Think let
$$
\cdot
$$
 I SR be an internal

\n \cdot S: I\Rightarrow IR be strictly monotone and antinum

\n \cdot J = f(I) and g: J\Rightarrow IR be the strictly

\nmonotone a unitumus function inverse to S.

\nIf f is differentiable at c \in I and f(c) $\neq 0$, then g is

\ndifferentiable at $d = f(c)$ and

\n $g(d) = \frac{1}{f(c)} = \frac{1}{f'(g(d))}$

$$
\left(\begin{array}{ccc}\n\frac{Not_{0}}{4} & \frac{1}{2}(c) + 0 & \frac{d\theta}{2}sn^{2} + \frac{1}{2}ol(m) & \frac{f}{2}mm + \frac{1}{2}l\sinh\frac{r}{2}dn\sinh\frac{r}{2}dn\cosh\frac{r}{2}n\cosh\frac{r}{2}dn\cosh\frac
$$

$$
\begin{array}{lll}\n\begin{aligned}\n&\text{Since } f \text{ is differentiable at } x=c, \text{ Carattiodory's Thus } c.15 \\
&\Rightarrow \exists \varphi: L\Rightarrow \mathbb{R} \text{ with } \varphi \text{ entries at } c \text{ such that} \\
&\Rightarrow \exists \varphi: L\Rightarrow \mathbb{R} \text{ with } \varphi \text{ entries at } c \text{ such that} \\
&\Rightarrow \int f(x)-f(c) = \varphi(x)(x-c), \forall x \in I, \text{ and} \\
&\phi(c) = f(c)\n\end{aligned}
$$

Since
$$
f'(c) \neq 0
$$
 and φ is continuous at c , $\exists \delta > 0$ such that
 $\varphi(x) \neq 0$, $\forall x \in (c-\delta, c+\delta) \cap I$.

Let
$$
U = f((c-\delta,c+\delta)\cap I) \subset J
$$

\nThen the inverse function g satisfies $f(gy) = y$, $\forall y \in U$.
\nHence $y-d = f(g(y)) - f(c) = \varphi(g(y))(g(y)-c)$
\n $= \varphi(g(y))(g(y)-g(d)) \qquad (d=f(c)\epsilon^{IV})$
\nSince $g(y) \in (c-\delta,c+\delta) \cap I$, $\forall y \in U$,
\nwe have $\varphi(g(y)) \neq 0$.
\nHence $g(y)-g(d) = \frac{1}{\varphi(g(y))} (y-d)$.
\nSince g is continuous on J and φ is continuous at $c=g(d) * \pm 0$,
\n $\varphi_{0}g$ is continuous at d .
\nThen by (draidifiodorg's Thus 6.1, g is differentiable at $d=f(c)$
\nand $g'(d) = \frac{1}{\varphi(g(d))} = \frac{1}{\varphi(c)} = \frac{1}{f'(c)} \cdot \frac{1}{x}$

Thm 6.1.9 (Sawe nodatias ao ùu Thm 6.1.8)

\nLet
$$
f:I \rightarrow \mathbb{R}
$$
 be strict monotone (no need to assume antiquity).

\nIf f ù differentiable an I and $f(x) \neq 0$, $\forall x \in I$. Then the inverse function g ù differentiable an $J = f(I)$ and

\n $g' = \frac{1}{f \cdot g}$

Pf:
$$
f \text{ diff. } \omega \perp \Rightarrow f \circ \omega
$$

Remark on simplified notations:

\nUsually, we write
$$
y = f(x)
$$
 and $x = g(y)$ for inverse
\nfunctions to each other. Then the formula in Thus 6.1.9

\ncan be written as

\n
$$
g'(y) = \frac{1}{(f' \cdot g)(y)}
$$
\n
$$
g'(y) = \frac{1}{f'(x)}
$$
\nwhich explicitly stated that $y = f(x)$ as $x = g(y)$.

\nwhich explicitly stated that $y = f(x)$ as $x = g(y)$.

