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Exercise 4 Suggested Solution

(1) Identify the Riesz measures corresponding to the following positive function-

als (X = R):

(a) Λ1f =

∫ b

a

f dx, and

(b) Λ2f = f(0).

Solution:

(a) µ1 = the restriction of the Lebesgue measure on [a, b].

µ1(E) = L1(E ∩ [a, b])

(b) The Dirac delta measure at 0.

(2) Let c be the counting measure on R,

c(A) =

 #A, A 6= φ,

0, A = φ.

Is there a positive functional

Λf =

∫
f dc ?

Solution: No, let f(x) be a non-negative continuous function of compact

support that is 1 for all x in [0, 1] and decreases to zero outside the interval,

∫
fdc ≥

∫
χ[0,1]dc =∞.
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(3) Define the distance between points (x1, y1) and (x2, y2) in the plane to be

|y1 − y2| if x1 = x2, 1 + |y1 − y2| if x1 6= x2.

Show that this is indeed a metric, and that the resulting metric space X is

locally compact.

If f ∈ Cc(X), let x1, . . . , xn be those values of x for which f(x, y) 6= 0 for at

least one y (there are only finitely many such x!), and define

Λf =
n∑

j=1

∫ ∞
−∞

f(xj, y) dy.

Let µ be the measure associated with this Λ by Theorem 2.14 in [R]. If E

is the x-axis, show that µ(E) = ∞ although µ(K) = 0 for every compact

K ⊂ E.

Solution: Write pi = (xi, yi), i = 1, 2. Denote

d(p1, p2) =

 |y1 − y2|, x1 = x2,

1 + |y1 − y2|, x1 6= x2.

We prove that d is a metric.

• d(p1, p2) ≥ 0 and d(p1, p2) = 0 if and only if p1 = p2.

• d(p1, p2) = d(p2, p1).

• d(p1, p2) ≤ d(p1, p3)+d(p3, p2) holds because |y1−y2| ≤ |y1−y3|+|y3−y2|.

Now we claim that (X, τ) is a locally compact Hausdorff space. Let τ1 be the

discrete topology on R, so every singleton {x} is an open set. Then every

point x ∈ R has the compact set {x} as a neighborhood, so that (R, τ1) is a

locally compact Hausdorff space. Note that (X, τ) = (R, τ1)× (R, τ2), where

τ2 is the usual topology of R. The claim follows.
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If K is compact in X, the first projection pr1(K) is compact in (R, τ1). Hence

it is a finite set. Therefore K is a finite union

{x1} ×K1 ∪ · · · ∪ {xn} ×Kn,

where each Ki, i = 1, 2, . . . , n, is a compact set in (R, τ2).

If f : X → C has compact support, then sptf ⊂ {x1, . . . , xn} × R. Thus,

Λf =
n∑

j=1

∫ ∞
−∞

f(xj, y) dy

defines a positive linear functional on Cc(X).

By the proof of Riesz’s representation theorem, the measure µ defined by the

equalities

µ(V ) = sup
K⊂V compact

µ(K) = sup
f≺V

Λf,

µ(E) = inf
V⊃E open

µ(V )

is a representing measure for Λ. Using the second equality with the Lebesgue

measure m on R, we observe that

µ({x} ×K) = m(K).

Thus µ is characterized by the identity

µ({x} × [a, b]) = b− a, x ∈ R.

Let V be an open set containing R × {0}. Then for x ∈ R, (x, 0) ∈ V , so

that there exists an εx > 0 with

{x} × [−εx, εx] ⊂ V.
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This implies that there must be an n with uncountably many εx ≥ 1/n.

(Otherwise, εx ≥ 1/n for at most countably many x, contradicting the fact

that R is uncountable.)

Let

Kx = {x} ×
[
−εx

2
,
εx
2

]
, εx ≥

1

n
.

For K =
m⋃
j=1

Kxj
, we have µ(K) ≥ m

n
. Hence, if V ⊃ R × {0} is open, then

µ(V ) ≥ sup
m∈N

m

n
=∞. This implies µ(R× {0}) =∞.

Now if K is a compact subset of R×{0}, then K = {x1, . . . , xn}×{0}, which

implies µ(K) = 0.

Therefore for E = R × {0}, µ(E) = ∞ while sup
K⊂E compact

µ(K) = 0. This

means that µ is not inner regular.

