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Suggested Solution of Assignment 9

1. Let f : R→ [0,∞) be measurable. By the 2nd principle of Littlewood (one of its version,
see Q4 of HW7) there exists a montonically increasing sequence ϕn of non-negative simple
functions vanishing outside (−n, n) convergent a.e. to f . Show that, if f is also integrable,
then

lim
n

∫
ϕn =

∫
f and lim

n

∫
ϕn(x+ c) dx =

∫
f(x+ c) dx for all c ∈ R.

Show further that ∫
f(x+ c) dx =

∫
f(x) dx, ∀ c ∈ R,

and ∫
f(λx) dx =

1

|λ|

∫
f(y) dy, ∀λ 6= 0.

Solution. See ThA2 and ThA3 in Chapter 7 of lecture notes. J

2. A subset Z of a linear space Y with a semi-norm (‖y‖ ≥ 0∀ y ∈ Y such that ‖λy‖ = |λ|·‖y‖
and ‖y1 + y2‖ ≤ ‖y1‖ + ‖y2‖ ∀λ ∈ R, ∀ y, y1, y2 ∈ Y ) is said to be dense if for each y in
Y and each positive r there exists z ∈ Z such that ‖y − z‖ < r. Show that each of the
following subclasses is dense in L(R) with respect to the semi-norm ‖f‖ :=

∫
|f |.

S00(R) : = {f : simple functions vanishing outside a finite interval },
St0(R) : = {f : step functions vanishing outside a finite interval },
C00(R) : = {f : continuous functions vanishing outside a finite interval }.

(Hint: since each of the subclasses is stable respect to lattice-operations, you need only
show that each non-negative f from L(R) can be approximated by non-negative elements
from the subclasses.)

Solution. See Theorem 1, 2 and 3 in Chapter 7 of lecture notes. J

3. Try some from a subclass and make use of Q1,2 above or Littlewood’s principles, show the
following results. Let f be an integrable function on R.

(i) Let an, bn be the “Fourier coefficients” of f :

an :=

∫
f(x) sinnx dx, bn :=

∫
f(x) cosnx dx (n ∈ N).

Show that lim
n
an = 0 = lim bn = 0.

(ii) lim
δ→0

∫
|f(x)− f(x+ δ)| dx = 0. (Hint: each f ∈ C00(R) is uniformly continuous.)

Solution. See ThA1 in Chapter 7 of lecture notes. J

4. Let f be a function of two variables (x, t) which is defined on the product Q = [a, b]× [c, d]
of intervals such that for each t, the function is measurable on [a, b]. Show that:
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(i) Suppose g ∈ L[a, b] such that |f(x, t)| ≤ g(x) ∀ (x, t) ∈ Q. Then, ∀t0 ∈ [c, d],

lim
t→t0

∫ b

a
f(x, t) dx =

∫ b

a

(
lim
t→t0

f(x, t)

)
dx,

provided that, ∀x ∈ [a, b], lim
t→t0

f(x, t) exists (Hint: For Φ : R→ R, t0 ∈ R, lim
t→t0

Φ(t)

exists if and only if lim
n

Φ(tn) exists whenever (tn) is a sequence converging to t0.

(ii)
d

dt

∫ d

c
f(x, t) dx =

∫ d

c

∂f(x, t)

∂t
dx

provided that

1)
∂f

∂t
(x, t) exists in R, ∀x, t;

2)

∣∣∣∣∂f∂t (x, t)

∣∣∣∣ ≤ G(x) on Q, where G ∈ L[a, b].

Hint: Let t0 ∈ [c, d] and tn → t0 (tn 6= t0). Let Fn(x) :=
f(x, tn)− f(x, t0)

tn − t0
=

f(x, tn(x)), by Mean Value Theorem, where tn(x) lies between t0 and tn. Then

|Fn(x)| ≤ G(x) ∀x (and also lim
n
Fn(x) =

∂f(x, t0)

∂t
). Hence

∫ d

c
Fn(x) dx→

∫ d

c

∂f(x, t0)

∂t
dx.

Solution. See ThA4 in Chapter 7 of lecture notes. J

5. Let F ∈ BV[0, 1] ∩ C[0, 1] and be ABC in the interval [a, 1] for each a with 0 < a ≤ 1.
Show that f is ABC on [0, 1]. (Hint: Use the continuity of the indefinite integral defined
by F ′, and also use the fundamental theorem of calculus applied to F . And finally pass to
the limit as (F is continuous at 0).

Solution. Since F ∈ BV[0, 1], F ′ exists a.e. and F ′ ∈ L[0, 1]. Let x ∈ (0, 1] and n ∈ N.
Since F ∈ ABC[1/n, 1], it follows from the Fundamental Theorem of Calculus that

F (x)− F (1/n) =

∫ x

1/n
F ′ for all sufficiently large n.

