THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 4050 Real Analysis

Tutorial 6 (March 29)

The following were discussed in the tutorial this week.

Theorem 1 (Fundamental Theorem of Calculus Part I). Let $f \in \mathcal{L}[a, b]$. Then

$$\frac{d}{dx}\int_{a}^{x} f = f(x) \quad \text{for a.e. } x \in [a, b].$$

Theorem 2 (Fundamental Theorem of Calculus Part II). If $F \in ABC[a, b]$, then F'(x) exists a.e. in $[a, b], F' \in \mathcal{L}[a, b]$ and

$$F(x) = \int_{a}^{x} F' + F(a) \quad \text{for all } x \in [a, b].$$

Conversely, if $f \in \mathcal{L}[a, b]$, then the "indefinite integral" defined by

$$x \mapsto \int_{a}^{x} f + \text{constant}$$

is absolutely continuous on [a, b].

Exercise 1. Let $f \in BV[a, b]$. Show that

(a)
$$\int_a^b |f'| \le T_a^b(f);$$

(b) furthermore, $f \in ABC[a, b]$ if and only if $\int_a^b |f'| = T_a^b(f)$.

Theorem 3 (Banach-Zarecki). Let $f : [a,b] \to \mathbb{R}$. Then $f \in ABC[a,b]$ if and only if the following conditions are all satisfied.

- 1. f is continuous on [a, b].
- 2. $f \in BV[a, b]$.
- 3. f has Lusin N property, i.e. f maps sets of measure zero to sets of measure zero.

Exercise 2. If $f \in ABC[a, b]$, show that f maps measurable sets to measurable sets.

Exercise 3. Suppose f be absolutely continuous on $[\varepsilon, 1]$ for all $\varepsilon > 0$.

- (a) If f is continuous at 0, is f absolutely continuous on [0, 1]?
- (b) Suppose further that f is of bounded variation on [0, 1], show that f is absolutely continuous on [0, 1].