - g(x))$
with $\lim_{x \to c} f(x) = +\infty = \lim_{x \to c} g(x)$
(a - \infty)

Note Indeterminate fans ^O ^o ⁰⁰ 10 ooo ^o ^o can bereduced to the fam ^a by taking log exp or algebraic manipulations

$$
\underbrace{eg.} \& -\infty \quad \text{div}_{x \to c} (f(x) - g(x)) \quad \text{with} \quad \lim_{x \to c} f(x) = -\infty
$$
\n
$$
\underbrace{f(x)}_{x \to c} g(x) = -\infty
$$

$$
= \lim_{x \to c} \lim_{x \to c} \frac{f(x)-g(x)}{g(x)}
$$

$$
= \lim_{x \to c} \lim_{x \to c} \frac{g}{g(x)}
$$

and me can consider lin $e^{f(x)}_{x\to c}$ which is of the

 $f_{\alpha\mu}$ $\%$

1st result Thin6.3.1 let 9 ^a ^b R asb flasgias ^O g ^x ^O ^H XE Ca ^b If ^f and ^g are differentiable at ^a ^l sidelimit with gla to then left exists and tea fit Has gas

Remarks: $(1) f(a) = g(a) = 0$ is necessary !

 $countor example:$ $f(x) = x + 17$, $g(x) = 2x + 3$ on $[0, 1]$. Then $\{c\} = (7+c)$, $q(c) = 3+c$ (The particular condition not solutional) $5(0)=1$, $5(0)=2\neq0$ (Other unditions satisfied) And $\frac{\pi}{x} \frac{f(x)}{g(x)} = \frac{17}{3} \pm \frac{1}{2} = \frac{f(0)}{g'(0)}$ (2) No need to assume differentiality (a even continuity) in (a,b) . (3) The Thm fiolds for the other end point b with $\lim_{x\to b^-} \frac{f(x)}{g(x)} = \frac{f(b)}{g'(b)}$ provided $f'(b)$ $g'(b)$ axist (1-sided)
 $f''(b)$ a $g''(b)$ axist (1-sided) and also interior point $C \in (a, b)$ with $\lim_{x\to C} \frac{f(x)}{g(x)} = \frac{f'(C)}{g'(C)}$ provided $f'(C) \ge 9'(C)$ exist a $g'(C) \ne 0$ $f(c) = g(c) = 0$

$$
Pf: \quad By \quad f(a)=g(a)=o, \quad \& \quad g(x)\neq 0 \quad \forall \quad x\in (a,b\setminus a)
$$

$$
\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x) - f(a)}{x - a} \times \frac{g(x) - g(a)}{x - a} \times \frac{f(x - f(a))}{x - a} = \frac{f(a)}{g(x)} = \frac{f(a)}{g(a)} = \frac{f(a)}{g(a)} = \frac{f(a)}{x - a} = \frac{f(b) - f(a)}{x - a} = \frac{f(b) - f(b)}{x - a} = \frac{f(b) - f(b)}{x
$$

$$
Qg: \text{Thm } 6.3.1 \text{ can be applied as } \frac{1}{20}
$$
 (interin point)
\n $Qg: \text{Thm } 6.3.1 \text{ can be applied as } \frac{1}{20}$
\n $Qg: \text{Thm } 6.3.1 \text{ can be applied as } \frac{1}{20}$
\n $Qg: \text{Thm } 6.3.1 \text{ can be applied as } \frac{1}{20}$
\n $Qg: \text{Thm } 6.3.1 \text{ can be applied as } \frac{1}{20}$

For furtherresults we need

Then 6.3.2 (Cauchy Mean Value them)

\nLet
$$
\cdot
$$
 \cdot \cdot

Remarks: (1) One may tempted to think of the following wrong proof: $MVT \Rightarrow \exists c \; s.t. \; f(b)-f(a)=f(c) (b-a)$ and $g(b) - f(a) = g'(c) (b-a)$

Hewe
$$
\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f(c)}{g(c)}
$$

The mistake is that the "c" given by the MVT depends
on the functions
$$
f
$$
 g g. Careful notatives should be
 $\exists C_4$ s.t. $f(b)-f(a) = f(c_4)(b-a)$
 $\exists C_5$ s.t. $g(b)-g(a) = g(c_4)(b-a)$.
But C_5 wag not equal C_9 .