Note that |F ′χ
[1/n,x]| ≤ |F ′| on [0, 1] and F ′ ∈ L[0, 1]. Hence, by Dominated Convergence

Theorem, lim
n→∞

∫ x

1/n
F ′ =

∫ x

0
F ′. As F is continuous at 0, we have

F (x)− F (0) =

∫ x

0
F ′ for all x ∈ [0, 1].

Now the second part of the Fundamental Theorem of Calculus yields that F ∈ ABC[0, 1].
J

6. Show that ABC[a, b] is stable with respect to linear operations and multiplication (also
quotient f/g if g is bounded away from zero by a positive constant). Show the validity of
“integration by parts”.
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Solution. It suffices to show that ABC[a, b] is stable under multiplication. Suppose f, g ∈
ABC[a, b]. Then f, g are continuous on [a, b] and there existM,N > 0 such that |f(x)| ≤M
and |g(x)| ≤ N for all x ∈ [a, b]. Let ε > 0 be given. Choose δ > 0 to be the constant that
corresponds to ε/(M + N) in the definition of f, g ∈ ABC[a, b]. Now, if {(xi, yi)}ni=1 is a
finite collection of non-overlapping intervals in [a, b] such that

∑n
i=1 |xi − yi| < δ, then

n∑
i=1

|f(xi)g(xi)− f(yi)g(yi)| ≤
n∑
i=1

(|f(xi)||g(xi)− g(yi)|+ |g(yi)||f(xi)− f(yi)|)

≤M
n∑
i=1

|g(xi)− g(yi)|+N

n∑
i=1

|f(xi)− f(yi)|

< M · ε

M +N
+N · ε

M +N
= ε.

Hence fg ∈ ABC[a, b].

Next we show the validity of “integration by parts”. Suppose f, g ∈ ABC[a, b]. Then
fg ∈ ABC[a, b] by above. In particular, f ′, g′, (fg)′ exist a.e. and f ′, g′, (fg)′ ∈ L[a, b]. By
the product rule of differentiation, we have

(fg)′(x) = f ′(x)g(x) + f(x)g′(x) for a.e. x ∈ [a, b].

Before we take the integration, we need to check that the integrands are integrable. Indeed,
f ′g, fg′ ∈ L[a, b] since∫

|f ′g| ≤ N
∫
|f ′| <∞ and

∫
|fg′| ≤M

∫
|g′| <∞.

Now, by the Fundamental Theorem of Calculus,∫ b

a
f ′g +

∫ b

a
fg′ =

∫ b

a
(fg)′ = (fg)

∣∣∣b
a
.

That is ∫ b

a
f ′g = (fg)

∣∣∣b
a
−
∫ b

a
fg′.

J

7. (Two runners’ lemma). Let f, g be integrable on [a, b] such that

∫ x

a
f =

∫ x

a
g for each

x ∈ [a, b]. Show that f = g a.e.

Solution. Without loss of generality, we can assume that g ≡ 0.

Let G ⊆ (a, b) be an open set. By the structure theorem, G =
⋃∞
n=1 In, where {In}∞n=1 is

a countable collection of disjoint open intervals. Write In = (an, bn). Then, for N ∈ N,∫
fχ⋃N

n=1 In
=

∫
f

(
N∑
n=1

χIn

)
=

N∑
n=1

∫
In

f =
N∑
n=1

(∫ bn

a
f −

∫ an

a
f

)
= 0.

Note that |fχ⋃N
n=1 In

≤ |f |, |f | ∈ L[a, b] and lim
N→∞

fχ⋃N
n=1 In

= fχG. Hence, by Dominated

Convergence Theorem, ∫
G
f = lim

N→∞

∫
fχ⋃N

n=1 In
= 0.
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Let B ⊆ (a, b) be a closed set. Then (a, b) \B is open. Hence∫
B
f =

∫ b

a
f −

∫
(a,b)\B

f = 0− 0 = 0.

For each n ∈ N, let Cn = {x ∈ (a, b) : f(x) > 1/n}. Let Fn be a closed set such that
Fn ⊆ Cn and m(Cn \ Fn) < 1/n. By above,

0 =

∫
Fn

f ≥
∫
Fn

1

n
=

1

n
·m(Fn),

so that m(Fn) = 0. Hence m(Cn) ≤ m(Fn) + m(Cn \ Fn) < 1/n. Since Cn is increasing,
we have

m({x ∈ (a, b) : f(x) > 0}) = m(
∞⋃
n=1

Cn) = lim
n→∞

m(Cn) = 0,

Similarly m({x ∈ (a, b) : f(x) < 0}) = 0. Therefore f = 0 a.e. on (a, b), and thus f = 0
a.e. on [a, b]. J


