MATH4060 Assignment 1

Ki Fung, Chan
February 3, 2021

1. Show that for a € Z and ¢ > 0 the following functions belong to class F.

(a)
(b)

f(x) _ e—mﬁ(;c+a)2_
—27iax

f(ﬂd“):;T(Lg)-

Proof.

(a)

We prove f € Fy, so let z = x + iy with |y| < 1,

F(2)] = et s?

< eﬂte—wt(z+a)2

We make a general remark that if a continuous function g : R —+ R
has a limit at infinity, then it must be bounded. We want to show
that (1 + 162)6_”(7”‘“1)2 is bounded, so we calculate its limit, using
L’Hopital’s rule,
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= 1.
P mt(1+ &)emte+a)®

=0.

So we are done in showing f € Fj.

The idea is similar to a).
We prove f € Fxt, so let z =z + iy with ly| < ZL. The norm of the
numerator of f:
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is bounded. On the other hand, the norm square of the denominator



|cosh(Z2)[? = cosh? (%) cos®( 57 + sinh® (=) sin?( =)
> cosh%%) cosZ(g)
_ cosh?
2

It remains to calculate the limit:

lim R v = lim _ A
z—oo cosh(™F)  z—oo msinh(TF)
T
z—oo 2 cosh(%F)
=0.

O

2. If f € F,,a > 0. Then for any positive integer n, (™ € F, whenever
0<b<a.

Proof. Let 6 = a —b > 0, then for any z = x + iy € Sy, then disc Dj(2)
centered at z with radius ¢ lies inside S,. Cauchy estimate says that

N1 £1lp
(n) <l 5(2)
£ ()] < el

Let A be the constant associated with the definition of f € F,. Then for
any z' = a’ + 14y’ € Ds(z), we have (for z large)

|<A<A
S 1422 S 1+ (o[-0
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Finally, note that since

lim i =1

T (=07
there exists a constant C such that 1+ (|z| —§)% > C(1+22) for all z € R.
Combining the above, we have

'
(n) <
OGS T
with A
n.
C'= .
onC
O
ISince cosh(iz) = cos(z),sinh(iz) = isin(z), we have cosh(z + iy) = cos(y — iz) =

cosy cosh z + i sin(y) sinh(z)



3. Suppose @ is a polynomial of deg > 2 with distinct roots, none lying on
the real axis. Calculate

os} 727rzz§

—o0 Q()

in terms of the roots of (). What happens when several roots coincide?

Proof. Suppose Q(z) = apz"™ + a12"" ! + - -an, (ap # 0) we use the fol-
lowing lower bound of |Q(z)| for R = |z| large:

Q(2)| = laoll2™ = lax|[2[" ™" = -+ |ax]
_ pn |aa| |an|
>CR"
> CR?

for some constant C.

Now, we assume £ < 0. Choose an arbitrarily large R € R so that all roots
of () has modulus less than R. Let Cr be the upper half circle of radius
R centered at the origin (running in anti-clockwise direction), by residue
theorem, we have
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Where the sum on the right hand side is over all the roots of Q(z) lying
in the upper half-plane.
For the first term on the left hand side, we have

6727”'25 ™ 6271'R§sin9
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Therefore, if we take R — oo, we see that

0o 7271'11{ e
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the sum over all the roots of Q(z) lying in the upper half-plane.
Consider the polynomial Q(z) = Q(—z) and using the substitution = —
—x, we have for £ > 0 that

0 e—27mac£ —271-1/3J
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the sum over all the roots of Q(2) lying in the lower half-plane.
For multiple roots, the idea is the same, but the formula for the residues
would be more complicated. O



4. Prove that

1 o0 oo

a _ —2ma|n|
. 2 2 €
s a“+n

n=—oo n=—oo

whenever a > 0. Hence show that the sum equals coth(ma).

Proof. This would be the Poisson Summation formula. In fact let f(z) =
e EEra g(x) = e~2m7| (both of them are of class F), then the formula

reads
> fn)=> g(n).

It remains to relate f and g using Fourier transform. It will be easier to
calculate §. (You need Contour Integral to calculate f)

§(§) — / e—27ra|9c\€—27riz§dx
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For the last part, we do the calculations:
Z e—27ra\n| =1+ 22 e—27ra|n\
n=-—oo n=0
2
= —1 _—
+ 1 — e—2ma
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= coth(ma).
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5. (a) Let F be a holomorphic function in the right half-plane that extends
continuously to the imaginary axis. Suppose |F| < 1 on the imagi-
nary axis, and

|F(2)| < Cecl?l”

for some C,¢c > 0 and v < 1. Prove that |F| < 1 on the right
half-plane.



(b)

More generally, let S be a sector whose vertex is the origin, and
forming an angle of 7/53. Let F be a holomorphic function in S that
is continuous on the boundary. Suppose |F| < 1 on the boundary,

and
|F(2)] < Cecl!

for some C,c¢ > 0 and 0 < v < 8. Prove that |[F| <1on S.

Proof.

(a)

(b)

The case v < 0 would be easy, and the case v > 0 would follows from
part b). So we prove part b) only. (In fact v < 0 also works for part
b).
Fix a with 7 < a < 8. By using a rotation, we may assume S is the
set

{zeC:—7/20 < arg(z) < 7/25}.

For any small positive €, Let G¢(z) = F(z)e™*" = F(z)e~cexp(alos(2)),
note that we can choose a well-defined and holomorphic branch of log
on S. For any z = Re’ € §,

Re(z") = R% cos(af) > 6R",

where

0= COS(%) > 0.

Therefore,

|Ge(2)] < |F(2)|e”

_ <|F(Z)|€_CRW> eR”(c—e&Raf'Y)

The term in the parenthesis is bounded by assumption, and the remaining
term vanishes at the infinity since a > 7. This shows that G, vanished at
the infinity, and so maximal M = maxg G, must achieved at some point
a. If a € S, the maximal modulus principle implies that F = 0. So if
F 20, a must be on the boundary, while |G| < 1 on the boundary, we
thus have

|G| < 1.

Taking € — 0T, we get the desired result. O