(3) Clearly, if $g(x)=x$, Cauchy MVT reduces to MVT.

$$
\begin{array}{ll}\n\text{Pf (of Cauchy MVT)}. \\
\text{Since } g(x) \neq 0, \forall x \in (a,b), \text{ we have } g(b) \neq g(a), \\
\text{Otherwise} &\text{the function } g(x) - g(a) &\text{satisfies} \{g(a) - g(a) = 0 \\
\text{and } Roll(s) \text{ Thus } \Rightarrow \exists c \in (a,b) \text{ s.t. } g(c) = (g(x) - g(a)) \mid_{x=c} = 0 \\
\text{contradiction}\n\end{array}
$$

When we can define

\n
$$
\mathcal{H}(x) = \frac{f(b)-f(a)}{f(b)-g(a)} \left(\mathcal{G}(x) - \mathcal{G}(a) \right) - \left(f(x) - f(a) \right) , \quad \forall x \in [a,b]
$$

(loady, h. is continuous on [a, b] a differentiable on (a, b)
\n(by the assumption on
$$
f \ge g
$$
).
\n
$$
\mathcal{H}(b) = \frac{f(b)-f(a)}{g(b)-g(a)} (g(b)-g(a)) - (f(b)-f(a)) = 0
$$
\n
$$
\mathcal{H}(a) = \frac{f(b)-f(a)}{g(b)-g(a)} (g(a)-g(a)) - (f(a)-f(a)) = 0
$$

$$
\therefore \text{ Rolle's } \lim_{\delta \to 0} \Rightarrow \pm c \in (a, b) \text{ s.t.}
$$
\n
$$
0 = \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) - f'(c)
$$
\n
$$
\text{Sinc } g(c) \neq 0, \text{ we have } \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f(c)}{g'(c)} \times
$$

L'Hospital's Rule I

Remarks: (1) No need to clearme $f(a)$, $g(a)$ exist as in Thm 6.3.3 (& Thm 635), but need differentiable in (a,b)

\n- (2) Thm 6.33 (a Thm 6.3.5) states only the case of taking
$$
J\ddot{\omega}
$$
 to the $x \rightarrow a + 1$ (right hand limit)
\n- So "convuivience",
\n- In Jat , it is true also for $x \rightarrow b - 1$ (left that limit)
\n- $x \rightarrow c$ (two-sided limit, $c \in (a,b)$)
\n- $x \rightarrow \pm \infty$
\n

$$
\boxed{\frac{\text{Thm6.33}}{\text{Let}} \cdot -\infty \text{ a } \text{the } \text{the } \text{at } k \text{ is a } \text{the } \text{at } k \text{ is a } \text{the } k \text{ is a } \text{the } k \text{ is a } k \
$$

15:	En. any x, p. such that $a < a < \beta < b$,
16:	Tables $g(p) + g(a)$ $sina \ g(x) + b \ \forall x \in (a, b)$.
17:	Example: 1
20:	1
30:	1
4:	1
5:	1
6:	1
7:	1
8:	1
9:	1
10:	1
11:	1
12:	1
13:	1
14:	1
15:	1
16:	1
17:	1
18:	1
19:	1
10:	1
11:	1
12:	1
13:	1
14:	1
15:	1
16:	1
17:	1
18:	1
19:	1
10:	1

Now,
$$
\forall \xi' > 0
$$
, we can choose $\xi > 0$ st. $\xi < \xi'$.
Then $\left| \frac{f(\beta)}{g(\beta)} - L \right| \le \xi < \xi'$, $\forall \beta \in (a, a+\delta)$.

In other words,
$$
\forall \xi > 0
$$
, $\exists \delta > 0$ s.t.
\n $\left| \frac{\xi(\beta)}{3(\beta)} - L \right| < \xi'$, $\forall \beta \in (a, a+\delta)$.
\n $\lim_{x \to a^+} \frac{\xi(x)}{9(x)} = L$.

$$
Cone (b) \quad \lim_{x\to a^+} \frac{f(x)}{g'(x)} = L, \quad L = \pm \infty.
$$

$$
\exists f \L=+\infty
$$
, then $\forall M>0$, $\exists \delta>0$ such that
 $\frac{\xi(x)}{g(x)} > M$, $\forall x \in (a, a+\delta)$.

Hence
$$
-\int ev
$$
 $0 < e < u < \beta < 0 + \delta$
\n
$$
M < \frac{f(u)}{g'(u)} = \frac{f(\beta) - f(u)}{g(\beta) - g(\alpha)}
$$

Letting
$$
x \to a^+
$$
 as using $\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x)$,
we have $M \le \frac{f(\beta)}{g(\beta)}$, $\forall \alpha < \beta < a + \delta$.

Since M>0 is arbitrary, we have
$$
\lim_{x\to a^{+}} \frac{f(x)}{g(x)} = +\infty = L
$$
.

\nSimilarly, $f(x) = -\infty$ (thick!) $\frac{x}{x}$

\nNotes: (1) The cases of $\lim_{x\to a^{+}} x$ are $\frac{u}{x}$ and $\frac{u}{x}$.

