Thun 6.1.8 Let
$$\cdot I \subseteq \mathbb{R}$$
 be an interval
 $\cdot f: I \Rightarrow \mathbb{R}$ be strictly monotone and continuous.
 $\cdot J = f(I)$ and $g: J \Rightarrow \mathbb{R}$ be the strictly
monotone & continuous function inverse to f.
If f is differentiable at $c \in I$ and $f'(c) \neq 0$, then g is
differentiable at $d = f(c)$ and
 $g'(d) = \frac{1}{f'(c)} = \frac{1}{f'(g(ds))}$

Note
$$f'(c) \neq 0$$
 doesn't follow from f being strictly monotone:
eg. $f(x) = x^3$ is strictly monotone, but $f'(0) = 0$.
In this case, the inverse $g(x) = x^{\frac{1}{3}}$ is not differentiable at $x=0$.

Pf: Since f is differentiable at x=c, Carathéodory's Thur 6.1.5

$$\Rightarrow \exists \varphi: I \Rightarrow R$$
 with φ continuous at c such that
 $\int f(x) - f(c) = \varphi(x)(x-c), \forall x \in I, and$
 $\varphi(c) = f'(c)$
Surce $f'(c) \neq 0$ and φ is continuous at c. $\exists \delta > 0$ such that

Since
$$f'(c) \neq 0$$
 and q is continuous at c , $\exists \delta > 0$ such that
 $q(x) \neq 0$, $\forall x \in (c-\delta, c+\delta) \cap I$.

let
$$U = f((c-\delta, c+\delta)\cap I) \subset J$$

Then the inverse function g satisfies $f(g(y)) = y$, $\forall y \in U$.
Hence $y - d = f(g(y)) - f(c) = \phi(g(y))(g(y) - c)$
 $= \phi(g(y))(g(y) - g(d)) \qquad (d = f(c))^{eV}$
Since $g(y) \in ((-\delta, c+\delta) \cap I, \forall y \in U)$,
we have $\phi(g(y)) \neq 0$.
Hence $g(y) - g(d) = \frac{1}{\phi(g(y))}(y-d)$.
Since g is continuous on J and g is contained at $c = g(d) \notin = 0$,
 $\frac{1}{\phi_{0}g}$ is contained on J and g is contained at $c = g(d) \notin = 0$,
Then by Carathéodorg's Thue 6.1.5, g is differentiable at $d = f(c)$
and $g'(d) = \frac{1}{\phi(g(u))} = \frac{1}{\phi(c)} = \frac{1}{f'(c)}$

Thun 6.1.9 (Same notations as in Thm 6.1.8)
Let
$$f: I \rightarrow IR$$
 be shirt monotone (no need to assume containinity).
If f is differentiable on I and $f(x) \neq 0$, $\forall x \in I$. Then the
invest function g is differentiable on $J = f(I)$ and
 $g' = \frac{1}{5' \circ g}$

Pf:
$$f \operatorname{diff.} an I ⇒ f is containants. Then apply Thus 6.1.8to all x ∈ I. X$$

Remark on simplified notations:
Usually, we write
$$y = f(x)$$
 and $x = g(y)$ for inverse
functions to each other. Then the famula in Thur 6.1.9
can be written as
 $g'(y) = \frac{1}{(f'\circ g)(y)}$ $\forall y \in J$
a. $(g'\circ f)(x) = \frac{1}{f'(x)}$, $\forall x \in I$
In this notation, one often simply write
 $g'(y) = \frac{1}{f(x)}$
without explicitly stated that $y = f(x) \approx x = g(y)$.
 $\frac{eg 6.1.10}{(e)}$
(e) $f(x) = x^{5} + 4x + 3$ gives a strictly increasing (why?) and
cartinuas function on \mathbb{R} (and $f(R) = IR$ weg?)
 $f'(x) = 5x^4 + 4 \ge 4 \times 0$.
Therefore, Thur 6.1.8 $\Rightarrow g = 5^{-1}$ is differentiable $\forall y \in \mathbb{R}$.
And for example, at $x = 1$, $g'(R) = g'(f(n)) = \frac{1}{g'(n)} = \frac{1}{g}$

(b)
$$f:[0,\infty) \to [0,\infty)$$
 given by $f(x) = x^n$ where $n=2,4,6,\cdots$
Then f is strictly increasing curtainous on $[0,\infty)$
Note that $f([0,\infty)) = [0,\infty)$. The inverse function
 g defines on $[0,\infty)$ and is strictly increasing and
cartinuous.
Since $f(x) = nx^{n-1} > 0$, $\forall x > 0$, $\&$ $f((0,\infty)) = (0,\infty)$,
 g is differentiable $\forall y > 0$ and
 $g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(g(y))^{n-1}} = \frac{1}{n(y^{\frac{1}{2}})^{n-1}} = \frac{1}{n(y^{\frac{1}{2}})^{n-1}}$
(The inverse is denoted by $g(y) = y^{\frac{1}{n}}$, $\forall y \in [0,\infty)$.)

(C)
$$n=3,5,7,\cdots$$
. $F(x)=x^n$, $\forall x \in \mathbb{R}$, is strictly increasing & cartinuous.
Inverse is $G(y)=y^{\frac{1}{n}}$, $\forall y \in \mathbb{R}$.
As in example (b) above, G is differentiable $\forall y \neq 0$
and $G'(y)=\frac{1}{n}y^{\frac{1}{n}-1}$ (check!)

And again, G is not differentiable at
$$y=0$$

If Suppose that G is differentiable at $y=0$.
Then causider the camposito function $y = F(G(y))$.
Suilly $G(0)=0$ and $F(0)=0$ exists.
Chain rule implies $I = \frac{dy}{dy} = F(G(0)) G(0) = 0$
which is a contradiction...: $G(0)$ doesn't exists
which is a contradiction...: $G(0)$ doesn't exist.
(d) Recall if $r=\frac{m}{n} > 0$, $m, n \in \{1, 3, 3, ..., 5\}$, then
 $x^r = x^{\frac{m}{n}}$ is defined as $(x^{\frac{1}{n}})^m$, $\forall x \ge 0$.
Therefore, the function $R = \log$ where
 $g(x) = x^{\frac{1}{n}}$, $\forall x \ge 0$
is a composite function $R = \log$ where
 $g(x) = x^{\frac{1}{n}}$, $x \ge 0$ (the invoke dimend in eq(b))
and $f(x) = x^{\frac{1}{n}}$, $x \ge 0$
(i.e. $R(x) = x^{\frac{1}{n}} = f(g(x))$, $\forall x \in [0, \infty)$)
Then Chain rule \Longrightarrow $\forall x \in [0, \infty)$
 $R'(x) = f'(g(x))g(x) = m(x^{\frac{1}{n}})^{\frac{m-1}{n}} \stackrel{!}{\mapsto} x^{\frac{1}{n}-1}$
 $= (\frac{m}{n})x^{\frac{m}{n}-1}$.

Note that $D_{AUX} = Loox \neq 0$ for $x \in (-\frac{T}{2}, \frac{T}{2})$ (no end pts.) Thrue 6.1.8 =>

$$D \operatorname{Arcsin} Y = \frac{1}{D \operatorname{sin} x} = \frac{1}{(a \times x)} = \frac{1}{\sqrt{1 - \operatorname{sin}^2 x}}$$
$$= \frac{1}{\sqrt{1 - y^2}}, \quad \forall y \in (-1, 1)$$
$$(\operatorname{Note}: D \operatorname{Arcsin} y \text{ cloes not exist for } y = \pm 1. \quad (\operatorname{hecke}!.)$$