MATHS5011 Real Analysis 1

Exercise 8 Suggested Solution

Standard notations are in force. Those with * taken from [R], are optional.

(1) Let f,g € LP(n), 1 < p < o0o. Show that the function
O(t) = / |f +tgl” dp
b
is differentiable at ¢ = 0 and
'(0) = p/ [fIP~2fgdp.
b

Hint: Use the convexity of ¢ — |f + tg|P to get

\f +tgl? —|fP <t(|f +gl” = |f]F), t>0

and a similar estimate for ¢ < 0.
Solution: Recall that for any convex function ¢ defined on [0, 1], one has

the elementary inequality

olt) = 2(0) _ (1) - g@), Wt € (0,1),

t—0 1-

which could be deduced from the definition of convexity. For p > 1,2 € X,

the function ¢(t) = |f(z) + tg(x)[? is convex, differentiable and

@) + @)l — 1P ()

t—0 t

= plf P2 (@) (f(2)9(2)),

whenever f(z) and g(z) are finite. Applying the inequality above to this



particular convex function, We have

IS+ tgl — 171} < 1F gl — £, Ve (0,1)

By replacing t with —¢, we obtain a similar inequality

7 =17 =gl < T{1F +tgP ~ 7P}, Vi € (~1,0).

Now the desired result follows from an application of Lebesgue’s dominated

convergence theorem.

(2) Suppose f is a measurable function on X, p is a positive measure on X, and

o(p) = /X P =fI7 (0 <p<oo).

Let E={p: p(p) < co}. Assume ||f||, > 0.

(a) Ifr<p<s,reFE, and s € E, prove that p € E.

(b) Prove that log ¢ is convex in the interior of E and that ¢ is continuous

on F.

(c) By (a), E is connected. Is E necessarily open? Closed? Can E' consist

of a single point? Can E be any connected subset of (0, 00)?

(d) If r < p < s, prove that |f|, < max(||f]l,,[[f]l,). Show that this
implies the inclusion L"(p) N L*(p) C LP(p).

(e) Assume that || f||, < oo for some 7 < oo and prove that

11l = Iflle asp— oo

Solution:



(a)

Write p = Ar + (1 — A\)s for 0 < A < 1. By Holder’s inequality,

= [ 1= 2sdu < </}(|f|rdM>A(L|flsdu)1A,

which shows that ¢ is finite on [r, z].

Rewrite the inequality above as
oAr + (1 =XN)s) < o(r) ()™, (0< A< 1).
It is also true for A = 0, 1. Hence for all A € [0, 1],

log o(Ar 4+ (1 — A)s) < Alogo(r) + (1 — A) log ¢(s).

since log is increasing. Thus log ¢(p) is convex on [r, s]. Hence ¢(x) is
continuous in the interior of E. It follows form monotonicity applying

to x|7>1.f and x|s<1f that ¢(x) is also continuous on OF.

Let X = (0,00) with the Lebesgue measure. E can be any connected
subset of (0,00). The basic functions to consider are of the form z* and

2¥|log z|™ near x = 0 and x = co. Define

gr(x) = a* X(0./2(2),
hi(2) = 2°X(2,00) (),
rm (1) = 2*[log 2" x (0,12 (),
(z)

hin (@) = 2] log 2| X (2.00) (),

It is easy to see that [ grdr < oo iff & > —1 and [, hpdx < oo iff
k < —1. Since [logz| < Cee™ for 0 < o < 1 and all € > 0, [y gimda

is finite for £ > —1 and infinite for £ > —1. For k = —1, direct



computations by substituting v = log z yield

1/2 00
/gk,mdSU:/ xllloga:!mdx:/ udu,
X 0 log 2

which is finite iff m < —1. Similarly, one can show fX hi mdz is finite
for £ > —1 and infinite for £ > —1. If £ = —1, the integral is finite if
and only if m < —1. Note that g = gk, gj.,,, = Gpkpm and similarly for

h.