\n(2) The case of $\lim_{x\to b^{-}}$.

\n(3) Then, follows $\lim_{x\to b^{-}}$ can be proved $\frac{f}{x}$.

\n(5) Then, $\lim_{x\to a^{+}}$ by $\lim_{x\to b^{-}}$ are $\lim_{x\to c^{-}}$.

\n(In $\lim_{x\to a^{-}}$ and $\lim_{x\to a^{+}}$ is $\lim_{x\to c^{-}}$.

\n(6.11)

\n(7)

\n(8.12)

\n(9.13)

$$
\frac{\log 6.3.4}{x \to 0^{+}} = \lim_{x \to 0^{+}} \frac{\sin x}{\sqrt{x}} \qquad (note \quad \sqrt{x} \text{ is not difficult at } x = 0)
$$
\n
$$
= \lim_{x \to 0^{+}} \frac{\cos x}{\sqrt{2\sqrt{x}}} \qquad \qquad \text{g(x) = 5x \text{ diff. (}f_{\text{ca}} \times x = 0 \text{)}
$$
\n
$$
= 0 \qquad \qquad (\text{limit by its, calculation just if each})
$$

(b)
$$
\lim_{x\to 0} \frac{1-cosx}{x^2} = \lim_{x\to 0} \frac{sinx}{2x}
$$
 ?
 "indeterminate again"

However,
$$
f(x) = a\overline{u}x
$$
 $d\xi f$. $\Rightarrow f(x) = \omega x$
\n $g(x) = 2x$ $df f$. $\Rightarrow g'(x) = 2 \pm 0$ $\forall x \in \mathbb{R}$
\n $L'Hospital's Rule I$ (event the earlier than 6.3.1) \Rightarrow
\n $\lim_{x \to 0} \frac{d\overrightarrow{u}x}{2x} = \lim_{x \to 0} \frac{(\omega x)}{2} = \frac{1}{2}$ has a limit.
\n $\frac{1}{2}$
\n $\lim_{x \to 0} L\left| \frac{1 - (\omega x)}{x^2} \right| = \lim_{x \to 0} \frac{d\overrightarrow{u}x}{2x}$
\n $\lim_{x \to 0+} \frac{1 - (\omega x)}{x^2} = \lim_{x \to 0+} \frac{d\overrightarrow{u}x}{2x}$
\n $\lim_{x \to 0+} (1 - (\omega x)) = a\overline{u}x$ exist. $\& (x^2) = 2x \pm 0, \forall x > 0$

And
$$
\lim_{x\to 0^{-}} \frac{1-6x}{x^{2}} = \lim_{x\to 0^{-}} \frac{4ix}{2x}
$$

Sance lui sin = $\frac{1}{2}$ exist, the 2 1-sided luits equal and hence

$$
lim_{x\to 0} \frac{1-cosx}{x^2} =lim_{x\to 0} \frac{dimx}{x} = \frac{1}{2}
$$

(C)
$$
\lim_{x\to0} \frac{e^{x}}{x} = \lim_{x\to0} \frac{e^{x}}{1} = 1
$$
 (duch conditions!)

As û (b), Hu's existence of lui't ùplies
\n
$$
ln\left(\frac{e^{x}-1-x}{x^{2}}\right)=lim_{x\to0}\frac{e^{x}-1}{x}=1
$$
 (clock conditions!)

(d)
$$
lim_{x \to 1} \frac{ln x}{x-1}
$$
 (dyfües fa x > 0)
= $lim_{x \to 1} \frac{1/x}{1}$ ($(lim x)^{2} = \frac{1}{x}$ exists 4 x > 0)
= 1 ($lim x \to 1$ exists, calculation just
($limivits$, calculation just

Thus,
$$
3.5
$$
 (L'Hospital's Rule II)

