MATH5011

Exercise 4 Suggested Solution

(1) Identify the Riesz measures corresponding to the following positive function-

als (X = R):
(a) Alf:/bfd:c, and
(b) Aof = f(EO)-
Solution:

(a) p1 = the restriction of the Lebesgue measure on [a, b].

pa(E) = LYE N [a,b])

(b) The Dirac delta measure at 0.

(2) Let ¢ be the counting measure on R,

A, A# 9,
| A AR
0, A=¢.
Is there a positive functional
Af = / fdec 7

Solution: No, let f(x) be a non-negative continuous function of compact

support that is 1 for all x in [0, 1] and decreases to zero outside the interval,

/fdcz/)qo,l]dc:oo.



(3) Define the distance between points (x1, ;) and (z2,ys) in the plane to be

[y1 — ya| if 21 = o, 1+ |y1 — yol if z1 # o.

Show that this is indeed a metric, and that the resulting metric space X is

locally compact.

If feCuX),let zy,...,x, be those values of = for which f(z,y) # 0 for at

least one y (there are only finitely many such x!), and define

Af = ;/Z f(apy) dy.

Let p be the measure associated with this A by Theorem 2.14 in [R]. If E

is the z-axis, show that u(FE) = oo although u(K) = 0 for every compact

K CFE.
Solution: Write p; = (x;,;), i = 1,2. Denote

‘yl - y2|7 1 = T,
d(p17p2) =
L4 |ly1 — 2|, 21 # 0.

We prove that d is a metric.

e d(p1,p2) >0 and d(py,p2) = 0 if and only if p; = p,.

o d(p1,p2) = d(p2,p1).

o d(p1,p2) < d(p1,ps)+d(ps, p2) holds because |y1 —ya| < |y1—ys|+|ys—v2|.

Now we claim that (X, 7) is a locally compact Hausdorff space. Let 7 be the

discrete topology on R, so every singleton {x} is an open set. Then every

point z € R has the compact set {x} as a neighborhood, so that (R, 7) is a

locally compact Hausdorff space. Note that (X, 7) = (R, 1) x (R, 73), where

79 is the usual topology of R. The claim follows.



If K is compact in X, the first projection pr,(K) is compact in (R, 7). Hence

it is a finite set. Therefore K is a finite union
{Il} XK1UU{In} XKn,

where each K;, i =1,2,...,n, is a compact set in (R, 7).

If f: X — C has compact support, then sptf C {z1,...,2,} x R. Thus,

AP =Y [ dy
j=1 =00

defines a positive linear functional on C,(X).

By the proof of Riesz’s representation theorem, the measure ;o defined by the

equalities

u(V) = sup  p(K) =sup Af,
KCV compact f=v
M(E) - VDlEngpen'u(V)

is a representing measure for A. Using the second equality with the Lebesgue

measure m on R, we observe that

u({x} x K) = m(K).

Thus p is characterized by the identity

p({x} x la,b]) =b—a, z e R.

Let V' be an open set containing R x {0}. Then for z € R, (z,0) € V| so

that there exists an ¢, > 0 with

{z} X [—€z,6.] C V.
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This implies that there must be an n with uncountably many e, > 1/n.
(Otherwise, e, > 1/n for at most countably many x, contradicting the fact

that R is uncountable.)

Let
€r Eux 1
Ko={opx [-55] ez
For K = 6 K,,, we have pu(K) > % Hence, if V'O R x {0} is open, then
=1
u(V) > sjgzl% = 00. This implies u(R x {0}) = oo.

Now if K is a compact subset of R x {0}, then K = {x1,...,z,} x {0}, which
implies p(K) = 0.

Therefore for E = R x {0}, pu(E) = oo while sup  u(K) = 0. This

KCEFE compact
means that g is not inner regular.

Let X be a Borel measure and p a Riesz measure on R” such that A(G) = u(G)
for all open sets G. Show that A coincides with p on B.

Solution: Let E € B. For € > 0, by Proposition 2.10, there exists an open
set £ and a closed set F' with F' C E' C G such that u(G \ F) < e. Since G

and G \ F are open, A and p coincide on them, and one has

p(E) = pw(G) =G\ E) 2 u(G) = (G \ F) = AG) = MG\ F)
> \FE) —e.

By changing the position of ;1 and A, one has

AME) —e < p(E) S A(E) +e.

Since this holds for any € > 0, one has p(E) = A(E).

Let p be a Borel measure on R™ such that u(K) < oo for all compact K.

Show that g is the restriction of some Riesz measure on B. Hint: Use Riesz
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representation theorem and Problem 4. This exercise gives a characterization

of the Riesz measure on R™.

Solution: Let A be the Riesz measure associated with the functional
A= [ fan e )
from the Riesz representation theorem. Let G be an open set. Then
MG) =sup{Af: f <G}

By Urysohns lemma, it follows that A(G) = u(G). Then apply Problem 4.

Let p be a Riesz measure on R”. Show that for every measurable function f,
there exists a sequence of continuous function {f,} such that f, — f almost
everywhere.

Solution: As p is finite on compact set, {z € R" : |f(z)| < oo, |z| < m} is
a p finite measurable set, by theorem 2.12, let f,, = [ X{zeRrr:|f(2)|<oo,|z|<m}
3¢, continuous on R" s.t

1

p{z s fl(@) # gm(2)}) < o

As Yo u({z ¢ fm(z) # gm(x)}) < oo, by Borel-Cantelli Lemma, 3y null
set IV s.t.
Ve e R\ N,3IK,VYm > K, f,(x) = gm(x).

{gm} obviously converges to fX{zcrn:|f(z)<oc}m a.e.. Similarly, we obtain

sequences of continuous function {h,,} and {j,} by replacing f,, by m -



X{z€Rn:f(x)=00,|z|<m} and —m - X{z€eR": f(z)=—o0,|z|<m}, WE have

Im + b + Jm — fa.e..

A step function on R is a simple function s where s~!(a) is either empty or
an interval for every a € R. Show that for every Lebesgue integrable function
f on R, there exists a sequence of step functions {s;} such that

lim /|sj(x) — f(z)|dL"(z) = 0.

J—00

Hint: Approximate f by simple functions (see Ex 2) and then apply Lusin’s
theorem.
Solution: Without loss of generality, we may assume f is non-negative, it

suffices to show for all € > 0, there exists step function 1 s.t.

[ 1) - st <

There exists non-negative simple function s(x) of compact support s.t. s(x) <

f(z) and

W ™

/\s(x) @) @) <

Let M = max,cg |s(z)|, apply Lusin’s theorem to s(x), we have a continuous

g of compact support, for instance C [a, b] s.t.

1 8
Lls#9) < gare
and
sup |g(z)| < M.
z€R



Therefore

/ 9(z) — s(zx)|dL (z) = /{S;ﬁg} 9(z) — s(z)]|dL (z) < %

The function g is obviously Riemann integrable over [a,b] and the Riemann

integral of g is the same as its Lebesgue integral, so 3 step function ¥ < g s.t

[ o) - wia)lic'@) < &,