Now for f = g_1.-2+ h_1_9, one has E = 1. For E = (), take f =
g_1+ h_1. To get E = (0,00), one may take f = e~ 1*l. For E = [1,p),
take f = g_1/p, + h_1,_2. Similarly it is easy to see that £ can be any

connected subset of (0, 00) for choosing f properly.

The inequality in (a) implies [|f[|, < max(||f|,,[|fll,). Obviously, if
171, < o0 and |£], < oo, then [[f], < o0. Thus L' (1) N L*(s) € L7(s0).

Denote E, := {z : a < |f(x)|} for every 0 < a < ||f|l,,, then 0 <

p(E,) < oo. (|| f]], < oo implies pu(E,) < oo.) Thus

151, = ([ 1 an) s (f a\f\pdu) s auE

which implies lim [|f]|, > a. Since a is arbitrary, we have lim | f|, >
—00 p—00
11l

On the other hand, for p > r,

1/p
i, = ([aerisean) " < up s

which implies lim ||f|| » < fll- In conclusion, we have
pP—00

lim | f[| oo = [/l -
p—00



(3) Assume, in addition to the hypothesis of the last problem, that
p(X) = 1.

(a) Prove that ||f|, < ||f|l,if0<r<s < oo.

(b) Under what conditions does it happen that 0 < < s < oo and || f]|,. =

171l < 07

(c) Prove that L"(u) D L*(p) if 0 < r < s. Under what conditions do these

two spaces contain the same functions?

(d) Assume that || f||,, < oo for some 7 > 0, and prove that

tiny 1, = exp { | o1

if exp{—o0} is defined to be 0.
Solution:

(a) If s < oo, the conclusion from from Holder’s inequality,

JURTE (/errSdu)r/s (/deuf_r/s — I711.

If s = oo, the desired result follows from

1/r
L < 1 ( / 1du) .

(b) From the equality sign characterization in the Holder inequality it is
easy to see that || f]|. = || f]l, < oo if and only if |f| = || f||, < o0 a.e..
(¢) We claim that under the condition p(X) < oo, L"(u) = L*(pu) for 0 <
r < s < oo if and only if the following property (call it L) holds:
There exists ¢y > 0 such that for any measurable set £ C X with

pu(E) > 0 we have p(FE) > &.



In fact, if Property L holds, let f € L"(u) and denote E, := {z :
|f| > n}. Then there exists ny € N such that u(E,,) = 0 and thus
f € L*(u). Otherwise for all n, u(E,) > 0. Thus p({z : |f(z)| =
o0}) > nh_g)lo p(Ey,) > € and then || f]|, = oo, a contradiction.
Conversely, suppose there is a sequence of measurable sets {F, } with
0 < u(E,) < 37" Without loss of generality, E,, are mutually disjoint.
Denote a,, := u(E,) and define

oo
—1/s .

E an/XEn, if s < o0,
f: n=1

oo

a1

E an’" Xg,, if s=oc.
n=1

Then f € L" but f ¢ L*. The proof is completed.

(d) Note x —1 —logx > 0 on [0,00) implies that

/ log | fldp < 0.
{IfI>1}

If u({|f| = 0}) > 0, it suffices to proves the equality by showing
lim, o ||fll, = 0. There is a small s > 1, with s’ be its conjugate

s.t.

1fll, = QLWWWMWM;

< (| f] > 0}
< ({lf] > 0nT

| fllsp by Holder inequality

|fll- —0asp—0

We may suppose oo > |f| > 0 a.e. By Jensen’s inequality, we have

1 1
log [1/]], = Z—)log/ P du > ];/bg P = / log || du.
X X X



p
-1
On the other hand, x — 1 —logxz > 0 on [0,00) implies [ >

log || f]|,,- Thus

|fIP—1
log | fldp <log | fll, < dp
X x D

since u(X) = 1. Note that by convexity of the map p — |f|P? we have

P r_1 r 2
/1 is increasing in p, which implies /] < /1 € L' (u)
r
r_1
and lin% /] = log|f|. By Lebesgue’s dominated convergence the-
p— D

orem for |f| > 1 and monotone convergence theorem for |f| < 1, we

have

P_1 P_1 P—1
lim/ /] dp = lim / /] dﬂ+1im/ /1 dp = /log |f|dp.
r=0Jx P PO Sy P POMg<ay P X

Thus by sandwich rule

tiny 1, = exp { | o1

(4) For some measures, the relation r < s implies L"(u) C L*(u); for others, the

inclusion is reversed; and there are some for which L"(x) does not contain
L*(p) is r # s. Give examples of these situations, and find conditions on pu
under which these situations will occur.

