$$6.2$ The Mean Value Theorem

Recall	function	$5:1$	R	α sorted to have a	$\frac{V_3(c)}{c_6-c_4r}$
• relative maximum at $c \in \mathbb{I}$	$\frac{1}{c_6-c_4r}$				
• addive minimum at $c \in \mathbb{I}$	$\frac{1}{c_6-c_4r}$				
• relative minimum at $c \in \mathbb{I}$	$\frac{1}{c_6-c_4r}$				
• addive minimum at $c \in \mathbb{I}$	$\frac{1}{c_6-c_4r}$				
• addive extremum at $c \in \mathbb{I}$	$\frac{1}{c_6c_6-c_4r}$				
• relative extremum at $c \in \mathbb{I}$	$\frac{1}{c_6c_6-c_4r}$				
• relative extremum	$\frac{1}{c_6-c_6}$	$\frac{1}{c_6-c_6r}$			
• relative extremum	$\frac{1}{c_6-c_6}$	$\frac{1}{c_6-c_6r}$			
• relative extremum	$\frac{1}{c_6}$	$\frac{1}{c_6-c_6r}$			
• relative interior Exremum	$\frac{1}{c_6}$	$\frac{1}{c_6}$			
• the an interior point of the interval 1					
• the the					

Note: The condition that CEI is an interior point is <u>neccessary</u>. eg: f(x)=x on TO,1] has relative extremune | f(x) at $x = 0$ (min), but $f'(0) = 1 \pm 0$. $\left($ at $x=1$ (max), but $f'(1) = 1 \pm 0$.)

19.5: Prove only the case of relative maximum. The case of relative minimum is similar.

\n10.6: Let
$$
c \in
$$
 intera of I, f has a relative maximum at c and $f(c)$ exist.

\nSuppose on the contrary, that $f(c) \neq 0$, then either

\n $f'(c) > 0$ on $f'(c) > 0$.

\n11.6: If $f'(c) > 0$, i.e. $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} > 0$.

\n12.7: If $f'(c) > 0$, i.e. $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} > 0$.

\n13.7: If $f'(c) > 0$, i.e. $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} > 0$.

\n14.8: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) < 0$.

\n15.9: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) < 0$.

\n16.1: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) < 0$.

\n17.1: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) < 0$.

\n18.2: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) < 0$.

\n19.3: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) > 0$.

\n10.1: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) > 0$.

\n11.2: If $f'(c) > 0$, then $f'(c) > 0$, then $f'(c) >$

Note that I has a relative nussimum, there exists δ_i >o such that $f(x)$ $\xi(x)$, \forall $x \in (c-s_z, c+s_z) \wedge \bot$ Then for δ_3 = $m\ddot{u}_i$ { $\delta\overline{1}$, δ_2 }, $(C-\delta_3, C+\delta_3) \subset V \cap I$ and $(C-\delta_{\xi},G\delta_{\xi})\subset (C-\delta_{\xi},G+\delta_{\xi})\cap T$

As a result,
\n
$$
\frac{f(x)-f(c)}{x-c} < 0
$$
\n
$$
d \times f(c-\delta_3, c+\delta_3), x+c
$$
\n
$$
d \times f(x) < f(c)
$$
\n
$$
f(x) < f(c) < 0
$$
\n
$$
f(x) - f(c) > 0 \Rightarrow f(x) - f(c) > 0
$$

which cartradicts the 2nd inequality.

Similarly, if $f'(c) < 0$, are can find $\delta'_3 > 0$ so that

The 1st inequality \Rightarrow \exists x < c such that $\frac{\zeta(x)-\zeta(c)}{x-c}<0$. \Rightarrow $f(x)-f(c) > 0$ contradicts the z^{nel} inequality \therefore $f(c)=0$. $\not\approx$

Cor6.2.2 Let
$$
\cdot
$$
 $f: I \Rightarrow \mathbb{R}$ *continuous*

\n \cdot f has a *relative extremum* at *au interian point* $c \in \mathbb{Z}$.

