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1. (a) Prove that if f : Ω → C is holomorphic, and f ′(z0) 6= 0 , then f
preserves angles at z0.

(b) Conversely, prove the following: suppose f : Ω → C is a complex-
valued function, that is real-differentiable at z0 ∈ Ω, and Jf (z0) 6= 0.
If f preserves angles at z0, then f is holomorphic at z0 with f ′(z0) 6=
0.

Proof.

(a) Let γ, η be curves with γ(t0) = η(t0) = z0. Then from (f ◦ γ)′(t0) =
f ′(z0)γ′(t0), (f ◦ η)′(t0) = f ′(z0)η′(t0), we have

((f ◦ γ)′(t0), (f ◦ η)′(t0))

|(f ◦ γ)′(t0)||(f ◦ η)′(t0)|
=

(γ′(t0), η′(t0))

|γ′(t0)||η′(t0)|
.

Provided γ′(t0), η′(t0), f ′(z0) 6= 0.

(b) We need to show that f satisfies the Cauchy Riemann equations.
Write f = u+ iv = u(x, y) + iv(x, y), assume z0 = 0. And suppose

T =
∂(u, v)

∂(x, y)
=

(
a b
c d

)
Let γ, η be curves whose tangent vector at 0 are represented by
column vectors α, β. Then the assumptions says that, for cαβ =
|Tα||Tβ|
|α||β| > 0

(Tα, Tβ) = cαβ(α, β)

αtT tTβ = cαβα
tβ

Putting α, β = (1, 0)t, (0, 1)t (four combinations), we see that

T tT =

(
a2 + c2 0

0 b2 + d2

)
.

Putting α = (1, 0)t, β = (1, 1)t, we see that a2+c2 = b2+d2. Replace
f with a positive multiple, we may thus assume

T tT =

(
1 0
0 1

)
.
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Now, either using the forms of orthogonal matrices in R2, or by puting
a = cos θ, b = sin θ and solve it, we must have

T =

(
cos θ − sin θ
sin θ cos θ

)
.

or
T =

(
cos θ sin θ
sin θ − cos θ

)
.

The former satisfies the Cauchy Riemann equations, but the latter
does not, so we need to rule out the latter possibility, but the latter
is a reflection, so does not preserved the orientation.

2. Prove that f(z) = − 1
2 (z + 1/z) is a conformal map from the half-disc

{z = x+ iy : |z| < 1, y > 0} to the upper half-plane.

Proof. The function is clearly holomorphic, and we just need to prove its
bijectivity. First, we show that the image of f is contained in H. For this,
suppose z = x+ iy with |z| < 1, y > 0, then

2Im(f(z)) = i(f(z)− f(z))

= y
( 1

|z|2
− 1
)

> 0.

Next we show that f is injective, so suppose Im(v), Im(v) > 0 and f(u) =
f(v). Then

u+
1

u
= v +

1

v
(u− v)(u+ v + 1) = 0.

Since Im(u+ v + 1) > 0, we must have u = v.
Finally, we prove the surjectivity, suppose w ∈ H, we have to solve for
f(z) = w, i.e.

z +
1

z
= −2w

z2 + 2wz + 1 = 0

Let α, β = 1
α be the two roots of the above equation in z, with |α| ≤ 1.

We must have Im(α) > 0 because

−2Im(w) = Im(α+ β)

= Im(α+
α

|α|2
)

= Im(α)(1− 1

|α|2
).
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3. Provide all the details in the proof of the formula for the solution of the
Dirichlet problem in a strip discussed in Section 1.3. Recall that it suffices
to compute the solution at the points z = iy with 0 < y < 1.

(a) Show that if reiθ = G(iy), then

reiθ = i
cosπy

1 + sinπy

This leads to two separate cases: either 0 < y ≤ 1/2 and θ = π/2, or
1/2 ≤ y < 1 and θ = −π/2. In either case, show that

r2 =
1− sinπy

1 + sinπy
and Pr(θ − ϕ) =

sinπy

1− cosπy sinϕ
.

