Suggested Solution of Assignment 9

1. Let $f : \mathbb{R} \to [0, \infty)$ be measurable. By the 2nd principle of Littlewood (one of its version, see Q4 of HW7) there exists a montonically increasing sequence φ_n of non-negative simple functions vanishing outside $(-n, n)$ convergent a.e. to f. Show that, if f is also integrable, then

$$
\lim_{n} \int \varphi_n = \int f \quad \text{and} \quad \lim_{n} \int \varphi_n(x+c) \, dx = \int f(x+c) \, dx \quad \text{for all } c \in \mathbb{R}.
$$

Show further that

$$
\int f(x+c) dx = \int f(x) dx, \quad \forall c \in \mathbb{R},
$$

and

$$
\int f(\lambda x) dx = \frac{1}{|\lambda|} \int f(y) dy, \quad \forall \lambda \neq 0.
$$

Solution. See ThA2 and ThA3 in Chapter 7 of lecture notes.

2. A subset Z of a linear space Y with a semi-norm $(\|y\| \geq 0 \forall y \in Y$ such that $\|\lambda y\| = |\lambda| \cdot \|y\|$ and $||y_1 + y_2|| \le ||y_1|| + ||y_2|| \forall \lambda \in \mathbb{R}, \forall y, y_1, y_2 \in Y$ is said to be dense if for each y in Y and each positive r there exists $z \in Z$ such that $||y - z|| < r$. Show that each of the following subclasses is dense in $L(\mathbb{R})$ with respect to the semi-norm $||f|| := \int |f|$.

> $\mathcal{S}_{00}(\mathbb{R}) := \{f : \text{ simple functions vanishing outside a finite interval } \},\$ $\mathcal{S}_{t0}(\mathbb{R}) := \{f : \text{ step functions vanishing outside a finite interval } \},\$ $C_{00}(\mathbb{R}) := \{f : \text{ continuous functions vanishing outside a finite interval } \}.$

(Hint: since each of the subclasses is stable respect to lattice-operations, you need only show that each non-negative f from $L(\mathbb{R})$ can be approximated by non-negative elements from the subclasses.)

Solution. See Theorem 1, 2 and 3 in Chapter 7 of lecture notes.

- 3. Try some from a subclass and make use of Q1,2 above or Littlewood's principles, show the following results. Let f be an integrable function on \mathbb{R} .
	- (i) Let a_n, b_n be the "Fourier coefficients" of f:

$$
a_n := \int f(x) \sin nx \, dx, \qquad b_n := \int f(x) \cos nx \, dx \qquad (n \in \mathbb{N}).
$$

Show that $\lim_{n} a_n = 0 = \lim_{n} b_n = 0.$

(ii) $\lim_{\delta \to 0}$ $\int |f(x) - f(x + \delta)| dx = 0$. (**Hint:** each $f \in C_{00}(\mathbb{R})$ is uniformly continuous.)

Solution. See ThA1 in Chapter 7 of lecture notes.

4. Let f be a function of two variables (x, t) which is defined on the product $Q = [a, b] \times [c, d]$ of intervals such that for each t, the function is measurable on $[a, b]$. Show that:

(i) Suppose $g \in L[a, b]$ such that $|f(x, t)| \le g(x) \ \forall (x, t) \in Q$. Then, $\forall t_0 \in [c, d]$,

$$
\lim_{t \to t_0} \int_a^b f(x, t) \, dx = \int_a^b \left(\lim_{t \to t_0} f(x, t) \right) \, dx,
$$

provided that, $\forall x \in [a, b]$, $\lim_{t \to t_0} f(x, t)$ exists (**Hint:** For $\Phi : \mathbb{R} \to \mathbb{R}$, $t_0 \in \mathbb{R}$, $\lim_{t \to t_0} \Phi(t)$ exists if and only if $\lim_{n} \Phi(t_n)$ exists whenever (t_n) is a sequence converging to t_0 .