Solution:
First, we give examples of these situations:
(a) For X = [0, 1] with usual Lebesgue measure, we have L"(u) D L*(u) if
r<s.
(b) For X = N with counting measure, we have L"(u) C L*(u) if r < s.

(c) For X = R with usual Lebesgue measure, we have L"(u) # L*(u) if
r# s.



Second, we give simple conditions on p under which these situations occur

correspondingly:

(a) p(X) < oo.
(b) Property L in 6(c) holds.

(¢) u(X) = oo and Property L in 6(c) fails to hold.

* Suppose 1(€2) = 1, and suppose f and g are positive measurable functions

on €2 such that fg > 1. Prove that

/fdu-/gduzl.
Q Q

Solution: Since fg > 1, we have y/fg > 1 and so by Holder’s inequality,

1§/Sz\/7\/§dus (/Qfdu)l/2 (/diu)m: </Qfdu-/ﬂgdu>l/2-

* Suppose p(2) =1 and h : Q© — [0, 00] is measurable. If
A= /hd,u,
Q

\/1+A2§/\/1+h2du§1+A.
Q

prove that

If 11 is Lebesgue measure on [0, 1] and if h is continuous, h = f’, the above
inequalities have a simple geometric interpretation. From this, conjecture
(for general 2) under what conditions on h equality can hold in either of the

above inequalities, and prove your conjecture.

Solution: The function ¢(x) = /1 + 22 is convex since its second derivative
is always positive. Hence the first inequality follows from Jensen’s inequality.

The second equality follows from || =1 and V1 + 22 < 1+ x for all x > 0.



In the case that Q@ = [0,1] with p the Lebesgue measure and h = f’ is
continuous, then fol \/T(f’)de is the arc length of the graph of f. Then
A = f(1)—= f(0). The first inequality means that the straight line is the short-
est path while the second inequality means the longest path is the segment
from (0, f(0)) to (1, £(0)) and then going up until (1, f(1)).

The intuition from this suggests that the second inequality is equality if
and only if A~ = 0,a.e., and the first inequality is equality if and only if
h = A, a.e. The first claim is clear since /1 4+ 22 = 14z iff = 0.If h = A, a.e,
then trivially the first inequality holds. Conversely if the first inequality
holds, it follows from an examination of the proof of Jensen’s inequality that

o(A) = ¢(h(x)),a.e., s0 h = A, a.e. since ¢ is injective on [0, 00).

* Suppose 1 < p < o0, f € LP = LP((0,00)), relative to Lebesgue measure,

and
Flz) = i/oxf(t)dt (0 < 2 < 50).

(a) Prove Hardy’s inequality

p
1, < o1 /1],

which shows that the mapping f — F' carries LP into L”.

(b) Prove that equality holds only if f =0 a.e.

(c) Prove that the constant cannot be replaced by a smaller one.

p —
(d) If f > 0 and f € L', prove that F ¢ L'.
Suggestions: (a) Assume first that f > 0 and f € C.((0,00)). Integration by

parts gives

/0 T Fr(a) de = —p / e ()a P (2) da.

0

Note that xF’ = f — F, and apply Holder’s inequality to / FP~1f. Then

derive the general case.



(c) Take f(z) = 2717 on [1, A], f(x) = 0 elsewhere, for large A. See also
Exercise 14, Chap. 8 in [R].