(4) Let λ be a Borel measure and µ a Riesz measure on Rn such that λ(G) = µ(G)

for all open sets G. Show that λ coincides with µ on B.

Solution: Let E ∈ B. For ε > 0, by Proposition 2.10, there exists an open

set E and a closed set F with F ⊂ E ⊂ G such that µ(G \ F ) < ε. Since G

and G \ F are open, λ and µ coincide on them, and one has

µ(E) = µ(G)− µ(G \ E) ≥ µ(G)− µ(G \ F ) = λ(G)− λ(G \ F )

≥ λ(E)− ε.

By changing the position of µ and λ, one has

λ(E)− ε ≤ µ(E) ≤ λ(E) + ε.

Since this holds for any ε > 0, one has µ(E) = λ(E).

(5) Let µ be a Borel measure on Rn such that µ(K) < ∞ for all compact K.

Show that µ is the restriction of some Riesz measure on B. Hint: Use Riesz
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representation theorem and Problem 4. This exercise gives a characterization

of the Riesz measure on Rn.

Solution: Let λ be the Riesz measure associated with the functional

Λf =

∫
fdµ, ∀f ∈ Cc(X),

from the Riesz representation theorem. Let G be an open set. Then

λ(G) = sup{Λf : f < G}.

By Urysohns lemma, it follows that λ(G) = µ(G). Then apply Problem 4.

(6) Let µ be a Riesz measure on Rn. Show that for every measurable function f ,

there exists a sequence of continuous function {fn} such that fn → f almost

everywhere.

Solution: As µ is finite on compact set, {x ∈ Rn : |f(x)| < ∞, |x| ≤ m} is

a µ finite measurable set, by theorem 2.12, let fm = f · χ{x∈Rn:|f(x)|<∞,|x|≤m},

∃gm continuous on Rn s.t

µ({x : fm(x) 6= gm(x)}) ≤ 1

2m
.

As
∑∞

m=1 µ({x : fm(x) 6= gm(x)}) < ∞, by Borel-Cantelli Lemma, ∃µ null

set N s.t.

∀x ∈ Rn \N, ∃K, ∀m ≥ K, fm(x) = gm(x).

{gm} obviously converges to fχ{x∈Rn:|f(x)|<∞}m a.e.. Similarly, we obtain

sequences of continuous function {hm} and {jm} by replacing fm by m ·
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χ{x∈Rn:f(x)=∞,|x|≤m} and −m · χ{x∈Rn:f(x)=−∞,|x|≤m}, we have

gm + hm + jm → fa.e..

(7) A step function on R is a simple function s where s−1(a) is either empty or

an interval for every a ∈ R. Show that for every Lebesgue integrable function

f on R, there exists a sequence of step functions {sj} such that

lim
j→∞

∫ ∣∣sj(x)− f(x)
∣∣dL1(x) = 0.

Hint: Approximate f by simple functions (see Ex 2) and then apply Lusin’s

theorem.

Solution: Without loss of generality, we may assume f is non-negative, it

suffices to show for all ε > 0, there exists step function ψ s.t.

∫ ∣∣ψ(x)− f(x)
∣∣dL1(x) < ε.

There exists non-negative simple function s(x) of compact support s.t. s(x) ≤

f(x) and ∫ ∣∣s(x)− f(x)
∣∣dL1(x) <

ε

3
.

Let M = maxx∈R |s(x)|, apply Lusin’s theorem to s(x), we have a continuous

g of compact support, for instance ⊆ [a, b] s.t.

L1({s 6= g}) < ε

6M + 1

and

sup
x∈R
|g(x)| ≤M.
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Therefore

∫ ∣∣g(x)− s(x)
∣∣dL1(x) =

∫
{s 6=g}

∣∣g(x)− s(x)
∣∣dL1(x) <

ε

3
.

The function g is obviously Riemann integrable over [a, b] and the Riemann

integral of g is the same as its Lebesgue integral, so ∃ step function ψ ≤ g s.t

∫ ∣∣g(x)− ψ(x)
∣∣dL1(x) <

ε

3
,

and

∫ ∣∣f(x)− ψ(x)
∣∣dL1(x) ≤

∫
f(x)− s(x) +

∣∣g(x)− s(x)
∣∣+ g(x)− ψ(x)dL1(x)

<
ε

3
+
ε

3
+
ε

3
= ε.
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