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Prove that if f : @ — C is holomorphic, and f’(2¢) # 0 , then f
preserves angles at zg.

Conversely, prove the following: suppose f : Q@ — C is a complex-
valued function, that is real-differentiable at zy € 2, and Jy(2) # 0.
If f preserves angles at zg, then f is holomorphic at zg with f'(z0) #
0.

Proof.

(a)

Let v, 7 be curves with v(tg) = n(to) = 2. Then from (f o) (to) =
f'(z0)7'(to), (f o n)'(to) = f'(20)1' (o), we have

((f 29)'(t0), (f om)'(t0)) _ (7'(t0), ' (t0))
|

[(f o) (t)lI(f om) ()| 1 (o)l (o)

Provided ' (to),n’(to), f'(20) # 0.
We need to show that f satisfies the Cauchy Riemann equations.
Write f = u+ iv = u(z,y) + iv(z,y), assume zg = 0. And suppose

T o(u,v)  f(a b
Ox,y) \c d
Let v,n7 be curves whose tangent vector at 0 are represented by

column vectors o, 3. Then the assumptions says that, for cog =
ITal|T8] - |
EE

(T, TB) = caple, B)
o' TiTB = caﬁatﬂ

Putting a, 8 = (1,0)%,(0,1)* (four combinations), we see that

24 .2
N A 0
TT_( 0 b2+d2)'

Putting o = (1,0)%, 3 = (1,1)*, we see that a®+c? = b2 +d?. Replace
f with a positive multiple, we may thus assume

b (10
TT<01.



Now, either using the forms of orthogonal matrices in R2, or by puting
a = cosf,b = sinf and solve it, we must have

cosf —sinf
T_<sint9 cosf))'

__(cos® sinf
“\sinf —cosf/’
The former satisfies the Cauchy Riemann equations, but the latter

does not, so we need to rule out the latter possibility, but the latter
is a reflection, so does not preserved the orientation.

or

O

2. Prove that f(z) = —%(z + 1/z) is a conformal map from the half-disc
{z=x+1iy:|z| <1,y > 0} to the upper half-plane.

Proof. The function is clearly holomorphic, and we just need to prove its
bijectivity. First, we show that the image of f is contained in H. For this,
suppose z = x + iy with |z| < 1,y > 0, then

2Im(f(2)) = i(f(z) — f(2))

1 1)
|2[2

Next we show that f is injective, so suppose Im(v),Im(v) > 0 and f(u) =
f(). Then

=Y

/N

> 0.

1 1

U+ —=v+ -

u v
(u—v)(u+v+1)=0.

Since Im(u + v + 1) > 0, we must have u = v.
Finally, we prove the surjectivity, suppose w € H, we have to solve for

f(z) = w, ie.
2+ - =-2w
z

224 2wz4+1=0

Let o, 8 = é be the two roots of the above equation in z, with |a| < 1.
We must have Im(a) > 0 because

—2Im(w) = Im(a + )

=Im(a+ W)
=Im(a)(1 — @)



3. Provide all the details in the proof of the formula for the solution of the
Dirichlet problem in a strip discussed in Section 1.3. Recall that it suffices
to compute the solution at the points z = iy with 0 <y < 1.

(a) Show that if re?® = G(iy), then

w9 . COSTY
re’ =i——
1+ sinmy

This leads to two separate cases: either 0 < y < 1/2 and § = /2, or
1/2 <y < 1and § = —7/2. In either case, show that

1— g .
2 _ sin Ty and PO — ) = sin Ty

~ 1+sinmy 1 —cosmysing’

(b) Deduce that

1 (™ ~ 1 (™ siny ~
P.(0 - dp = — —_— d
2r Jo (6 =) fole)dy 2r Jo 1 —cosmy singofo(so) ?
_ sinmy /°° fo(t)
2 — oo Coshmt — cos Ty

(¢) Use a similar argument to prove the formula for the integral

1 /0 .
o P.(0 — @) f1(p)dep.

—T

Proof.
(a) First,
re'? = G(iy)
B 7 — eﬂiy
i emiy

_ —cos7y +i(1 — sinmy)
~ cosTy + i(1 + siny)
2 cos Ty

" cos? 7wy + (1 + sinmy)?
cos Ty

- 1+ sin7my
Then we have
2 costmy
(1 +sinmy)?
(1 —sinmy)(1 + sinmy)

(1 + sinmy)?
1 —sinmy

- 1+sinmy



and

(b) From

we see that

and

1 s

2 0

(¢) For

we see that

PT(Qf(p):

Po(0 — @) folp)dyp =

1—72

1—2rcos(0 —¢)+r2

1—72

1 — 2rsinfsin @ + r2

1—sin Ty
1+sin 7y

1—

12

cos Ty
1+4sin Ty

1—sin Ty
1+sin 7y

sin ¢ +

sin Ty

1 — cosTysing’

,L'_eﬂt

e = —— n
1+ e

1— eQTrt + 2,L'e7rt

1+ e27t

= —tanhnt + 4

S = cosh 7t

dp
COSp— =
dt

de _
dt
1

1

o o 1 —cosmysinep

o oo L —cosTy

cosh7t’

,cos p = —tanht,

7 tanh 7t

cosh 7t
T

cosh 7t

T sin Ty z

folp)de

sin Ty s
1 fO (t)

cosh 7t

oo

cosh 7t

_ sin Ty /C>o fo(®) it
_ oo COSh Tt — cosmy

2

e'?

Z+ eTrt
7 — eﬂt
1— e27rt _ 2,L'67rt

14+ 627rt

= —tanhnt — 4

singp = —

cosht’

cosh7t’

cos ¢ = — tanh 7t,



and

de  mtanhmt

OSPUt T coshnt
de T
dt  coshnt
1 /0 = 1 /0 sin my =
P PT 0 - d = — _ - d
o ) (O =) ilp)dp = o 1 Cosﬂysmwfl(@) @
1 [~ sin 7y -7
= 5= —1 fl(t)
2T Joo 1 —cOSTY oqmg cosh 7t

_ sinmy /00 £

2 oo COsh 7t + cosy

O

4. Show that if f : D(0, R) — C is holomorphic, with |f(z)| < M for some
M > 0, then
2|

-~ MR

‘ 1(z) ~ £(0)
M2 - T(0)(2)

Proof. For this question, we need to assume f is not a constant. Then
since f has no maximal, we see that f is a function

f:D(0,R) = D(0, M)

Consider the function

g:D—D
defined by
Rw
oo S, g
1 — 10) £ M2 — f(0)f (Rw)

By Schwarz lemma, we have |g(w)| < |w]|, putting z = Rw, we get the
desired result.

O

5. Prove that all conformal mappings from the upper half-plane H to the
unit disc D take the form

e“’zg,@ €R, [ eH.

z —

Proof. Recall that we have a conformal mapping

¢o:H—-D

given by .
z—1

é(z)_zqti'



Let f : H — D be another conformal mappping, so fo ¢! is an automor-
phism of . We know that f o #~! must be of the form

ORI e
1—az
with 8 € R, € D. So we have
zZ—1
=
0_=+
f(Z) _ 1z_1627i
z+1

where 3 = iit2 = ¢~ 1(a) € H. O

Zlfa



