
MATH5011 Real Analysis I

Exercise 8 Suggested Solution

For those who have learnt functional analysis, this exercise serves to refresh your

memory. For those who have not learnt it, working through the problems gives

you some feeling on the subject.

(1) Provide two proofs that C[0, 1] is an infinite dimensional vector space.

Solution:

First proof. It is clear that {xn : n = 0, 1, . . . } forms a basis for the subspace

P [0, 1] ⊂ C[0, 1] of polynomials on [0, 1]. Hence dimC[0, 1] ≥ dimP [0, 1] =

∞.

Second proof. With reference to the lecture notes, C[0, 1] does not have the

Heine-Borel Property. Theorem 4.1 then implies dimC[0, 1] =∞.

(2) Show that both Cc(0, 1) and C1(0, 1) are not closed subspaces in C[0, 1] and

hence they are not Banach space.

Solution: For Cc(0, 1), we consider fn, n > 1,

fn(x) =



0 if x ∈ (0, 1
2n

),

linear if x ∈ [ 1
2n
, 1
n
),

1
2
− |x− 1

2
| if x ∈ [ 1

n
, 1− 1

n
),

linear if x ∈ [1− 1
n
, 1− 1

2n
),

0 if x ∈ [1− 1
2n
, 1).

Obviously, fn → 1
2
− |x − 1

2
| uniformly on (0, 1) and hence Cc(0, 1) is not

closed.
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For C1(0, 1), we consider the following example:

fn(x) =

√
(x− 1

2
)2 +

1

n
.

with

f ′
n(x) =

(x− 1

2
)√

(x− 1

2
)2 +

1

n

.

and both are continuous on [0, 1]. Obviously fn(x) → f(x) := |(x − 1/2)|

pointwisely with the limit does not belong to C1[0, 1]. Moreover

∣∣f − fn(x)
∣∣ =

∣∣√(x− 1

2
)2 +

1

n
−
√

(x− 1

2
)2
∣∣

=
∣∣ 1

n√
(x− 1

2
)2 +

1

n
+

√
(x− 1

2
)2

∣∣

≤

1

n√
(x− 1

2
)2 +

1

n

≤ 1√
n

Hence ‖f − fn‖∞ → 0. and the C1(0, 1) is not closed

(3) Endow C[0, 1] with the norm ‖f‖ =
∫ 1

0
|f(x)|dx. Determine whether it is

complete or not.

Solution: The space is not complete, we consider fn, n > 1,

fn(x) =


1 if x ∈ [0, 1

2
− 1

n
),

linear if x ∈ [1
2
− 1

n
, 1
2

+ 1
n
],

−1 if x ∈ [1
2

+ 1
n
, 1].

∀m > n, ‖fm − fn‖ <
2

n
→ 0.
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Then{fn} is Cauchy and obviously there is no f ∈ C[0, 1] s.t.‖f − fn‖ → 0.

(4) Let Λ be a bounded linear functional on the normed space X. Show that its

operator norm

‖Λ‖op = sup

{
Λx

‖x‖
: x 6= 0

}
= inf{M : |Λx| ≤M ‖x‖ , ∀x ∈ X}.

Solution: To prove the first equality, note that

‖Λ‖op = sup

{
max

(
Λx

‖x‖
,
Λ(−x)

‖−x‖

)
: x 6= 0

}
= sup

{
Λx

‖x‖
: x 6= 0

}
.

For the second, we have |Λx| ≤ ‖Λ‖op ‖x‖, which implies

‖Λ‖op ≥ inf{M : |Λx| ≤M ‖x‖ , ∀x ∈ X}.

Also, if M has |Λx| ≤M ‖x‖, ∀x ∈ X, then
|Λx|
‖x‖

≤M , which gives ‖Λ‖op ≤

M . Taking inf on both sides, we have

‖Λ‖op ≤ inf{M : |Λx| ≤M ‖x‖ , ∀x ∈ X}.