\nand follows, further as $g'(y) = \frac{1}{f'(x)}$ is always $(\omega \cdot \frac{1}{2})$ and
\ncontinuous function on R . (and $f(R) = \mathbb{R}$ we:

\nThus, $f(x) = 5x^4 + 4 \ge 4 > 0$.

\nThus, $f(x) = 5x^4 + 4 \ge 4 > 0$.

\nThus, $f(x) = 5x^4 + 4 \ge 4 > 0$.

\nThus, $f(x) = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$.

(b)
$$
f: [0, \infty) \rightarrow [0, \infty)
$$
 given by $f(x)=x^{\nu}$ when $n=24,6,...$
Then f is strictly increasing unitary on $[0, \infty)$
Note that $f([0, \infty)) = [0, \infty)$. The inverse function
g defines on $[0, \infty)$ and is strictly inversely and
Intiquants.
Since $f(x)=nx^{n-1}>0$, $\forall x>0$, $x \neq (0, \infty) = (0, \infty)$
 g is differentiable $\forall y>0$ and
 $g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(g(y))^{n-1}} = \frac{1}{n(y^{\frac{1}{n}})^{n-1}} = \frac{1}{n} y^{\frac{1}{n}-1}$
(The inverse is denoted by $g(y)=y^{\frac{1}{n}}$, $\forall y \in [0, \infty)$.)

(C) n=3,5,7, ...
$$
F(x) = x^{n}
$$
, $\forall x \in \mathbb{R}$, is strictly inverses in $G(y) = y^{\frac{1}{n}}$, $\forall y \in \mathbb{R}$.
As in example (b) above, G is differentiable $\forall y \neq 0$
and $G(y) = \frac{1}{n}y^{\frac{1}{n}-1}$ (check.)

And again, G is not differentiable at
$$
y=0
$$
.

\nIf Suppose that G is differentiable at $y=0$.

\nThen consider the *complex* function $y = F(G(y))$.

\nSince $G(0)=0$ and $F(0)=0$ exist.

\nChain rule implies $1 = \frac{dy}{dy} = F(G(0))G(0) = 0$

\nuntil it $r = \frac{m}{n} \times 0$, $m, n \in \{1, 3, 3, \dots\}$, then

\n $x^+ = x^{\frac{m}{n}}$ is defined as $(x^{\frac{1}{n}})^m$, 9×20 .

\nThus, the function $R: [0, \infty) \rightarrow [0, \infty)$ defined by

\n $R(x) = x^{\frac{1}{n}}$, $y \times 20$.

\nSo a *composite* function $R = \pm 0$ under

\n $g(x) = x^{\frac{1}{n}}$, $x \times 0$ (the inverse induced in $gg(b)$)

\nand $f(x) = x^{\frac{1}{n}}$, $x \times 0$ (the inverse induced in $gg(b)$)

\nand $f(x) = x^{\frac{1}{n}}$, $x \times 0$ (the inverse induced in $gg(b)$)

\nThen, $h(x) = x^{\frac{1}{n}}$, $x \times 0$

\n $(\frac{1}{16}, \frac{1}{16}) = x^{\frac{1}{16}}, \frac{1}{16} = \frac{1}{3}((\frac{1}{3})(\frac{1}{16})) - 1$

\n $= \left(\frac{m}{n}\right) \times \left(\frac{m}{n}\right) - 1$

\n $= (x^{\frac{1}{n}}) \times (x^{\frac{1}{n}})^{-1}$

\n $= (x^{\frac{1}{n}}) \times (x^{\frac{1}{n}})^{-1}$

Note that Dainx = cax \neq 0 for $x \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (no end pts.) $Thm6.1.8 \Rightarrow$

$$
D\text{Area in } y = \frac{1}{D\text{air}} = \frac{1}{\omega x} = \frac{1}{\sqrt{1 - \omega^{2}}x}
$$
\n
$$
= \frac{1}{\sqrt{1 - y^{2}}}, \quad \forall y \in (-1, 1)
$$
\n(Note: DArcain y does not exist $f_{n} = \pm 1$. Check.)