\nThen \overrightarrow{u} \cdot $\overrightarrow{f}(c)$ *down't arist*

\n \overrightarrow{u}

\n $\begin{cases}\n\overrightarrow{u}$ $\overrightarrow{f}(c) = 0\n\end{cases}$

 $(f - f - F_0)$ low easily from Thm 6.2.1)

$$
\underline{vg}: f(x) = |x| \text{ in } I = [-1,1]
$$
\n
$$
\underline{f}(x) = |x| \text{ in } I = [-1,1]
$$
\n
$$
\underline{f}(x) = |x|
$$

Thm 6.2.3 (Rolls' Theorem)	(a <b)< th="">\n</b)<>	
Suppne	- $5: \text{[a,b]} \rightarrow \mathbb{R}$ continuum (m closed interval $\mathbb{I} = \text{[a,b]}$)	
- $\frac{6}{x} \div (x) = x \dot{u}t_0 \quad \forall x \in (a,b)$ (open interval, \dot{u} term of \mathbb{I})		
- $\frac{6}{x} \div (a) = \frac{1}{x} \cdot (b) = 0$		
Then	$\exists \quad c \in (a, b)$ such that	$\frac{6}{x} \cdot (c) = 0$

PF: If $f(x)=0$ on $[a,b]$, then $f'(x)=0$ v $x\in[a,b]$. Now then
If $f(x) \neq 0$, then either $f>0$ to $f(x)$ such that a, b
Notx that f is unitations on the closed interval $[a,b]$
Gottaius au absolute maximum and au absolute minimum on I.
Thus 53.4 of the textbook, MATLAB
Howe, if $f>0$ to f to 1 and f to a is odd.
Howe, if $f>0$ to f to 1 and f to a is odd.
Howe point $c \in (0, b)$ as $f(a) = f(b) = 0$.
Since $c \in (a, b)$, $f'(c) = 0$ and $f(a) = f(b) = 0$.
By Interior Extrone Theorem (Thm 6.21), $f'(c) = 0$.
If there is no $x \in (a, b)$. Hence $(-5) \ge 0$ for some $x \in (a, b)$
Out $-f$ satisfy a all conditions as f . Therefore, $f(0, b)$
Out $-f$ satisfy a all conditions as f . Therefore, $f(c) = 0$
Let a, b be the product of f to $f(a, b)$ and $f(a, b) = 0$.
Out $-f$ satisfy a all conditions as f . Therefore, $f(c) = 0$
Let a, b be the product of f to $f(a, b)$ and $f(a, b)$ are even.

Thm 6.24 (Mean Value Thonom)		
Suppose	$f: [a,b] \Rightarrow R$ (continuous	(a,b)
• $f'(x)$ exist to V xin(a,b)		
Then $\exists a$ point $c \in (a,b)$ such that		
$f(b)-f(a) = f(c)(b-a)$		
94: Consider the function (parallel)	$f(x)$	
25: Consider the function (parallel)	$f(x)$	
26: Consider the function (parallel)	$f(x)$	
27: Consider the function (parallel)	$f(x)$	
30: $\frac{16}{b-a}(x-a)+\frac{1}{b}$		
40: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)+\frac{1}{b}$		
50: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
60: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
71: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
81: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
91: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
102: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
11: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
12: $\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)+\frac{1}{b-a}(x-a)$		
13: <math< td=""></math<>		

and $\varphi'(x)$ exists $\forall x \in (a,b)$ as $f(x)$ exists $\forall x \in (a,b)$. At the end points $\varphi(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} (a - a) = 0$ $\phi(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b-a} (b-a) = 0$

$$
\therefore \varphi \text{ salts-fios all conditions in Rolle's Thm (Thm 6.2.3).}
$$
\n
$$
\text{Heu}(\exists \text{ } C \in (a, b) \text{ such that}
$$
\n
$$
O = \varphi'(c) = f(c) - \frac{f(b) - f(a)}{b - a}
$$
\n
$$
\text{(by Thm 6.1.3 and (x) = 1)}
$$
\n
$$
\therefore f(b) - f(a) = f(c) (b - a) . \quad \text{for } c \in (a, b)
$$

Applications of Mean Value Thenem

Hint 6.2.5 Suppose.