\nLet \cdot $-\infty$ s $\alpha < b \le \infty$

\n \cdot $\$

As before,
$$
\forall x \beta \in (a, b)
$$
 with $a < a < \beta < b$, we have
\n• $\frac{f(\beta) - f(\alpha)}{g(\beta) - f(\alpha)} = \frac{f(\alpha)}{g(\alpha)}$ for some $u \in (a, \beta)$
\n• $\frac{f(\beta) - f(\alpha)}{g(\beta) - f(\alpha)}$ for some $u \in (a, \beta)$
\nCase(Q): $L \in \mathbb{R}$.
\nSubspace $L > 0$
\nBy $\lim_{x \to a +} \frac{f(x)}{g(x)} = L$, $\forall \xi > 0$ $(\epsilon \leq \frac{L}{2})$, $\exists \delta > 0$ such that
\n $0 < L - \epsilon < \frac{f(\alpha)}{g(\alpha)} < L + \epsilon$, $\forall u \in (a, a + \delta)$
\n $\Rightarrow L - \epsilon < \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} < L + \epsilon$, $\forall a < a < \beta < a + \delta$.
\nAs $\lim_{x \to a +} g(x) = +\infty$, $\exists c \in (a, a + \delta)$ such that
\n $g(x) > 0$, $\forall x \in (a, c)$ $(c(a, a + \delta))$
\nThen $fa \quad \text{any} \quad a < a < c$, we have
\n $L - \epsilon < \frac{f(c) - f(\alpha)}{g(c) - g(\alpha)} < L + \epsilon$ $(by taking \beta = c)$
\nUsing again, $\lim_{x \to a +} g(x) = +\infty$, we have
\n $\lim_{x \to a +} \frac{g(c)}{g(x)} = 0$

Therefore,
$$
\exists
$$
 $0 < C_{1} < C$ such that

\n
$$
0 < \frac{g(c)}{g(d)} < 1, \quad \forall \alpha \in (a, C_{1}) \ (c(a, c))
$$
\n(Both $g(d) \geq g(c) > 0$ from above)

\n
$$
\frac{g(d) - g(c)}{g(d)} = 1 - \frac{g(c)}{g(d)} > 0, \quad \forall \alpha \in (a, C_{1})
$$
\nThough

\n
$$
L - \xi < \frac{f(c) - f(x)}{g(c) - g(x)} < L + \xi
$$
\n
$$
\Rightarrow (L - \xi) \left(1 - \frac{g(c)}{g(d)} \right) < \frac{f(c) - f(a)}{g(c) - g(a)}, \left(1 - \frac{g(c)}{g(a)} \right) < (L + \xi) \left(1 - \frac{g(c)}{g(a)} \right)
$$
\ni.e. $(L - \xi)(1 - \frac{g(c)}{g(a)}) < \frac{f(a)}{g(a)} - \frac{f(c)}{g(a)} < (L + \xi) \left(1 - \frac{g(c)}{g(a)} \right)$

\nii. $(L - \xi)(1 - \frac{g(c)}{g(a)}) < \frac{f(a)}{g(a)} - \frac{f(c)}{g(a)} < (L + \xi) \left(1 - \frac{g(c)}{g(a)} \right)$

\niii. $(L - \xi)(1 - \frac{g(c)}{g(a)}) < \frac{f(a)}{g(a)} - \frac{f(c)}{g(a)} < (L + \xi) \left(1 - \frac{g(c)}{g(a)} \right)$

which is

$$
(L-\xi)(1-\frac{g(c)}{g(\alpha)})+\frac{f(c)}{g(\alpha)}<\frac{f(\alpha)}{g(\alpha)}<(L+\xi)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}\quad\forall\,\alpha\in (a,c)
$$

Using
$$
\lim_{x \to a^{+}} g(x) = t^{\infty}
$$
 again, $\exists C_{2} \in (a, C_{1})$ such that

\n
$$
0 < \frac{g(c)}{g(a)} < \eta \quad \text{and} \quad 0 < \frac{|f(c)|}{g(a)} < \eta \quad, \forall \, d \in (a, C_{2})
$$
\nwhere $\eta = \min\{1, \xi, \frac{\xi}{L+1}\}\n>0$.

$$
\frac{f(x)}{g(x)} < (L+E) + \eta < L+2E \qquad \text{Since } L+E > L-E > 0
$$

and
$$
\frac{f(x)}{g(x)} > (L-\epsilon) (1-\gamma) - \gamma
$$

$$
= (L-\epsilon) - \left[(L-\epsilon) + 1 \right] \eta
$$

$$
> (L-\epsilon) - (L+1-\epsilon) \cdot \frac{\epsilon}{L+1} \qquad (\eta \leq \frac{\epsilon}{L+1})
$$

$$
= L - \zeta - \epsilon + \frac{\epsilon^{2}}{L+1}
$$

$$
> L - 2\epsilon
$$

We've proved that, $\forall z\epsilon>0$ (same a $\forall z\epsilon>0$) (z $\epsilon< L$) $\exists C_{2} \in (0, C_{1})$ such that $L-z\epsilon < \frac{f(x)}{q(x)} < L+z\epsilon$, \forall $\alpha \in (a, c_2)$. (C2 can be arritten as $a+\delta$) \therefore lin $\frac{\int x}{\lambda} = L$.

The proof of the subcases that $L=0$ and $L<0$ are sincler (with careful consideration of "sign" in the inequalities!)

(Pf of 1b): next lecture)