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1. (a) Suppose @ is an automorphism of H that fixes three distinct points

(b)

on the real axis. Then ® is the identity.
Suppose (x1,x2,x3) and (y1,y2,ys) are two pairs of three distinct
points on the real axis with

1 <x2<x3 and y1 < y2 < ys.

Prove that there exists (a unique) automorphism ® of H so that
®(z;) = y;,5 = 1,2,3. The same conclusion holds if y3 < y1 <
Y2 or Y2 <Yz <.

Proof. (a) An automorphism of upper half plane must be of the form

az+b
cz+d

O(z) =
with a,b,c,d € R. We now solves for its fixed points:

az+b_z
cz+d
2+ (d—a)z—b=0

We have a quadractic equation, so there are at most two roots, unless
c=0b=0,d = a, in which case ® is the identity function.

Uniqueness follows from part (a). For the existence, it suffices to
prove the special case (x1,x2,x3) = (—1,0,1). Then we consider the
map
flw)=2"%2. Yz =t
w—=t Y3 — Y2
We have f(y2) = 0, f(ys) = 1. If f(y1) = —1, then we can take
® = f~1. So we need to solve for t € R so that f(y;) = —1:

- —t

Yy1—Y2 Y3 -1 (1)

Yy1—t Ys—y2
Yr—y2 Y1t

- 2)

Y3 — Y2 ys — 1

It has a unique solution as it turns out to be a linear equation. How-
ever, we want f to preserve H, that is

— t —
Y=t gt (T TY2) >0
Y3 — Y2 I —t




2. Let

or, equivalently,

ys —1
Yz — Y2

(y2—1)>0 3)

It can be seen from (2) that, for each case considered in the question,
we do have t < y5. For example, when y; < y2 < y3, we must have
either ¢ < y; or t > ys, for each case it is clear that (3) is true.

O

1—z 1—w
= d 7! =4
flo) =70 and f7(w) =iz —
Given 6 € R, find real numbers a, b, ¢, d such that ad — bc = 1, and
so that for any z € H,

az+b_

),

Given a € D, find real numbers a, b, ¢, d such that ad — bc = 1, and
so that for any z € H,
az+b
cz+d

T (Walf(2)))-

Prove that if g is an automorphism of the unit disc, then there exist
real numbers a, b, ¢, d such that ad—bc = 1 and so that for any z € H,
az+b
cz+d

flogo f(2).

Proof. (a)

(b)

()

—i 4\ [e? 0\ (-1 i
1 1 0 1 1
_9igi?)/2 cosf/2  sinf/2
e —sinf/2 cosf/2

soa=d=cos0/2,b=—c=-sinf/2.

—i 9 -1 « -1 4
1 1 —a 1 1
9 Ima —1 4+ Rea
~ 7\ 1+ Rea —Imao

a by 2 Ima -1+ Rea
c d) 1-la2 \1+Rea —Ima
It is a combination of (a) and (b) because an automorphism of D is a

composition of a rotation and some ), and because of the closedness
of SL(R) under matrix composition.

SO

O



3. We consider conformal mappings to triangles.

(a)

(b)
()
(d)

Show that
/ 2P (1 = 2)7P2dz,
0

with 0 < 51,02 < 1,and 1 < f1+4 B2 < 2, maps H to a triangle whose
vertices are the images of 0, 1, and oo, and with angles a7, g, and
asm, where aj + 8; =1 and 1 + B2 + B3 = 2.

What happens when £y + f2 = 17
What happens when 1 + 82 < 17

In (a), the length of the side of the triangle opposite angle a;m is
T (o) (a2)T (a):

Proof. (a) By proposition 4.1 (more accurately, by the proof of the propo-

(b)

()
(d)

sition, because the integral is not the Schwarz-Christoffel integral,
for the difference the signs of the denominators), the map sends the
boundary of H (together with the point {co}) to the triangle de-
scribed. Let T be the triangle together with the region enclosed.
Note that C\ 9T has two connected components. We know that
f(H) is open, and f(H)(including co) is compact. So f(H) \ OT is
both closed and open in C\ 9T, and so must be one of the its con-
nected components. But f(H) is compact, we thus have f(H) = 7.
Now, since f(H) is open, we have f(H) =T\ 97T.

It becomes an unbounded region bounded two parallel half ways and
one line segment. (like a possibly rotated version of figure 4 in page.
233.)

It becomes an unbounded region bounded by two non-parallel half
ways and one line segment.

Using the formula of exercise 7, chapter 6,

1
/ P (1 —t) Pt
0

_ ()l (az)
F(l — 043)
_ sinagw

= L(a1)T ()T (a3)

similarly, using the substitution t =1 —1/z and t = 1/(1 — z), the
lengths of the other two sides can be found to be

sinaqmw sin a7

I'(a1)T(a2)T'(ag) and I(a1)T () (as)

O

4. If P is a simply connected region bounded by a polygon with vertices

at, .

..,a, and angles a;m,...,a,m, and F' is a conformal map of the disc



D to P, then there exist complex numbers By, ..., B, on the unit circle,
and constants ¢; and co so that

F@”‘“A C=BoP G- B

Proof. Applying the transformation

1—=2

N
z 7,1+Z

to the Schwarz-Christoffel integral, we get

/< d(itre)
1 (i%) —AA ...(Z-%) —A,)bn

21
_ / ¢ — e
1 (it5e) — AP (i358) — An)

[ mr®
1 (C — 31)51 (C — Bn)Bn

where in the last line we make use of the condition that g1 +--- 8, =2 O
. Let, for 0 < k < 1,

1 dx / HE dz
K(k) = /0 (1 —22)(1 — k22))1/2 and K'(k) = /0 (22 — 1)(1 — k222))1/2

Show that if k&2 =1 — k2 and k > 0, then

K'(k) = K(k).
Proof. Let x = (1 — k?y?)~/2, then dz = k*y(1 — k*y®)~3/2dy, and

1/k de
(22 = 1)(1 = k222))1/2
];:2y(1 _ ];2y2)—3/2dy
((k2y2(1 — k2y?) =) (R2(1 — y?)(1 — k2y?)~1))1/2
1 dy
o ((1—y?)(1—k2y2))~1/2
= K(k)

K'(k)

S~ s~




