THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 4050 Real Analysis Special Tutorial 1 (February 13)

The following were discussed in the tutorial this week.

1. (HW 3 Q4)

Let $f : [a, b] \to \mathbb{R}$. The Lower Envelope of f is defined as the function $\underline{f} : [a, b] \to [-\infty, \infty]$ given by

$$f(x) := \sup\{g_{\delta}(x) : \delta > 0\} \text{ for all } x \in [a, b],$$

where $g_{\delta}(x) := \inf\{f(y) : y \in [a, b], |x - y| < \delta\}.$

- (a) Show that $\underline{f} \leq f$ pointwisely on [a, b]. Moreover, show that for all $x \in [a, b]$, f(x) = f(x) if and only if f is l.s.c at x.
- (b) Show that if f is bounded, then f is l.s.c.
- (c) Show that if ϕ l.s.c on [a, b] such that $\phi \leq f$ on [a, b], then $\phi \leq f$.
- 2. (HW3 Q5) Let $f : [a, b] \to [m, M]$. For each $P \in Par[a, b]$, let u(f; P) and U(f; P)denote the lower/upper Riemann-sum functions. Let $\{P_n : n \in \mathbb{N}\}$ be a sequence of partitions such that $P_n \subseteq P_{n+1} \forall n$ and $||P_n|| \to 0$ (||P|| is the max subinterval length of P). Show that, $\forall x \in [a, b] \setminus A$

$$\lim_{n} \left(u(f; P_n) \right)(x) = \underline{f}(x) \quad \text{and} \quad \lim_{n} \left(U(f; P_n) \right)(x) = \overline{f}(x),$$

where A denotes the union of all end-points of $P_n \forall n$.

- 3. (a) Recall the definition of Borel σ -algebra \mathcal{B} , the smallest σ -algebra that contains all open sets in \mathbb{R} .
 - (b) Note that \mathcal{B} can also be generated by $\{(a, b) : a < b\}$ or $\{[a, b] : a < b\}$.
- 4. (a) Recall the definition of G_{δ} -sets and F_{σ} -sets.
 - (b) Briefly explain that any closed set is G_{δ} , and any open set is F_{σ} .
 - (c) Give an example of an F_{σ} -set that is not G_{δ} .
 - (d) Give an example of a Borel set that is neither F_{σ} nor G_{δ} .
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, and B be a Borel subset of \mathbb{R} .
 - (a) Is $f^{-1}(B)$ Borel?
 - (b) Is f(B) Borel? What if we further assume that f is injective?
- 6. Let $f : \mathbb{R} \to \mathbb{R}$. Show that the set of continuity point of f is a G_{δ} -set.