
TA’s selected solution to 2050B optional test
3. (a). We claim that the assertion is false. To show that h is not uni-

formly continuous on (0,∞), by definition we need to find an
ε0 > 0 such that not matter which δ > 0 is given, there exist some
x and u in (0,∞) with |x− u| < δ such that |h(x)− h(u)| ≥ ε0.

Observe that for 0 < δ ≤ 1, if x := δ and u := δ/2, then
|x− u| = δ/2 < δ and |h(x)− h(u)| = 1/δ ≥ 1.

Hence, we take ε0 = 1. Now given any δ > 0, we have x :=
min(δ, 1) and u := min(δ, 1)/2 satisfying x, u ∈ (0,∞), |x− u| < δ
and |h(x)− h(u)| ≥ 1, which was to be demonstrated.

(b). We claim that the assertion is true. To show that g is uniformly
continuous on [3,∞), by definition we need to show that given
any ε > 0, there exists δε > 0 such that if x and u are in [3,∞)
with |x− u| < δε, then |g(x)− g(u)| < ε.

Observe that for x, u ∈ [3,∞),

|g(x)− g(u)| = |x− u|
|xu|

≤ |x− u|
3 · 3

≤ |x− u| .

Hence, no matter which ε > 0 is given, if we take δε := ε, then
for all x, u ∈ [3,∞) with |x− u| < δε, we have |g(x)− g(u)| ≤
|x− u| < δε = ε. This proves our claim.

(c). We claim that the assertion is true.
First approach (proof by contradiction∗):

∗If you have tried to think of the graph of f , finding that very likely the assertion is
true, but are unable to give a direct proof, then proof by contradiction may help.
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Suppose f does not attain both its absolute maximum and abso-
lute minimum. Fix x0 ∈ R and ε > 0. Since limx→∞ f(x) = ℓ =
limx→−∞ f(x), there exists Mε > 0 such that |f(x)− ℓ| < ε for all
x ∈ (−∞,−Mε) ∪ (Mε,∞). This implies

ℓ− ε < f(x) < ℓ+ ε

for all x ∈ (−∞,−Mε) ∪ (Mε,∞).

Now applying Maximum-Minimum Theorem to f on [−Mε,Mε],
we see that ∃x∗, x∗ ∈ [−Mε,Mε] such that

f(x∗) ≤ f(x) ≤ f(x∗)

for all x ∈ [−Mε,Mε].

If it happened that f(x∗) ≥ ℓ + ε, then f(x∗) ≥ f(x) for all
x ∈ R, regardless of whether x ∈ [−Mε,Mε] or not. It follows
that f attains its absolute maximum at x∗, which contradicts
our initial assumption. Therefore it must be that f(x∗) < ℓ + ε,
and so f(x) ≤ f(x∗) < ℓ + ε for all x ∈ [−Mε,Mε]. By essen-
tially the same argument, we have ℓ − ε < f(x∗) ≤ f(x) for all
x ∈ [−Mε,Mε].

Combining the results, we have

ℓ− ε < f(x) < ℓ+ ε

for all x ∈ (−∞,−Mε) ∪ (Mε,∞) ∪ [−Mε,Mε] = R.

In particular, for our initially fixed x0 ∈ R, we have ℓ − ε <
f(x0) < ℓ + ε and so |f(x0)− ℓ| < ε. The choice of ε > 0 is
arbitrary, whence f(x0) = ℓ. Also, x0 ∈ R is arbitrary, so it must
be that f(x) ≡ ℓ on R. But then f is a constant function which
must attains both its absolute maximum and absolute minimum,
contradicting our initial hypothesis. Done.

Second approach (direct proof):
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If f(x) ≡ ℓ on R, then plainly the assertion is true. Therefore, let’s
assume ∃x0 ∈ R such that f(x0) ̸= ℓ. We first assume f(x0) > ℓ;
the case f(x0) < ℓ will be handled later.

Since f(x0) > ℓ, ε0 := f(x0) − ℓ is a positive number. Since
limx→∞ f(x) = ℓ = limx→−∞ f(x), there exists M > 0 such that
|f(x)− ℓ| < ε0 for all x ∈ (−∞,−M) ∪ (M,∞). This implies

f(x)− ℓ ≤ |f(x)− ℓ| < f(x0)− ℓ

for all x ∈ (−∞,−M) ∪ (M,∞), and so

f(x) < f(x0)

for all x ∈ (−∞,−M) ∪ (M,∞).

Now applying Maximum-Minimum Theorem to f on [−M,M ],
we see that ∃x∗ ∈ [−M,M ] such that

f(x) ≤ f(x∗)

for all x ∈ [−M,M ]. Since f(x) < f(x0) on (−∞,−M)∪(M,∞),
so x0 /∈ (−∞,−M) ∪ (M,∞) (otherwise f(x0) < f(x0)). Hence,
x0 ∈ [−M,M ] and so f(x0) ≤ f(x∗).

It follows that f(x) ≤ f(x∗) for all x ∈ R: if x ∈ (−∞,−M) ∪
(M,∞) then f(x) < f(x0) ≤ f(x∗); else if x ∈ [−M,M ], then
f(x) is not greater than the absolute maximum of f on [−M,M ],
which is f(x∗). This means f attains its absolute maximum at x∗.

Finally, the case f(x0) < ℓ can be handled in essentially the same
way. This time we start with f(x0) < f(x) on some (−∞,−M)∪
(M,∞) and argue that f attains its absolute minimum.
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