(b) Deduce that

1

2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ)dϕ =
1

2π

∫ π

0

sinπy

1− cosπy sinϕ
f̃0(ϕ)dϕ

=
sinπy

2

∫ ∞
−∞

f0(t)

coshπt− cosπy
dt

(c) Use a similar argument to prove the formula for the integral

1

2π

∫ 0

−π
Pr(θ − ϕ)f̃1(ϕ)dϕ.

Proof.

(a) First,

reiθ = G(iy)

=
i− eπiy

i+ eπiy

=
− cosπy + i(1− sinπy)

cosπy + i(1 + sinπy)

= i
2 cosπy

cos2 πy + (1 + sinπy)2

= i
cosπy

1 + sinπy

Then we have

r2 =
cos2 πy

(1 + sinπy)2

=
(1− sinπy)(1 + sinπy)

(1 + sinπy)2

=
1− sinπy

1 + sinπy
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and

Pr(θ − ϕ) =
1− r2

1− 2r cos(θ − ϕ) + r2

=
1− r2

1− 2r sin θ sinϕ+ r2

=
1− 1−sinπy

1+sinπy

1− 2 cosπy
1+sinπy sinϕ+ 1−sinπy

1+sinπy

=
sinπy

1− cosπy sinϕ
.

(b) From

eiϕ =
i− eπt

i+ eπt

=
1− e2πt + 2ieπt

1 + e2πt

= − tanhπt+ i
1

coshπt
,

we see that

sinϕ =
1

coshπt
, cosϕ = − tanhπt,

and

cosϕ
dϕ

dt
= −π tanhπt

coshπt
dϕ

dt
=

π

coshπt

1

2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ)dϕ =
1

2π

∫ π

0

sinπy

1− cosπy sinϕ
f̃0(ϕ)dϕ

=
1

2π

∫ ∞
−∞

sinπy

1− cosπy 1
coshπt

f0(t)
π

coshπt
dt

=
sinπy

2

∫ ∞
−∞

f0(t)

coshπt− cosπy
dt

(c) For

eiϕ =
i+ eπt

i− eπt

=
1− e2πt − 2ieπt

1 + e2πt

= − tanhπt− i 1

coshπt
,

we see that

sinϕ = − 1

coshπt
, cosϕ = − tanhπt,
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and

cosϕ
dϕ

dt
=
π tanhπt

coshπt
dϕ

dt
= − π

coshπt

1

2π

∫ 0

−π
Pr(θ − ϕ)f̃1(ϕ)dϕ =

1

2π

∫ 0

−π

sinπy

1− cosπy sinϕ
f̃1(ϕ)dϕ

=
1

2π

∫ −∞
∞

sinπy

1− cosπy −1
coshπt

f1(t)
−π

coshπt
dt

=
sinπy

2

∫ ∞
−∞

f1(t)

coshπt+ cosπy
dt

4. Show that if f : D(0, R) → C is holomorphic, with |f(z)| ≤ M for some
M > 0, then ∣∣∣∣∣ f(z)− f(0)

M2 − f(0)f(z)

∣∣∣∣∣ ≤ |z|
MR

.

Proof. For this question, we need to assume f is not a constant. Then
since f has no maximal, we see that f is a function

f : D(0, R)→ D(0,M)

Consider the function
g : D→ D

defined by

g(w) =
f(Rw)
M − f(0)

M

1− f(0)
M

f(Rw)
M

= M
f(Rw)− f(0)

M2 − f(0)f(Rw)

By Schwarz lemma, we have |g(w)| ≤ |w|, putting z = Rw, we get the
desired result.

5. Prove that all conformal mappings from the upper half-plane H to the
unit disc D take the form

eiθ
z − β
z − β

, θ ∈ R, β ∈ H.

Proof. Recall that we have a conformal mapping

φ : H→ D

given by

φ(z) =
z − i
z + i

.
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Let f : H→ D be another conformal mappping, so f ◦φ−1 is an automor-
phism of D. We know that f ◦ φ−1 must be of the form

z 7→ eiθ
z − α
1− αz

with θ ∈ R, α ∈ D. So we have

f(z) = eiθ
z−i
z+i − α

1− α z−iz+i

= eiθ
(1− α)− i(1 + α)

(1− α) + i(1 + α)

= eiθ
z − β
z − β

where β = i 1+α1−α = φ−1(α) ∈ H.
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