\n
$$
f: [a, b] \Rightarrow |R \text{ contains } (a < b)
$$
\n
$$
= f(x) \text{ exist } \forall x \in (a, b) \text{ (i.e., } f \text{ differentiable } m \text{ (}a, b \text{))}
$$
\n
$$
= f'(x) = 0, \forall x \in (a, b).
$$
\nThen,

\n
$$
f \text{ is a constant on } [a, b].
$$

Pf let XEIab and ^X ^a

Applying Mean Value Thm to
$$
f: [a, x] \rightarrow \mathbb{R}
$$
,
\n(which clearly satisfy \hat{a} will conditions of the Thm)
\nwe find a point $C \in (a, x)$ such that
\n $f(x) - f(a) = f(c) (x-a) = o$ (by assumption $f(a) = o$)
\n $\Rightarrow f(x) = f(a), \forall x \in I$.
\n $\therefore f \hat{b}$ constant $\hat{a} \perp \times$

Cor 6.2.6 Suppose
$$
\cdot
$$
 $f, g : [a,b] \rightarrow \mathbb{R}$ continuous
\n \cdot f, g differentiable on (a,b)
\n \cdot $f'(x) = g(x), y \times G(a,b)$.
\nThus f (as but C such that $f = g + C$ on [a,b].

Recall
$$
f:I\Rightarrow R
$$
 is said to be
\n• intveating $m I$ $\dot{\psi} \times_{1} \langle x, x_{2} (x_{1}, x_{2} \in I) \Rightarrow f(x_{1}) \le f(x_{2})$
\n• decreasing $m I$ $\dot{\psi} \rightarrow \dot{G}$ *interacting* $m I$.

Thm 6.2.7	Let $f: I\Rightarrow R$ be differentiable. Then
(a) f is increasing on $I \Leftrightarrow f(x) \ge 0$, $\forall x \in I$	
(b) f is decreasing on $I \Leftrightarrow f(x) \le 0$, $\forall x \in I$	
Pf: (a) (\Leftrightarrow) let $f(x) \ge 0$, $\forall x \in I$.	
Then fn any $x_1, x_2 \in I$ with $x_1 < x_2$, we can apply	
He Mean Value Thm to $f: [x_1, x_2] \Rightarrow R$	
($sx_0 \in f$ is differentiable on $I \Rightarrow f: [x_1, x_2] \Rightarrow R$ satisfies all conditions)	
and $\{ind$ a point $c \in (x_1, x_2)$ such that	
$f(x_2) - f(x_1) = f(c) (x_2 - x_1)$	
∴ \oint is invariance on I .	

(a)
$$
(\Rightarrow)
$$
 Suppose f is differentiable and including on I.
\nThen $Y \subseteq \subseteq I$, we have
\n
$$
\frac{f(x)-f(c)}{x-c} \ge 0, \forall x \in I, x \ne c
$$
\nby " \int is increasing" (both "positive (a:940)" if x > c.)
\nHence f differentiable at C =)
\n
$$
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \ge 0
$$

(b) Applying (a) to $-f$ \times

Remarks: (1) Strictly increasing:
$$
x_1 < x_2 \Rightarrow f(x_1) < f(x_2)
$$

\nthen $ax.13$ of $6.2 \Rightarrow y'' \Rightarrow (x) > 0$ at $x \Rightarrow 6$ is strictly increasing at x'' .

\nBut: $y'' \Rightarrow (x) > 0$ at $x \Rightarrow 6$ is strictly increasing at x'' .