Solution: In fact we can show the inequality

[irrar< 2 [Tt as
0 0

p
(@FﬂﬂbﬁgjﬂVMJeﬁqQ%%péﬂdﬂ
Let f € C.(0,00), f >0, first

/ FP(z)dx = pr(x)|;O—p/ FP1F vde
0 0

SO

/mFﬁwdw:—g— e, (1)
0

By Holder’s inequality,

/0 P x<—{/ Fr(a)de} 7 £l

and (a) holds.
Now, for f € C.(0,00), use

1 x
<y [
T Jo
to get the same inequality.
Finally, for f € LP(0,00), let f, € C.(0,00), f, — fin LP. Use an
approximation argument to show {F,} is Cauchy and tends to F' in £

norm.

(b) k7 =" hold iff f =0 a.e.

10



Let f satisfy

p
IIFIIpZPTlllfIIp-

If f changes sign,

~ 1 [

F(x)=- dt

@=1 [ In
= p
1Ellp > Wl = = = [l /ll»

Impossible. Therefore f > 0 say. By an approximation argument one
can show that (1) holds for f > 0, f € LP. Following the proof in
(a) one see by the equality condition in Hélder’s inequality that fP =
const (FP71)?, which implies there exists some positive constant ¢ such
that F(x) = c¢f(x) a.e. Express this as an ODE for F' and and solve it
to get f=0if f e LP(0,00).

Define
o) = e if € [1, Al
0, otherwise.
Then || f[|, = (log A)Y/? and
0, if z € (0,1),
F(z) = pﬁ . (:c‘% —x*l) . ifz el A
p—1 <A17% — 1) 7l ifz e (4,00).

11



Then ||F|[} = I, + I, where

= G )
() [y
L= /AOO (% (a5 -1) xl)p dz

:(p_p’ﬁ <1 - %*1>p dx.

P can be replaced by
p—1
. for some v € (0,1). Then there exists 0 € (7,1). Note that there

Suppose on the contrary that the constant

p
b _1 _1
exists Ag > 1 such that for x > Ay, 27» — 2! > dx ». Then for

sufficiently large A > A,

5 A
I >_p r tdx
pP—1Ja,

)
:p_pl(logA—long)
> vpllogA
_ P e
= .

This implies ||F'[|, > % [p[l; if A is sufficiently large. Contradiction
p R

arises.

xo
(d) Since f > 0 on (0,00), there exists zp > 0 such that ¢ := / f(t)dt.
0
Then

00 001 T o0 1 o 00
/ F(a:)da::/ —/f(t)dtdxz/ —/ fdtdazz/ L
o J:()x 0 Z‘Ox 0 0 x

showing that F' ¢ L.
(8) Consider LP(R™) with the Lebesgue measure where 0 < p < oco. Show that

12



1+ gll, < Ifll, + llgll, holds Vf, g implies that p > 1. Hint: For 0 < p < 1,
a? +y? > (v +y)P.

Solution: Recall that in fact we have, for z,y > 0,

P +yP > (r+y)P, 0<p<I,
Py’ = (z+y)l, p=1
4+ < (z+y)P, 1<p<oc.

Pick any a,b > 0 and define f,g € LP(R™) by

a, x€[0,1]",
flz) =
0, otherwise.
and
b, x€l2,3]"
g9(x) =

0, otherwise.

Simple calculations show that || f[|, = a, [lgl, = band || f + g|, = (a?+b?)'/7.
Now the hypothesis implies a? + b” > (a + b)P. Hence, p > 1.

1 1
Consider LP(u), 0 <p < 1. Then -+ - =1, ¢ <0.
q P

(a) Prove that | fgll, = [If[l, llgll,
(b) For f,g >0, [If +4l, = £l + llgll,-

() d(f,q) | f - gl defines a metric on LP ().
Solution:

(a) Assume that g > 0 everywhere first. Applying Hélder’s inequality with

13



. 1 ~ 1 D
conjugate exponents p = — and ¢ = —— = ——, we have
p l-p p-1

P, = |1 £l Plal 2|,
s 7 e [P [ e 8

= || fgllV/7 ||lg| /@) D

= £l lgI P17, so

IFPIE® < Ifgll [llgl /0= |
= £l Nglll; ™, or
171, < £l Igll;", that is

1 Fglly = 1A1, Mgl -

For a general g > 0, apply the result to g. = g + ¢ first and then let g.
tend to g.