(5) For any normed space (X, ‖.‖), prove that (X ′, ‖.‖op) forms a Banach space.

Solution: It is clear that X ′ is a vector space and ‖·‖op is a norm on X ′. It

suffices to prove the completeness.

Suppose {Λn} is Cauchy in (X ′, ‖·‖op), i.e.

∀ε > 0, ∃N such that ∀m,n ≥ N, ‖Λm − Λn‖op < ε.

For any x ∈ X, the inequality ‖Λmx− Λnx‖ ≤ ‖Λm − Λn‖op ‖x‖ shows that
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{Λnx} is Cauchy in the scalar field, hence convergent. Define Λ by Λx =

lim
n→∞

Λnx. It is straightforward to verify that Λ is bounded, linear and, in

view of

‖Λn − Λ‖op = sup
‖x‖=1

|Λnx− Λx| → 0 as n→∞,

we conclude that the dual space of a normed space is always complete. The

completeness is in fact inherited from the completeness of the scalar field R.

(6) Let X be a Hilbert space and X1 a proper closed subspace. For x0 lying

outside X1, let d = ‖x0 − z‖ where d is the distance from x0 to X1. Show

that

〈x, z − x0〉 = 0, ∀x ∈ X1.

Hint: For x ∈ X1, one has
d

dt
φ(t) = 0 at t = 0 where φ(t) = ‖z0 + tx− x0‖2.

Why?

Solution:Since φ(t) attains its minimum at t = 0, we have φ′(0) = 0. It is

easy to see that

φ′(t) =
d

dt
〈z0 + tx− x0, z0 + tx− x0〉

= 2〈x, z0 + tx− x0〉.

Putting t = 0 yields the result.

(7) Show that the correspondence Λ 7→ w in Theorem 4.8 is norm preserving.

Solution:By Cauchy-Schwarz inequality, ∀x ∈ X,

|Λ(x)| = |〈x,w〉| ≤ ‖x‖‖w‖

With equality holds when x = w. Hence ‖Λ‖op = ‖w‖ and the map is norm
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preserving.

(8) Let Λ1 and Λ2 be two bounded linear functionals on the Hilbert space X.

Suppose that they have the same kernel. Prove that there exists a nonzero

constant c such that Λ2 = cΛ1. Use this fact to give a proof of Theorem 4.8

Solution: We may suppose kernel of Λ1 and Λ2 is a proper subspace of X

and ∃x0 ∈ X,Λ1(x0),Λ2(x0) 6= 0, then ∀x ∈ X,

Λ1

(
x− Λ1(x)

Λ1(x0)
x0
)

= Λ1(x)− Λ1(x)

Λ1(x0)
Λ1(x0)

= 0.

As the two functionals have the same kernel, we have

Λ2

(
x− Λ1(x)

Λ1(x0)
x0
)

= Λ2(x)− Λ1(x)

Λ1(x0)
Λ2(x0)

= 0.

Hence

Λ2 =
Λ2(x0)

Λ1(x0)
Λ1.

Now Let Λ be a non zero bounded linear functional on X and x0 not in kerΛ,

then ∃z ∈ kerΛ s.t.

〈x, x0 − z〉 = 0,∀x ∈ kerΛ.

Theorem 4.8 follows by letting Λ(x) = Λ2(x) and 〈x, x0 − z〉 = Λ1(x).

(9) This is optional. Read Page 23 and on in [SS] for the following striking

application of the Hahn-Banach theorem:

There exists m : PR → [0,∞] satisfying

(1) m(E1 ∪ E2) = m(E1) +m(E2), E1, E2 ⊂ R, E1 ∩ E2 = ∅,

(2) m(E) = L1(E) whenever E is L1-measurable,
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(3) m(E + a) = m(E), ∀E ⊂ R, ∀a ∈ R.

Of course, m cannot be countably additive.

Solution: See Theorem 5.6, Stein and R. Shakarchi, Functional Analysis.
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