\nCauchar example: $\Rightarrow (x) = x^3 : IR \Rightarrow R$ is strictly increasing,

\nbut: $\Rightarrow (0) = 0$ which is $\frac{1}{2} \times 0$ or $\frac{1}{2} \times 0$.

(2) Consider
$$
g(x) = \begin{cases} x + 2x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$

\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$
\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$
\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$
\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$
\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$
\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$
\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$
\n $\begin{array}{rcl}\n\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0 \\
\frac{1}{\sqrt{2}} & \text{if } x = 0\n\end{array}$

Let
$$
\bullet \in S : \text{[a,b]} \to \mathbb{R}
$$
 continuous (a**5**)

 \circ $c \in (\alpha, b)$

f is differentiable on Ca ^c and sb

Then (a)
$$
\overline{4} = 600
$$
 s.t. $\int_{0}^{1} (c-\delta, c+\delta) \leq (a, b]$
\n• $f(x) \geq 0$ $\int_{0}^{1} x \leq (c-\delta, c+\delta)$
\n• $f(x) \leq 0$ $\int_{0}^{1} x \leq (c, c+\delta)$

then f has a relative maximum at c.

(b) If
$$
\exists \delta>0
$$
 s.t. $\int_{0}^{1} (c-\delta, c+\delta) \le [a,b]$
\n• $f(x) \le 0$ $\int \omega$ $x \in (c-\delta, c+\delta)$
\n• $f(x) \ge 0$ $\int \omega$ $x \in (c, c+\delta)$
\nthen f has a relative minimum at c.

$$
\underline{P}f: (a) \quad \underline{I}f \quad x \in (c-\delta,c), \quad \text{then Mean Value Thm}
$$
\n
$$
(applying to 5: [x,c] \Rightarrow R) \text{ implies } \exists c_x \in (x,c) \quad s.t. \quad \exists (c) - f(x) = f(c_x) < c - x)
$$
\n
$$
\geq 0 \quad \left(\text{since } f \geq 0 \text{ in } (c-\delta,c) \right)
$$
\n
$$
\exists f \quad x \in (c, c+\delta), \quad \text{then } \text{Mean Value Thm}
$$
\n
$$
(Applying to 5: [c,x] \Rightarrow \mathbb{R}) \text{ implies } \exists c_x \in (c,x) \text{ s.t.} \quad f(x) - f(c) = f'(c_x)(x-c)
$$
\n
$$
\leq 0 \quad \left(\text{Since } f \leq 0 \text{ on } (c,c+\delta) \right)
$$
\n
$$
\text{Together we have } \quad f(c) \geq f(x) \quad \forall x \in (c-\delta, c+\delta)
$$
\n
$$
\therefore \quad \text{the value } \quad f(c) \geq f(x) \quad \forall x \in (c-\delta, c+\delta)
$$
\n
$$
\therefore \quad \text{the value } \quad f(c) \geq f(x) \quad \forall x \in (c-\delta, c+\delta)
$$
\n
$$
\therefore \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(x) \quad \text{the value } \quad c
$$
\n
$$
\text{(b) Applying } (a) \quad \exists b - f \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(x) \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(x) \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(x) \quad \text{the value } \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(c) \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(c) \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(c) \geq f(c) \quad \text{the value } \quad \text{the value } \quad f(c) \geq f(c
$$

Remark	Converse of Thm 6.2.8	io not true																											
$i.e. \exists$ differentiable function f has a relative maximum at c,																													
but the statement	$(1 \pm 6 > 0 \cdot 5.4)$	$(c-\delta, c+\delta) \leq (a, b \cdot 1)$	$(\pm \sqrt{6}) \geq 0$	$(a, b \cdot 1)$	$(\pm \sqrt{6}) \geq 0$	$(a, b \cdot 1)$	$(\pm \sqrt{6}) \geq 0$	$(a, \pm \sqrt{6}) \leq 0$	$(a, \pm \sqrt$																				