(b) Without loss of generality, we can assume || f + g[|, # 0. Using part (a),

we have

I+l = /(f+9)”du
- / SO+ gt / o(f + 9 du
N
> (11 + ) ( Jir+ar G du)
— UL+ Mgl ) I + gl so
1+ gl > 11+ gl

(¢) The fact that for z,y > 0 and 0 < p < 1,

(z+y)P <aP 4P

14



implies

Jir+gpans [isrdus [igpau

def”f — g||? defines a metric on LP(y).

Hence, d(f, g) 22

(10) Give a proof of the separability of LP(R™), 1 < p < oo, without using Weier-

strass approximation theorem.

Suggestion: Cover R" with many cubes and consider the combinations s =

> a;Xc,; where C; are the cubes and o € Q.

Solution: See the proof of Problem 11(b).

(1) (a)

(b)

Let X, be a subset of the metric space (X,d). Show that (Xi,d) is

separable if (X d) is separable.

Let £ C R™ be Lebesgue measurable and consider LP(F), 1 < p < oo,
where the measure is understood to be the restriction of £™ on E. Is it

separable?

Solution:

(a)

let {z;} be a countable dense subset of the metric space, fix natural
numbers 4, j we pick an element from X; N B(z;,1/j)( Ball centre at x;
with radius be 1/5 ) if it is non-empty. The resulting set is obviously a

countable dense subset in X

By treating LP(E) as a subset of LP(R™), it suffices to prove that the
later space is separable. Cover R™ with many cubes and consider the
combinations s = ZanCj where C; are the cubes and a; € Q. sy,
such that s,, — f in LP-norm, where each s,, has the form as s and

hence {s,,} is countable.

Step 1. f € C.(R™), f > 0.
For each m = 1,2,..., cover R" by cubes C,,; of side length

15



27™. Define s,, : R® — R by

Sm(x) = Z QX Chn js
J

where o; = 277 | 2™ inf f|. Now, we have 0 < s, A f, or

f=5m N0, thus (f — s,)? \(0. Since 0 < f — s, < f, we can

apply Lebesgue dominated convergence theorem to obtain

1
. _ _ . _ P n p:
i 17 = sl = ([ i (7= s acn) <o

Step 2. f € C.(R").
Write f = f — f_. Use s A~ fy and s, 7 f_ in LP-norm, as
in Step 1. Then

17 = s = sl < 1 = sl 1= = sll, 50 asm - .

Step 3. f € LP(R™).
Given e > 0, using Proposition 4.14, take g € C.(R™) such that
5 5
1f=all, <3 -

5 By Step 2, take sy such that [|g — sul|, < 5
Hence,

3

226.

£
1f = sull, < 1f = gll, +1lg = sarll, < 5 +

(12) Let X be a metric space consisting of infinitely many elements and p a Borel
measure on X such that x(B) > 0 on any metric ball (i.e. B = {x : d(z,x) <
p} for some zy € X and p > 0. Show that L>(u) is non-separable.
Suggestion: Find disjoint balls B, (z;) and consider XB,, (z;)-

Solution: We assume the existence of the sequence of disjoint balls B, (z;)

16



(13)

and prove the result. Obviously the subset of L>(u)

A= { Z AiX B, () Gi = 0, 1} is uncountable,

i=1

let D be any dense set in L>®(u), fix a € A, Jy, € D s.t

1
d(ya,a) < 5 and yo # yy if a # b.

Result follows from the uncountability of {y,,a € A}. It remains to prove
the existence of disjoints balls. We claim that if there is a countable subset
J = {z;} such that Vj, x; is not a limit point of J, then there is sequence
of disjoint balls. Jr; > 0, such that By, (1) N J\ {z;} = 0. Let B,(y)
be closure of the ball B,(y), 3rs > 0, such that Bs,,(z2) C By, (z1) and
Bay,(22) N J \ {22} = 0. We obtain the desired sequence of ball by repeating
the process. Now if there are a point y and a countable F' s.t y is the only

limit point of F, then let F'\ {y} be our J. Otherwise, we can take any

countable subset of the space be J.