$$
(ii)
$$

$$
\frac{d}{dt} \int_{c}^{d} f(x, t) dx = \int_{c}^{d} \frac{\partial f(x, t)}{\partial t} dx
$$

provided that

1)
$$
\frac{\partial f}{\partial t}(x, t)
$$
 exists in R, $\forall x, t$;
\n2) $\left| \frac{\partial f}{\partial t}(x, t) \right| \leq G(x)$ on Q, where $G \in L[a, b]$.
\n**Hint:** Let $t_0 \in [c, d]$ and $t_n \to t_0$ $(t_n \neq t_0)$. Let $F_n(x) := \frac{f(x, t_n) - f(x, t_0)}{t_n - t_0} = f(x, \overline{t_n}(x))$, by Mean Value Theorem, where $\overline{t_n}(x)$ lies between t_0 and t_n . Then $|F_n(x)| \leq G(x) \forall x$ (and also $\lim_n F_n(x) = \frac{\partial f(x, t_0)}{\partial t}$). Hence $\int_c^d F_n(x) dx \to \int_c^d \frac{\partial f(x, t_0)}{\partial t} dx$.

Solution. See ThA4 in Chapter 7 of lecture notes.

5. Let $F \in BV[0,1] \cap C[0,1]$ and be ABC in the interval $[a,1]$ for each a with $0 < a \leq 1$. Show that f is ABC on $[0, 1]$. (**Hint:** Use the continuity of the indefinite integral defined by F' , and also use the fundamental theorem of calculus applied to F . And finally pass to the limit as $(F$ is continuous at 0).

Solution. Since $F \in BV[0,1]$, F' exists a.e. and $F' \in \mathcal{L}[0,1]$. Let $x \in (0,1]$ and $n \in \mathbb{N}$. Since $F \in ABC[1/n, 1]$, it follows from the Fundamental Theorem of Calculus that

$$
F(x) - F(1/n) = \int_{1/n}^{x} F'
$$
 for all sufficiently large n.

Note that $|F' \chi_{[1/n,x]}| \leq |F'|$ on [0, 1] and $F' \in \mathcal{L}[0,1]$. Hence, by Dominated Convergence Theorem, $\lim_{n\to\infty}\int_{1/n}^{x}$ $F' = \int_0^x$ 0 F' . As F is continuous at 0, we have

$$
F(x) - F(0) = \int_0^x F' \quad \text{for all } x \in [0, 1].
$$

Now the second part of the Fundamental Theorem of Calculus yields that $F \in ABC[0, 1]$. \blacktriangleleft

6. Show that ABC $[a, b]$ is stable with respect to linear operations and multiplication (also quotient f/g if g is bounded away from zero by a positive constant). Show the validity of "integration by parts".

Solution. It suffices to show that ABC[a, b] is stable under multiplication. Suppose $f, g \in$ ABC[a, b]. Then f, g are continuous on [a, b] and there exist $M, N > 0$ such that $|f(x)| \leq M$ and $|g(x)| \leq N$ for all $x \in [a, b]$. Let $\varepsilon > 0$ be given. Choose $\delta > 0$ to be the constant that corresponds to $\varepsilon/(M+N)$ in the definition of $f, g \in ABC[a, b]$. Now, if $\{(x_i, y_i)\}_{i=1}^n$ is a finite collection of non-overlapping intervals in [a, b] such that $\sum_{i=1}^{n} |x_i - y_i| < \delta$, then

$$
\sum_{i=1}^{n} |f(x_i)g(x_i) - f(y_i)g(y_i)| \le \sum_{i=1}^{n} (|f(x_i)||g(x_i) - g(y_i)| + |g(y_i)||f(x_i) - f(y_i)|)
$$

$$
\le M \sum_{i=1}^{n} |g(x_i) - g(y_i)| + N \sum_{i=1}^{n} |f(x_i) - f(y_i)|
$$

$$
< M \cdot \frac{\varepsilon}{M + N} + N \cdot \frac{\varepsilon}{M + N} = \varepsilon.
$$

Hence $fg \in ABC[a, b]$.

