TA’s selected solution to 2050B optional test

3. (a). We claim that the assertion is false. To show that A is not uni-
formly continuous on (0,00), by definition we need to find an
g9 > 0 such that not matter which 6 > 0 is given, there exist some
x and v in (0, 00) with |z — u| < ¢ such that |h(z) — h(u)| > €.

Observe that for 0 < § < 1, if x := § and u := §/2, then
v —u|=6/2 < d and |h(x) — h(u)]| =1/6 > 1.

Hence, we take ¢g = 1. Now given any 6 > 0, we have z :=
min(d, 1) and v := min(d, 1)/2 satisfying z,u € (0,00), |z —u| < §
and |h(z) — h(u)| > 1, which was to be demonstrated.

(b). We claim that the assertion is true. To show that ¢ is uniformly
continuous on [3,00), by definition we need to show that given
any € > 0, there exists J. > 0 such that if z and w are in [3, 00)
with |z — u| < 0., then |g(z) — g(u)| < e.

Observe that for z,u € [3,00),

B |z — ul

l9(x) = g(u)| =

|zl
|z — |
- 3-3
<|x—ul.

Hence, no matter which ¢ > 0 is given, if we take J. := ¢, then
for all z,u € [3,00) with |z —u| < 0., we have |g(x) — g(u)| <
|z — u| < 6. = e. This proves our claim.

(c). We claim that the assertion is true.
First approach (proof by contradiction®):

*If you have tried to think of the graph of f, finding that very likely the assertion is
true, but are unable to give a direct proof, then proof by contradiction may help.



Suppose f does not attain both its absolute maximum and abso-
lute minimum. Fix 2o € R and € > 0. Since lim,_,, f(z) = ¢ =
lim, ,_ f(z), there exists M. > 0 such that |f(z) — {| < ¢ for all
x € (—oo,—M.) U (M., 00). This implies

l—e< f(z)<l+e

for all = € (—o0, —M.) U (M., 00).

Now applying Maximum-Minimum Theorem to f on [—M,, M,.],
we see that 32*, z, € [-M,, M| such that

fla) < fz) < fzh)
for all x € [—M,, M.].

If it happened that f(z*) > ¢+ ¢, then f(z*) > f(x) for all
x € R, regardless of whether z € [—M,, M.] or not. It follows
that f attains its absolute maximum at z*, which contradicts
our initial assumption. Therefore it must be that f(z*) < ¢ + ¢,
and so f(z) < f(2*) < € + ¢ for all € [-M., M.|. By essen-
tially the same argument, we have ¢ — e < f(z,) < f(x) for all
x € [—M., M,].

Combining the results, we have
(—e< f(x)<l+e
for all z € (—oo0, —M.) U (M., 00) U [—M,, M.] = R.

In particular, for our initially fixed o € R, we have { — ¢ <
f(zo) < €+ ¢ and so |f(zo) —¢| < e. The choice of ¢ > 0 is
arbitrary, whence f(x¢) = £. Also, zo € R is arbitrary, so it must
be that f(x) = ¢ on R. But then f is a constant function which
must attains both its absolute maximum and absolute minimum,
contradicting our initial hypothesis. Done.

Second approach (direct proof):



If f(x) = £ on R, then plainly the assertion is true. Therefore, let’s
assume Jzg € R such that f(xg) # ¢. We first assume f(zq) > ¢;
the case f(zo) < ¢ will be handled later.

Since f(xg) > ¢, €9 := f(xog) — ¢ is a positive number. Since

lim, oo f(z) = € = lim,,_ f(x), there exists M > 0 such that

|f(z) — ] <o forall z € (—oo, —M) U (M, 00). This implies
fla) =< |f(x) =] < f(xo) — ¢

for all z € (—oo,—M) U (M, c0), and so

f(x) < f(xo)
for all z € (—oo, —M) U (M, c0).

Now applying Maximum-Minimum Theorem to f on [—M, M],
we see that Jz* € [—M, M] such that

fx) < f(27)

for all z € [-M, M]. Since f(z) < f(xo) on (—oo, =M )U (M, c0),
so xg ¢ (—oo, —M) U (M, 00) (otherwise f(zo) < f(xg)). Hence,
xg € [—M, M] and so f(xo) f(z*).

It follows that f(x) < f(z*) for all z € R: if z € (—o0, —M) U
(M,00) then f(x) < f(zo) < f(z*); else if z € [—M, M], then
f(z) is not greater than the absolute maximum of f on [—M, M],
which is f(2*). This means f attains its absolute maximum at x*.

Finally, the case f(zg) < ¢ can be handled in essentially the same
way. This time we start with f(z¢) < f(x) on some (—o0, —M)U
(M, o0) and argue that f attains its absolute minimum.