Show that L'(u)" = L*°(p) provided (X, 90, i) is o-finite, i.e., 3X;, u(X;) <
oo, such that X = J X;.
Hint: First assume pu(X) < oco. Show that 3g € L(u), Vg > 1, such that

Afz/fgdu, Ve lP, p> 1.

Next show that g € L*(u) by proving the set {z : |g(z)| > M + ¢} has

measure zero Ve > 0. Here M = ||A]|.

Solution:

Step 1. u(X) < oo.

In this case, Holder’s inequality implies that a continuous linear func-

17



tional A on L'(X) has a restriction to LP(X) which is again contin-

uous since

A< AT AL < AL REOY (£, (2)

for all p > 1. By the proof for p > 1 in the lecture notes, we have
the existence of a unique v, € L(X) such that Af = / v, f dp for
all f € LP(X). Moreover, since L"(X) C LP(X) for r > p (by
Hélder’s inequality) the uniqueness of v, implies that v, is, in fact,
independent of p, i.e. this function (which we now call v) is in every

L™ (X)-space for 1 < r < oo.

If we now pick some conjugate exponents ¢ and p with p > 1 and

choose f = |v|%"%v in (2), we obtain

/ ol d = Af
1/p
< A] p(X)Va ( s du)

= [[All ()Y oy

and hence [vf|, < [[A| u(X)V9 for all ¢ < co. We claim that
v € L*(X); in fact ||v||, < [|A|l. Suppose that p({z € X : |v(z)| >
Al +¢}) = M > 0. Then [jv][, > ([|A] + g)MY4  which exceeds
|A| (X)Y4 if q is big enough. Thus v € L>®(X) and Af = /vf du
for all f € LP(X) for any p > 1. If f € L'(X) is given, then
/|11Hf\du < oo. Replacing f by f* = fX{w|f(x)<k}, We note that
|f%] < |f| and f*(x) — f(z) pointwise as k — oo; hence, by domi-
nated convergence, f* — f in L'(X) and vf* — vf in L'(X). Thus

Af = lim Af* = lim /vf’“du:/vfd,u.
k—o0 k—o0
Step 2. p(X) = oc.

18



The previous conclusion can be extended to the case that pu(X) = oo

but X is o-finite. Then
X:U&
j=1

with p(X;) finite and with X; N X, empty whenever j # k. Any

LY(X) function f can be written as
fl) =" fix)
=1

where f; = x;f and x; is the characteristic function of X;. f; —

Af; is then an element of L'(X;), and hence there is a function

v; € L>(Xj;) such that Af; = /X'Ujfj dp = /X.vjf dp. The impor-

tant point is that each v; is bounded in L>(X;) by the same ||A]l.
Moreover, the function v, defined on all of X by v(z) = v;(z) for
r € Xj, is clearly measurable and bounded by ||A||. Thus, we have

Af = / vf du by the countable additivity of the measure pu.
X

If there exist v,w € L*>(X) such that

Af:/vadu:/wadu, vf e LY(X),

then
/X(v —w)fdu =0, VfeL'(X).

Suppose, on the contrary, that (v — w) > 0 on some A C 9 with
0 < u(A) < co. By taking f = x4 one arrives at a contradiction.

Thus, given A € L'(X) there corresponds a unique v € L®(X).

(14) (a) For 1 <p <oo, [If],.llgll, < R, prove that

/ 7P — 9P| du < 2pR || — gl

19



(b) Deduce that the map f + |f[P from LP(u) to L'(u) is continuous.
Hint: Try [a? — y?| < plo — y[(a?~" +y77h).

Solution:

(a) Notice that |27 — y?| < plz — y|(zP~! + yP~1), which follows form the
mean value theorem applying to h(z) = xP. Then it follows easily from

Holder’s inequality that
JUrP =16 d < 2o 15 — g,

(b) This is a direct consequence of (a).
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