Further Applications of the Mean Value Theorem Examples 6.2.9

- ca) Rolle's Thm 6.2.3 can be used to "locate" voots of a function. In fact, Rolle's Thm \Rightarrow 9= f' always thas a voot between any two zeros of f $(pr$ ovided f is differentiable a etc.) explicit eg: $g(x) = cos x = c sin x$ $\int \sin x = 0$ for $x = n\pi$ fa ne Z $Rolle\leq \Rightarrow \cos \theta$ as a root in (no $(n+1)$), $9ne\mathbb{Z}$. (eg. of Bessel functions In is omitted)
- (b) Using Mean Value Therom for approximate calculations & error estimates

<u>e</u>g: Approximate 5105. $\begin{matrix}a & b \\ c & d\end{matrix}$ Applying Mean Value Thm to $f(x) = \sqrt{x}$ on $[100, 105]$, $f(1055 - f(100) = f(c) (105 - 100)$ $f(x)$ some $C \in (100,105)$. In eg 6.1.10 (d), we've seen that $f(c) = \frac{1}{2\sqrt{c}}$ $\frac{1}{2}$ $\sqrt{105} - \sqrt{100} = \frac{5}{2\sqrt{6}}$ for fome CE (100,105)

$$
\Rightarrow \qquad [0 + \frac{5}{2\sqrt{105}} < \sqrt{105} < 10 + \frac{5}{2\sqrt{100}} = 10 + \frac{5}{2 \cdot 10} = 10.25
$$

And
$$
\sqrt{105} < \sqrt{121} = 11 \Rightarrow \sqrt{105} > 10 + \frac{5}{2 \cdot 11}
$$

Hence
$$
\frac{205}{22} < \sqrt{105} < \frac{41}{4}
$$

(Of course, the estimate can be improved by more care analysis)

Examples 6.2.10 (Inequalities)
\n(a)
$$
e^{x} \ge 1+x
$$
, $\forall x \in \mathbb{R}$ and "equality $\Leftrightarrow x=0$ ".
\nPf: We will use the fact that
\n $f(x) = e^{x}$ has deviative $f(x) = e^{x}$, $\forall x \in \mathbb{R}$
\nand $e^{x} > 1$ for $x > 0$ (and $f(0) = 1$)
\n $e^{x} < 1$ for $x < 0$.
\n(To be defined and proved in §8.3.)
\nIf $x=0$, then $e^{x} = 1 = 1+x$, We're done.
\nIf $x > 0$, applying MVT (MeanValue Thm) to
\n $f(x) = e^{x}$ on $[0, x]$,
\nwe have $c \in (0, x)$ such that

$$
e^{x}-e^{0}=e^{c}(x-0)
$$

$$
e^{x}-1>x
$$

 $\frac{1}{2}$

If x<0, applying MUT to
$$
f(x)=e^x
$$
 on [x,0],
\nwe have $C \in (x,0)$ such that
\n $e^0 - e^x = e^c (0-x)$
\n $1-e^x < -x$ $(e^c < 1, -x > 0)$
\n $\therefore e^x > 1+x, y \times c0$.
\nFinally, onc observes, in both cases, the inequality is
\nstrict. So "equality $\Leftrightarrow x = 0$ "
\n $\therefore x \leq x \Rightarrow x \leq 0$.

If: The inequalities are clear
$$
5x > 0
$$
.

\nIf: The inequalities are clear $5x > 0$.

\nLet $x > 0$. Consider $g(x) = \sin x$ on $[0, x]$.

\nthen MVT implies $\exists c \in (0, x) \text{ s.t.}$

\nand $x - \sin 0 = (\cos c)(x - 0)$

\nUsing $-1 \le \cos c \le 1$ and $\sin 0 = 0$, we have

\n $-x \le \sin x \le x$ (as $k > 0$)