THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 4050 Real Analysis Special Tutorial 3 (February 20)

The following were discussed in the tutorial this week.

- 1. Definition of measurable functions.
- 2. Example of a non-measurable function f such that $\{x : f(x) = \alpha\}$ is measurable for any $\alpha \in \mathbb{R} \cup \{\pm \infty\}$.
- 3. A function f is measurable if and only if $f^{-1}(B)$ is measurable for any Borel set B.
- 4. (a) The composition of two measurable functions may not be measurable.
 - (b) Suppose $f : E \to \mathbb{R}$ is a measurable function on a measurable set E and $g : \mathbb{R} \to \mathbb{R}$ is continuous. Then $g \circ f$ is measurable.
- 5. (HW4 Q4)
 - (a) Let D and E be measurable sets and f a function with domain $D \cup E$. Show that f is measurable if and only if its restrictions to D and E are measurable.
 - (b) Let f be a function with measurable domain D. Show that f is measurable if and only if the function g defined by g(x) = f(x) for $x \in D$ and g(x) = 0 for $x \notin D$ is measurable.
- 6. (HW4 Q5)
 - (a) Let f be an extended real-valued function with measurable domain D, and let $D_1 = \{x : f(x) = \infty\}, D_2 = \{x : f(x) = -\infty\}$. Then f is measurable if and only if D_1 and D_2 are measurable and the restriction of f to $D \setminus (D_1 \cup D_2)$ is measurable.
 - (b) Prove that the product of two measurable extended real-valued function is measurable.
- 7. Littlewood's three principles.
- 8. (Borel-Cantelli lemma) Suppose $\{E_n\}_{n=1}^{\infty}$ are measurable sets such that

$$\sum_{n=1}^{\infty} m(E_n) < +\infty.$$

Then $E := \{x : x \in E_n \text{ for infinitely many } n\}$ is measurable with m(E) = 0.

9. (Lusin's Theroem) Suppose f is a finite valued, measurable function on E, with E measurable and $m(E) < \infty$. Then for any $\varepsilon > 0$, there exists a closed set $F_{\varepsilon} \subseteq E$ with $m(E \setminus F_{\varepsilon}) < \varepsilon$ and such that $f|_{F_{\varepsilon}}$ is continuous.

10. Let E be a subset of \mathbb{R} with $m^*(E) > 0$. Show that for each $0 < \alpha < 1$, there exists a (finite) open interval I so that

$$m^*(E \cap I) \ge \alpha m^*(I).$$

11. Suppose $E \subseteq \mathbb{R}$ is measurable with m(E) > 0. Prove that the difference set of E,

$$E - E := \{x - y \in \mathbb{R} : x, y \in E\}$$

contains an open interval centered at the origin.