Next we show the validity of "integration by parts". Suppose $f, g \in ABC[a, b]$. Then $fg \in ABC[a, b]$ by above. In particular, $f', g', (fg)'$ exist a.e. and $f', g', (fg)' \in \mathcal{L}[a, b]$. By the product rule of differentiation, we have

$$
(fg)'(x) = f'(x)g(x) + f(x)g'(x)
$$
 for a.e. $x \in [a, b].$

Before we take the integration, we need to check that the integrands are integrable. Indeed, $f'g, fg' \in \mathcal{L}[a, b]$ since

$$
\int |f'g| \le N \int |f'| < \infty \quad \text{ and } \quad \int |fg'| \le M \int |g'| < \infty.
$$

Now, by the Fundamental Theorem of Calculus,

$$
\int_{a}^{b} f'g + \int_{a}^{b} fg' = \int_{a}^{b} (fg)' = (fg)\Big|_{a}^{b}.
$$

That is

$$
\int_a^b f'g = (fg)\Big|_a^b - \int_a^b fg'.
$$

7. (Two runners' lemma). Let f, g be integrable on $[a, b]$ such that \int^x a $f = \int^x$ a g for each $x \in [a, b]$. Show that $f = g$ a.e.

Solution. Without loss of generality, we can assume that $g \equiv 0$.

Let $G \subseteq (a, b)$ be an open set. By the structure theorem, $G = \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}_{n=1}^{\infty}$ is a countable collection of disjoint open intervals. Write $I_n = (a_n, b_n)$. Then, for $N \in \mathbb{N}$,

$$
\int f \chi_{\bigcup_{n=1}^{N} I_n} = \int f \left(\sum_{n=1}^{N} \chi_{I_n} \right) = \sum_{n=1}^{N} \int_{I_n} f = \sum_{n=1}^{N} \left(\int_{a}^{b_n} f - \int_{a}^{a_n} f \right) = 0.
$$

Note that $|f\chi_{\bigcup_{n=1}^N I_n} \leq |f|, |f| \in \mathcal{L}[a, b]$ and $\lim_{N \to \infty} f\chi_{\bigcup_{n=1}^N I_n} = f\chi_G$. Hence, by Dominated Convergence Theorem,

$$
\int_G f = \lim_{N \to \infty} \int f \chi_{\bigcup_{n=1}^N I_n} = 0.
$$

 \blacktriangleleft

Let $B \subseteq (a, b)$ be a closed set. Then $(a, b) \setminus B$ is open. Hence

$$
\int_{B} f = \int_{a}^{b} f - \int_{(a,b)\setminus B} f = 0 - 0 = 0.
$$

For each $n \in \mathbb{N}$, let $C_n = \{x \in (a, b) : f(x) > 1/n\}$. Let F_n be a closed set such that $F_n \subseteq C_n$ and $m(C_n \setminus F_n) < 1/n$. By above,

$$
0 = \int_{F_n} f \ge \int_{F_n} \frac{1}{n} = \frac{1}{n} \cdot m(F_n),
$$

so that $m(F_n) = 0$. Hence $m(C_n) \leq m(F_n) + m(C_n \setminus F_n) < 1/n$. Since C_n is increasing, we have

$$
m(\lbrace x \in (a,b) : f(x) > 0 \rbrace) = m(\bigcup_{n=1}^{\infty} C_n) = \lim_{n \to \infty} m(C_n) = 0,
$$

Similarly $m(\lbrace x \in (a,b) : f(x) < 0 \rbrace) = 0$. Therefore $f = 0$ a.e. on (a,b) , and thus $f = 0$ a.e. on $[a, b]$.